2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/init.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/smp_lock.h>
46 #include <linux/bootmem.h>
47 #include <linux/thread_info.h>
48 #include <linux/module.h>
49 #include <linux/delay.h>
50 #include <linux/mc146818rtc.h>
51 #include <linux/smp.h>
54 #include <asm/pgalloc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
61 #include <asm/hw_irq.h>
64 /* Number of siblings per CPU package */
65 int smp_num_siblings = 1;
66 EXPORT_SYMBOL(smp_num_siblings);
68 /* Last level cache ID of each logical CPU */
69 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
70 EXPORT_SYMBOL(cpu_llc_id);
72 /* Bitmask of currently online CPUs */
73 cpumask_t cpu_online_map __read_mostly;
75 EXPORT_SYMBOL(cpu_online_map);
78 * Private maps to synchronize booting between AP and BP.
79 * Probably not needed anymore, but it makes for easier debugging. -AK
81 cpumask_t cpu_callin_map;
82 cpumask_t cpu_callout_map;
83 EXPORT_SYMBOL(cpu_callout_map);
85 cpumask_t cpu_possible_map;
86 EXPORT_SYMBOL(cpu_possible_map);
88 /* Per CPU bogomips and other parameters */
89 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
90 EXPORT_SYMBOL(cpu_data);
92 /* Set when the idlers are all forked */
93 int smp_threads_ready;
95 /* representing HT siblings of each logical CPU */
96 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
97 EXPORT_SYMBOL(cpu_sibling_map);
99 /* representing HT and core siblings of each logical CPU */
100 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
101 EXPORT_SYMBOL(cpu_core_map);
104 * Trampoline 80x86 program as an array.
107 extern unsigned char trampoline_data[];
108 extern unsigned char trampoline_end[];
110 /* State of each CPU */
111 DEFINE_PER_CPU(int, cpu_state) = { 0 };
114 * Store all idle threads, this can be reused instead of creating
115 * a new thread. Also avoids complicated thread destroy functionality
118 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
120 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
121 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
124 * Currently trivial. Write the real->protected mode
125 * