2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
6 * - privileged instructions
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/features.h>
35 #include <xen/hvc-console.h>
37 #include <asm/paravirt.h>
40 #include <asm/xen/hypercall.h>
41 #include <asm/xen/hypervisor.h>
42 #include <asm/fixmap.h>
43 #include <asm/processor.h>
44 #include <asm/msr-index.h>
45 #include <asm/setup.h>
47 #include <asm/pgtable.h>
48 #include <asm/tlbflush.h>
49 #include <asm/reboot.h>
53 #include "multicalls.h"
55 EXPORT_SYMBOL_GPL(hypercall_page);
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
60 enum xen_domain_type xen_domain_type = XEN_NATIVE;
61 EXPORT_SYMBOL_GPL(xen_domain_type);
64 * Identity map, in addition to plain kernel map. This needs to be
65 * large enough to allocate page table pages to allocate the rest.
66 * Each page can map 2MB.
68 static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
71 /* l3 pud for userspace vsyscall mapping */
72 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
73 #endif /* CONFIG_X86_64 */
76 * Note about cr3 (pagetable base) values:
78 * xen_cr3 contains the current logical cr3 value; it contains the
79 * last set cr3. This may not be the current effective cr3, because
80 * its update may be being lazily deferred. However, a vcpu looking
81 * at its own cr3 can use this value knowing that it everything will
84 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
85 * hypercall to set the vcpu cr3 is complete (so it may be a little
86 * out of date, but it will never be set early). If one vcpu is
87 * looking at another vcpu's cr3 value, it should use this variable.
89 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
90 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
92 struct start_info *xen_start_info;
93 EXPORT_SYMBOL_GPL(xen_start_info);
95 struct shared_info xen_dummy_shared_info;
98 * Point at some empty memory to start with. We map the real shared_info
99 * page as soon as fixmap is up and running.
101 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
104 * Flag to determine whether vcpu info placement is available on all
105 * VCPUs. We assume it is to start with, and then set it to zero on
106 * the first failure. This is because it can succeed on some VCPUs
107 * and not others, since it can involve hypervisor memory allocation,
108 * or because the guest failed to guarantee all the appropriate
109 * constraints on all VCPUs (ie buffer can't cross a page boundary).
111 * Note that any particular CPU may be using a placed vcpu structure,
112 * but we can only optimise if the all are.
114 * 0: not available, 1: available
116 static int have_vcpu_info_placement =
125 static void xen_vcpu_setup(int cpu)
127 struct vcpu_register_vcpu_info info;
129 struct vcpu_info *vcpup;
131 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
132 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
134 if (!have_vcpu_info_placement)
135 return; /* already tested, not available */
137 vcpup = &per_cpu(xen_vcpu_info, cpu);
139 info.mfn = virt_to_mfn(vcpup);
140 info.offset = offset_in_page(vcpup);
142 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
143 cpu, vcpup, info.mfn, info.offset);
145 /* Check to see if the hypervisor will put the vcpu_info
146 structure where we want it, which allows direct access via
147 a percpu-variable. */
148 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
151 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
152 have_vcpu_info_placement = 0;
154 /* This cpu is using the registered vcpu info, even if
155 later ones fail to. */
156 per_cpu(xen_vcpu, cpu) = vcpup;
158 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
164 * On restore, set the vcpu placement up again.
165 * If it fails, then we're in a bad state, since
166 * we can't back out from using it...
168 void xen_vcpu_restore(void)
170 if (have_vcpu_info_placement) {
173 for_each_online_cpu(cpu) {
174 bool other_cpu = (cpu != smp_processor_id());
177 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
183 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
187 BUG_ON(!have_vcpu_info_placement);
191 static void __init xen_banner(void)
193 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
194 struct xen_extraversion extra;
195 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
197 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
199 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
200 version >> 16, version & 0xffff, extra.extraversion,
201 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
204 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
205 unsigned int *cx, unsigned int *dx)
207 unsigned maskedx = ~0;
210 * Mask out inconvenient features, to try and disable as many
211 * unsupported kernel subsystems as possible.
214 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
215 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
216 (1 << X86_FEATURE_MCE) | /* disable MCE */
217 (1 << X86_FEATURE_MCA) | /* disable MCA */
218 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
220 asm(XEN_EMULATE_PREFIX "cpuid"
225 : "0" (*ax), "2" (*cx));
229 static void xen_set_debugreg(int reg, unsigned long val)
231 HYPERVISOR_set_debugreg(reg, val);
234 static unsigned long xen_get_debugreg(int reg)
236 return HYPERVISOR_get_debugreg(reg);
239 static void xen_leave_lazy(void)
241 paravirt_leave_lazy(paravirt_get_lazy_mode());
245 static unsigned long xen_store_tr(void)
251 * Set the page permissions for a particular virtual address. If the
252 * address is a vmalloc mapping (or other non-linear mapping), then
253 * find the linear mapping of the page and also set its protections to
256 static void set_aliased_prot(void *v, pgprot_t prot)
264 ptep = lookup_address((unsigned long)v, &level);
265 BUG_ON(ptep == NULL);
267 pfn = pte_pfn(*ptep);
268 page = pfn_to_page(pfn);
270 pte = pfn_pte(pfn, prot);
272 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
275 if (!PageHighMem(page)) {
276 void *av = __va(PFN_PHYS(pfn));
279 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
285 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
287 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
290 for(i = 0; i < entries; i += entries_per_page)
291 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
294 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
296 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
299 for(i = 0; i < entries; i += entries_per_page)
300 set_aliased_prot(ldt + i, PAGE_KERNEL);
303 static void xen_set_ldt(const void *addr, unsigned entries)
305 struct mmuext_op *op;
306 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
309 op->cmd = MMUEXT_SET_LDT;
310 op->arg1.linear_addr = (unsigned long)addr;
311 op->arg2.nr_ents = entries;
313 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
315 xen_mc_issue(PARAVIRT_LAZY_CPU);
318 static void xen_load_gdt(const struct desc_ptr *dtr)
320 unsigned long *frames;
321 unsigned long va = dtr->address;
322 unsigned int size = dtr->size + 1;
323 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
325 struct multicall_space mcs;
327 /* A GDT can be up to 64k in size, which corresponds to 8192
328 8-byte entries, or 16 4k pages.. */
330 BUG_ON(size > 65536);
331 BUG_ON(va & ~PAGE_MASK);
333 mcs = xen_mc_entry(sizeof(*frames) * pages);
336 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
337 frames[f] = virt_to_mfn(va);
338 make_lowmem_page_readonly((void *)va);
341 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
343 xen_mc_issue(PARAVIRT_LAZY_CPU);
346 static void load_TLS_descriptor(struct thread_struct *t,
347 unsigned int cpu, unsigned int i)
349 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
350 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
351 struct multicall_space mc = __xen_mc_entry(0);
353 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
356 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
359 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
360 * it means we're in a context switch, and %gs has just been
361 * saved. This means we can zero it out to prevent faults on
362 * exit from the hypervisor if the next process has no %gs.
363 * Either way, it has been saved, and the new value will get
364 * loaded properly. This will go away as soon as Xen has been
365 * modified to not save/restore %gs for normal hypercalls.
367 * On x86_64, this hack is not used for %gs, because gs points
368 * to KERNEL_GS_BASE (and uses it for PDA references), so we
369 * must not zero %gs on x86_64
371 * For x86_64, we need to zero %fs, otherwise we may get an
372 * exception between the new %fs descriptor being loaded and
373 * %fs being effectively cleared at __switch_to().
375 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
385 load_TLS_descriptor(t, cpu, 0);
386 load_TLS_descriptor(t, cpu, 1);
387 load_TLS_descriptor(t, cpu, 2);
389 xen_mc_issue(PARAVIRT_LAZY_CPU);
393 static void xen_load_gs_index(unsigned int idx)
395 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
400 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
403 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
404 u64 entry = *(u64 *)ptr;
409 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
415 static int cvt_gate_to_trap(int vector, const gate_desc *val,
416 struct trap_info *info)
418 if (val->type != 0xf && val->type != 0xe)
421 info->vector = vector;
422 info->address = gate_offset(*val);
423 info->cs = gate_segment(*val);
424 info->flags = val->dpl;
425 /* interrupt gates clear IF */
426 if (val->type == 0xe)
432 /* Locations of each CPU's IDT */
433 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
435 /* Set an IDT entry. If the entry is part of the current IDT, then
437 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
439 unsigned long p = (unsigned long)&dt[entrynum];
440 unsigned long start, end;
444 start = __get_cpu_var(idt_desc).address;
445 end = start + __get_cpu_var(idt_desc).size + 1;
449 native_write_idt_entry(dt, entrynum, g);
451 if (p >= start && (p + 8) <= end) {
452 struct trap_info info[2];
456 if (cvt_gate_to_trap(entrynum, g, &info[0]))
457 if (HYPERVISOR_set_trap_table(info))
464 static void xen_convert_trap_info(const struct desc_ptr *desc,
465 struct trap_info *traps)
467 unsigned in, out, count;
469 count = (desc->size+1) / sizeof(gate_desc);
472 for (in = out = 0; in < count; in++) {
473 gate_desc *entry = (gate_desc*)(desc->address) + in;
475 if (cvt_gate_to_trap(in, entry, &traps[out]))
478 traps[out].address = 0;
481 void xen_copy_trap_info(struct trap_info *traps)
483 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
485 xen_convert_trap_info(desc, traps);
488 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
489 hold a spinlock to protect the static traps[] array (static because
490 it avoids allocation, and saves stack space). */
491 static void xen_load_idt(const struct desc_ptr *desc)
493 static DEFINE_SPINLOCK(lock);
494 static struct trap_info traps[257];
498 __get_cpu_var(idt_desc) = *desc;
500 xen_convert_trap_info(desc, traps);
503 if (HYPERVISOR_set_trap_table(traps))
509 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
510 they're handled differently. */
511 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
512 const void *desc, int type)
523 xmaddr_t maddr = virt_to_machine(&dt[entry]);
526 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
535 static void xen_load_sp0(struct tss_struct *tss,
536 struct thread_struct *thread)
538 struct multicall_space mcs = xen_mc_entry(0);
539 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
540 xen_mc_issue(PARAVIRT_LAZY_CPU);
543 static void xen_set_iopl_mask(unsigned mask)
545 struct physdev_set_iopl set_iopl;
547 /* Force the change at ring 0. */
548 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
549 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
552 static void xen_io_delay(void)
556 #ifdef CONFIG_X86_LOCAL_APIC
557 static u32 xen_apic_read(u32 reg)
562 static void xen_apic_write(u32 reg, u32 val)
564 /* Warn to see if there's any stray references */
568 static u64 xen_apic_icr_read(void)
573 static void xen_apic_icr_write(u32 low, u32 id)
575 /* Warn to see if there's any stray references */
579 static void xen_apic_wait_icr_idle(void)
584 static u32 xen_safe_apic_wait_icr_idle(void)
589 static struct apic_ops xen_basic_apic_ops = {
590 .read = xen_apic_read,
591 .write = xen_apic_write,
592 .icr_read = xen_apic_icr_read,
593 .icr_write = xen_apic_icr_write,
594 .wait_icr_idle = xen_apic_wait_icr_idle,
595 .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle,
600 static void xen_flush_tlb(void)
602 struct mmuext_op *op;
603 struct multicall_space mcs;
607 mcs = xen_mc_entry(sizeof(*op));
610 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
611 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
613 xen_mc_issue(PARAVIRT_LAZY_MMU);
618 static void xen_flush_tlb_single(unsigned long addr)
620 struct mmuext_op *op;
621 struct multicall_space mcs;
625 mcs = xen_mc_entry(sizeof(*op));
627 op->cmd = MMUEXT_INVLPG_LOCAL;
628 op->arg1.linear_addr = addr & PAGE_MASK;
629 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
631 xen_mc_issue(PARAVIRT_LAZY_MMU);
636 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
643 cpumask_t cpumask = *cpus;
644 struct multicall_space mcs;
647 * A couple of (to be removed) sanity checks:
649 * - current CPU must not be in mask
650 * - mask must exist :)
652 BUG_ON(cpus_empty(cpumask));
653 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
656 /* If a CPU which we ran on has gone down, OK. */
657 cpus_and(cpumask, cpumask, cpu_online_map);
658 if (cpus_empty(cpumask))
661 mcs = xen_mc_entry(sizeof(*args));
663 args->mask = cpumask;
664 args->op.arg2.vcpumask = &args->mask;
666 if (va == TLB_FLUSH_ALL) {
667 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
669 args->op.cmd = MMUEXT_INVLPG_MULTI;
670 args->op.arg1.linear_addr = va;
673 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
675 xen_mc_issue(PARAVIRT_LAZY_MMU);
678 static void xen_clts(void)
680 struct multicall_space mcs;
682 mcs = xen_mc_entry(0);
684 MULTI_fpu_taskswitch(mcs.mc, 0);
686 xen_mc_issue(PARAVIRT_LAZY_CPU);
689 static void xen_write_cr0(unsigned long cr0)
691 struct multicall_space mcs;
693 /* Only pay attention to cr0.TS; everything else is
695 mcs = xen_mc_entry(0);
697 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
699 xen_mc_issue(PARAVIRT_LAZY_CPU);
702 static void xen_write_cr2(unsigned long cr2)
704 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
707 static unsigned long xen_read_cr2(void)
709 return x86_read_percpu(xen_vcpu)->arch.cr2;
712 static unsigned long xen_read_cr2_direct(void)
714 return x86_read_percpu(xen_vcpu_info.arch.cr2);
717 static void xen_write_cr4(unsigned long cr4)
722 native_write_cr4(cr4);
725 static unsigned long xen_read_cr3(void)
727 return x86_read_percpu(xen_cr3);
730 static void set_current_cr3(void *v)
732 x86_write_percpu(xen_current_cr3, (unsigned long)v);
735 static void __xen_write_cr3(bool kernel, unsigned long cr3)
737 struct mmuext_op *op;
738 struct multicall_space mcs;
742 mfn = pfn_to_mfn(PFN_DOWN(cr3));
746 WARN_ON(mfn == 0 && kernel);
748 mcs = __xen_mc_entry(sizeof(*op));
751 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
754 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
757 x86_write_percpu(xen_cr3, cr3);
759 /* Update xen_current_cr3 once the batch has actually
761 xen_mc_callback(set_current_cr3, (void *)cr3);
765 static void xen_write_cr3(unsigned long cr3)
767 BUG_ON(preemptible());
769 xen_mc_batch(); /* disables interrupts */
771 /* Update while interrupts are disabled, so its atomic with
773 x86_write_percpu(xen_cr3, cr3);
775 __xen_write_cr3(true, cr3);
779 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
781 __xen_write_cr3(false, __pa(user_pgd));
783 __xen_write_cr3(false, 0);
787 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
790 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
801 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
802 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
803 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
806 base = ((u64)high << 32) | low;
807 if (HYPERVISOR_set_segment_base(which, base) != 0)
815 case MSR_SYSCALL_MASK:
816 case MSR_IA32_SYSENTER_CS:
817 case MSR_IA32_SYSENTER_ESP:
818 case MSR_IA32_SYSENTER_EIP:
819 /* Fast syscall setup is all done in hypercalls, so
820 these are all ignored. Stub them out here to stop
821 Xen console noise. */
825 ret = native_write_msr_safe(msr, low, high);
831 /* Early in boot, while setting up the initial pagetable, assume
832 everything is pinned. */
833 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
835 #ifdef CONFIG_FLATMEM
836 BUG_ON(mem_map); /* should only be used early */
838 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
841 /* Early release_pte assumes that all pts are pinned, since there's
842 only init_mm and anything attached to that is pinned. */
843 static void xen_release_pte_init(unsigned long pfn)
845 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
848 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
852 op.arg1.mfn = pfn_to_mfn(pfn);
853 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
857 /* This needs to make sure the new pte page is pinned iff its being
858 attached to a pinned pagetable. */
859 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
861 struct page *page = pfn_to_page(pfn);
863 if (PagePinned(virt_to_page(mm->pgd))) {
867 if (!PageHighMem(page)) {
868 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
869 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
870 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
872 /* make sure there are no stray mappings of
879 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
881 xen_alloc_ptpage(mm, pfn, PT_PTE);
884 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
886 xen_alloc_ptpage(mm, pfn, PT_PMD);
889 static int xen_pgd_alloc(struct mm_struct *mm)
891 pgd_t *pgd = mm->pgd;
894 BUG_ON(PagePinned(virt_to_page(pgd)));
898 struct page *page = virt_to_page(pgd);
901 BUG_ON(page->private != 0);
905 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
906 page->private = (unsigned long)user_pgd;
908 if (user_pgd != NULL) {
909 user_pgd[pgd_index(VSYSCALL_START)] =
910 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
914 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
921 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
924 pgd_t *user_pgd = xen_get_user_pgd(pgd);
927 free_page((unsigned long)user_pgd);
931 /* This should never happen until we're OK to use struct page */
932 static void xen_release_ptpage(unsigned long pfn, unsigned level)
934 struct page *page = pfn_to_page(pfn);
936 if (PagePinned(page)) {
937 if (!PageHighMem(page)) {
938 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
939 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
940 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
942 ClearPagePinned(page);
946 static void xen_release_pte(unsigned long pfn)
948 xen_release_ptpage(pfn, PT_PTE);
951 static void xen_release_pmd(unsigned long pfn)
953 xen_release_ptpage(pfn, PT_PMD);
956 #if PAGETABLE_LEVELS == 4
957 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
959 xen_alloc_ptpage(mm, pfn, PT_PUD);
962 static void xen_release_pud(unsigned long pfn)
964 xen_release_ptpage(pfn, PT_PUD);
968 #ifdef CONFIG_HIGHPTE
969 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
971 pgprot_t prot = PAGE_KERNEL;
973 if (PagePinned(page))
974 prot = PAGE_KERNEL_RO;
976 if (0 && PageHighMem(page))
977 printk("mapping highpte %lx type %d prot %s\n",
978 page_to_pfn(page), type,
979 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
981 return kmap_atomic_prot(page, type, prot);
986 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
988 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
989 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
990 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
996 /* Init-time set_pte while constructing initial pagetables, which
997 doesn't allow RO pagetable pages to be remapped RW */
998 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1000 pte = mask_rw_pte(ptep, pte);
1002 xen_set_pte(ptep, pte);
1006 static __init void xen_pagetable_setup_start(pgd_t *base)
1010 void xen_setup_shared_info(void)
1012 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1013 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1014 xen_start_info->shared_info);
1016 HYPERVISOR_shared_info =
1017 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1019 HYPERVISOR_shared_info =
1020 (struct shared_info *)__va(xen_start_info->shared_info);
1023 /* In UP this is as good a place as any to set up shared info */
1024 xen_setup_vcpu_info_placement();
1027 xen_setup_mfn_list_list();
1030 static __init void xen_pagetable_setup_done(pgd_t *base)
1032 xen_setup_shared_info();
1035 static __init void xen_post_allocator_init(void)
1037 pv_mmu_ops.set_pte = xen_set_pte;
1038 pv_mmu_ops.set_pmd = xen_set_pmd;
1039 pv_mmu_ops.set_pud = xen_set_pud;
1040 #if PAGETABLE_LEVELS == 4
1041 pv_mmu_ops.set_pgd = xen_set_pgd;
1044 /* This will work as long as patching hasn't happened yet
1045 (which it hasn't) */
1046 pv_mmu_ops.alloc_pte = xen_alloc_pte;
1047 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1048 pv_mmu_ops.release_pte = xen_release_pte;
1049 pv_mmu_ops.release_pmd = xen_release_pmd;
1050 #if PAGETABLE_LEVELS == 4
1051 pv_mmu_ops.alloc_pud = xen_alloc_pud;
1052 pv_mmu_ops.release_pud = xen_release_pud;
1055 #ifdef CONFIG_X86_64
1056 SetPagePinned(virt_to_page(level3_user_vsyscall));
1058 xen_mark_init_mm_pinned();
1061 /* This is called once we have the cpu_possible_map */
1062 void xen_setup_vcpu_info_placement(void)
1066 for_each_possible_cpu(cpu)
1067 xen_vcpu_setup(cpu);
1069 /* xen_vcpu_setup managed to place the vcpu_info within the
1070 percpu area for all cpus, so make use of it */
1071 if (have_vcpu_info_placement) {
1072 printk(KERN_INFO "Xen: using vcpu_info placement\n");
1074 pv_irq_ops.save_fl = xen_save_fl_direct;
1075 pv_irq_ops.restore_fl = xen_restore_fl_direct;
1076 pv_irq_ops.irq_disable = xen_irq_disable_direct;
1077 pv_irq_ops.irq_enable = xen_irq_enable_direct;
1078 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1082 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1083 unsigned long addr, unsigned len)
1085 char *start, *end, *reloc;
1088 start = end = reloc = NULL;
1090 #define SITE(op, x) \
1091 case PARAVIRT_PATCH(op.x): \
1092 if (have_vcpu_info_placement) { \
1093 start = (char *)xen_##x##_direct; \
1094 end = xen_##x##_direct_end; \
1095 reloc = xen_##x##_direct_reloc; \
1100 SITE(pv_irq_ops, irq_enable);
1101 SITE(pv_irq_ops, irq_disable);
1102 SITE(pv_irq_ops, save_fl);
1103 SITE(pv_irq_ops, restore_fl);
1107 if (start == NULL || (end-start) > len)
1110 ret = paravirt_patch_insns(insnbuf, len, start, end);
1112 /* Note: because reloc is assigned from something that
1113 appears to be an array, gcc assumes it's non-null,
1114 but doesn't know its relationship with start and
1116 if (reloc > start && reloc < end) {
1117 int reloc_off = reloc - start;
1118 long *relocp = (long *)(insnbuf + reloc_off);
1119 long delta = start - (char *)addr;
1127 ret = paravirt_patch_default(type, clobbers, insnbuf,
1135 static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
1139 phys >>= PAGE_SHIFT;
1142 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1143 #ifdef CONFIG_X86_F00F_BUG
1146 #ifdef CONFIG_X86_32
1149 # ifdef CONFIG_HIGHMEM
1150 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1153 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1155 #ifdef CONFIG_X86_LOCAL_APIC
1156 case FIX_APIC_BASE: /* maps dummy local APIC */
1158 pte = pfn_pte(phys, prot);
1162 pte = mfn_pte(phys, prot);
1166 __native_set_fixmap(idx, pte);
1168 #ifdef CONFIG_X86_64
1169 /* Replicate changes to map the vsyscall page into the user
1170 pagetable vsyscall mapping. */
1171 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1172 unsigned long vaddr = __fix_to_virt(idx);
1173 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1178 static const struct pv_info xen_info __initdata = {
1179 .paravirt_enabled = 1,
1180 .shared_kernel_pmd = 0,
1185 static const struct pv_init_ops xen_init_ops __initdata = {
1188 .banner = xen_banner,
1189 .memory_setup = xen_memory_setup,
1190 .arch_setup = xen_arch_setup,
1191 .post_allocator_init = xen_post_allocator_init,
1194 static const struct pv_time_ops xen_time_ops __initdata = {
1195 .time_init = xen_time_init,
1197 .set_wallclock = xen_set_wallclock,
1198 .get_wallclock = xen_get_wallclock,
1199 .get_tsc_khz = xen_tsc_khz,
1200 .sched_clock = xen_sched_clock,
1203 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
1206 .set_debugreg = xen_set_debugreg,
1207 .get_debugreg = xen_get_debugreg,
1211 .read_cr0 = native_read_cr0,
1212 .write_cr0 = xen_write_cr0,
1214 .read_cr4 = native_read_cr4,
1215 .read_cr4_safe = native_read_cr4_safe,
1216 .write_cr4 = xen_write_cr4,
1218 .wbinvd = native_wbinvd,
1220 .read_msr = native_read_msr_safe,
1221 .write_msr = xen_write_msr_safe,
1222 .read_tsc = native_read_tsc,
1223 .read_pmc = native_read_pmc,
1226 .irq_enable_sysexit = xen_sysexit,
1227 #ifdef CONFIG_X86_64
1228 .usergs_sysret32 = xen_sysret32,
1229 .usergs_sysret64 = xen_sysret64,
1232 .load_tr_desc = paravirt_nop,
1233 .set_ldt = xen_set_ldt,
1234 .load_gdt = xen_load_gdt,
1235 .load_idt = xen_load_idt,
1236 .load_tls = xen_load_tls,
1237 #ifdef CONFIG_X86_64
1238 .load_gs_index = xen_load_gs_index,
1241 .alloc_ldt = xen_alloc_ldt,
1242 .free_ldt = xen_free_ldt,
1244 .store_gdt = native_store_gdt,
1245 .store_idt = native_store_idt,
1246 .store_tr = xen_store_tr,
1248 .write_ldt_entry = xen_write_ldt_entry,
1249 .write_gdt_entry = xen_write_gdt_entry,
1250 .write_idt_entry = xen_write_idt_entry,
1251 .load_sp0 = xen_load_sp0,
1253 .set_iopl_mask = xen_set_iopl_mask,
1254 .io_delay = xen_io_delay,
1256 /* Xen takes care of %gs when switching to usermode for us */
1257 .swapgs = paravirt_nop,
1260 .enter = paravirt_enter_lazy_cpu,
1261 .leave = xen_leave_lazy,
1265 static const struct pv_apic_ops xen_apic_ops __initdata = {
1266 #ifdef CONFIG_X86_LOCAL_APIC
1267 .setup_boot_clock = paravirt_nop,
1268 .setup_secondary_clock = paravirt_nop,
1269 .startup_ipi_hook = paravirt_nop,
1273 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
1274 .pagetable_setup_start = xen_pagetable_setup_start,
1275 .pagetable_setup_done = xen_pagetable_setup_done,
1277 .read_cr2 = xen_read_cr2,
1278 .write_cr2 = xen_write_cr2,
1280 .read_cr3 = xen_read_cr3,
1281 .write_cr3 = xen_write_cr3,
1283 .flush_tlb_user = xen_flush_tlb,
1284 .flush_tlb_kernel = xen_flush_tlb,
1285 .flush_tlb_single = xen_flush_tlb_single,
1286 .flush_tlb_others = xen_flush_tlb_others,
1288 .pte_update = paravirt_nop,
1289 .pte_update_defer = paravirt_nop,
1291 .pgd_alloc = xen_pgd_alloc,
1292 .pgd_free = xen_pgd_free,
1294 .alloc_pte = xen_alloc_pte_init,
1295 .release_pte = xen_release_pte_init,
1296 .alloc_pmd = xen_alloc_pte_init,
1297 .alloc_pmd_clone = paravirt_nop,
1298 .release_pmd = xen_release_pte_init,
1300 #ifdef CONFIG_HIGHPTE
1301 .kmap_atomic_pte = xen_kmap_atomic_pte,
1304 #ifdef CONFIG_X86_64
1305 .set_pte = xen_set_pte,
1307 .set_pte = xen_set_pte_init,
1309 .set_pte_at = xen_set_pte_at,
1310 .set_pmd = xen_set_pmd_hyper,
1312 .ptep_modify_prot_start = __ptep_modify_prot_start,
1313 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
1315 .pte_val = xen_pte_val,
1316 .pte_flags = native_pte_flags,
1317 .pgd_val = xen_pgd_val,
1319 .make_pte = xen_make_pte,
1320 .make_pgd = xen_make_pgd,
1322 #ifdef CONFIG_X86_PAE
1323 .set_pte_atomic = xen_set_pte_atomic,
1324 .set_pte_present = xen_set_pte_at,
1325 .pte_clear = xen_pte_clear,
1326 .pmd_clear = xen_pmd_clear,
1327 #endif /* CONFIG_X86_PAE */
1328 .set_pud = xen_set_pud_hyper,
1330 .make_pmd = xen_make_pmd,
1331 .pmd_val = xen_pmd_val,
1333 #if PAGETABLE_LEVELS == 4
1334 .pud_val = xen_pud_val,
1335 .make_pud = xen_make_pud,
1336 .set_pgd = xen_set_pgd_hyper,
1338 .alloc_pud = xen_alloc_pte_init,
1339 .release_pud = xen_release_pte_init,
1340 #endif /* PAGETABLE_LEVELS == 4 */
1342 .activate_mm = xen_activate_mm,
1343 .dup_mmap = xen_dup_mmap,
1344 .exit_mmap = xen_exit_mmap,
1347 .enter = paravirt_enter_lazy_mmu,
1348 .leave = xen_leave_lazy,
1351 .set_fixmap = xen_set_fixmap,
1354 static void xen_reboot(int reason)
1356 struct sched_shutdown r = { .reason = reason };
1362 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1366 static void xen_restart(char *msg)
1368 xen_reboot(SHUTDOWN_reboot);
1371 static void xen_emergency_restart(void)
1373 xen_reboot(SHUTDOWN_reboot);
1376 static void xen_machine_halt(void)
1378 xen_reboot(SHUTDOWN_poweroff);
1381 static void xen_crash_shutdown(struct pt_regs *regs)
1383 xen_reboot(SHUTDOWN_crash);
1386 static const struct machine_ops __initdata xen_machine_ops = {
1387 .restart = xen_restart,
1388 .halt = xen_machine_halt,
1389 .power_off = xen_machine_halt,
1390 .shutdown = xen_machine_halt,
1391 .crash_shutdown = xen_crash_shutdown,
1392 .emergency_restart = xen_emergency_restart,
1396 static void __init xen_reserve_top(void)
1398 #ifdef CONFIG_X86_32
1399 unsigned long top = HYPERVISOR_VIRT_START;
1400 struct xen_platform_parameters pp;
1402 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1403 top = pp.virt_start;
1405 reserve_top_address(-top);
1406 #endif /* CONFIG_X86_32 */
1410 * Like __va(), but returns address in the kernel mapping (which is
1411 * all we have until the physical memory mapping has been set up.
1413 static void *__ka(phys_addr_t paddr)
1415 #ifdef CONFIG_X86_64
1416 return (void *)(paddr + __START_KERNEL_map);
1422 /* Convert a machine address to physical address */
1423 static unsigned long m2p(phys_addr_t maddr)
1427 maddr &= PTE_PFN_MASK;
1428 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1433 /* Convert a machine address to kernel virtual */
1434 static void *m2v(phys_addr_t maddr)
1436 return __ka(m2p(maddr));
1439 static void set_page_prot(void *addr, pgprot_t prot)
1441 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1442 pte_t pte = pfn_pte(pfn, prot);
1444 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1448 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1450 unsigned pmdidx, pteidx;
1456 for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1459 /* Reuse or allocate a page of ptes */
1460 if (pmd_present(pmd[pmdidx]))
1461 pte_page = m2v(pmd[pmdidx].pmd);
1463 /* Check for free pte pages */
1464 if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
1467 pte_page = &level1_ident_pgt[ident_pte];
1468 ident_pte += PTRS_PER_PTE;
1470 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1473 /* Install mappings */
1474 for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1477 if (pfn > max_pfn_mapped)
1478 max_pfn_mapped = pfn;
1480 if (!pte_none(pte_page[pteidx]))
1483 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1484 pte_page[pteidx] = pte;
1488 for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1489 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1491 set_page_prot(pmd, PAGE_KERNEL_RO);
1494 #ifdef CONFIG_X86_64
1495 static void convert_pfn_mfn(void *v)
1500 /* All levels are converted the same way, so just treat them
1502 for(i = 0; i < PTRS_PER_PTE; i++)
1503 pte[i] = xen_make_pte(pte[i].pte);
1507 * Set up the inital kernel pagetable.
1509 * We can construct this by grafting the Xen provided pagetable into
1510 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1511 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1512 * means that only the kernel has a physical mapping to start with -
1513 * but that's enough to get __va working. We need to fill in the rest
1514 * of the physical mapping once some sort of allocator has been set
1517 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1522 /* Zap identity mapping */
1523 init_level4_pgt[0] = __pgd(0);
1525 /* Pre-constructed entries are in pfn, so convert to mfn */
1526 convert_pfn_mfn(init_level4_pgt);
1527 convert_pfn_mfn(level3_ident_pgt);
1528 convert_pfn_mfn(level3_kernel_pgt);
1530 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1531 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1533 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1534 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1536 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1537 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1538 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1540 /* Set up identity map */
1541 xen_map_identity_early(level2_ident_pgt, max_pfn);
1543 /* Make pagetable pieces RO */
1544 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1545 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1546 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1547 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1548 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1549 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1551 /* Pin down new L4 */
1552 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1553 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1555 /* Unpin Xen-provided one */
1556 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1559 pgd = init_level4_pgt;
1562 * At this stage there can be no user pgd, and no page
1563 * structure to attach it to, so make sure we just set kernel
1567 __xen_write_cr3(true, __pa(pgd));
1568 xen_mc_issue(PARAVIRT_LAZY_CPU);
1570 reserve_early(__pa(xen_start_info->pt_base),
1571 __pa(xen_start_info->pt_base +
1572 xen_start_info->nr_pt_frames * PAGE_SIZE),
1577 #else /* !CONFIG_X86_64 */
1578 static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
1580 static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1584 init_pg_tables_start = __pa(pgd);
1585 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1586 max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
1588 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1589 memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1591 xen_map_identity_early(level2_kernel_pgt, max_pfn);
1593 memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1594 set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
1595 __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
1597 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1598 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1599 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1601 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1603 xen_write_cr3(__pa(swapper_pg_dir));
1605 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
1607 return swapper_pg_dir;
1609 #endif /* CONFIG_X86_64 */
1611 /* First C function to be called on Xen boot */
1612 asmlinkage void __init xen_start_kernel(void)
1616 if (!xen_start_info)
1619 xen_domain_type = XEN_PV_DOMAIN;
1621 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
1623 xen_setup_features();
1625 /* Install Xen paravirt ops */
1627 pv_init_ops = xen_init_ops;
1628 pv_time_ops = xen_time_ops;
1629 pv_cpu_ops = xen_cpu_ops;
1630 pv_apic_ops = xen_apic_ops;
1631 pv_mmu_ops = xen_mmu_ops;
1635 #ifdef CONFIG_X86_LOCAL_APIC
1637 * set up the basic apic ops.
1639 apic_ops = &xen_basic_apic_ops;
1642 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1643 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1644 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1647 machine_ops = xen_machine_ops;
1649 #ifdef CONFIG_X86_64
1650 /* Disable until direct per-cpu data access. */
1651 have_vcpu_info_placement = 0;
1658 if (!xen_feature(XENFEAT_auto_translated_physmap))
1659 xen_build_dynamic_phys_to_machine();
1661 pgd = (pgd_t *)xen_start_info->pt_base;
1663 /* Prevent unwanted bits from being set in PTEs. */
1664 __supported_pte_mask &= ~_PAGE_GLOBAL;
1665 if (!xen_initial_domain())
1666 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1668 /* Don't do the full vcpu_info placement stuff until we have a
1669 possible map and a non-dummy shared_info. */
1670 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1672 xen_raw_console_write("mapping kernel into physical memory\n");
1673 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1677 /* keep using Xen gdt for now; no urgent need to change it */
1679 pv_info.kernel_rpl = 1;
1680 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1681 pv_info.kernel_rpl = 0;
1683 /* set the limit of our address space */
1686 #ifdef CONFIG_X86_32
1687 /* set up basic CPUID stuff */
1688 cpu_detect(&new_cpu_data);
1689 new_cpu_data.hard_math = 1;
1690 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1693 /* Poke various useful things into boot_params */
1694 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1695 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1696 ? __pa(xen_start_info->mod_start) : 0;
1697 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1698 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1700 if (!xen_initial_domain()) {
1701 add_preferred_console("xenboot", 0, NULL);
1702 add_preferred_console("tty", 0, NULL);
1703 add_preferred_console("hvc", 0, NULL);
1706 xen_raw_console_write("about to get started...\n");
1708 /* Start the world */
1709 #ifdef CONFIG_X86_32
1710 i386_start_kernel();
1712 x86_64_start_reservations((char *)__pa_symbol(&boot_params));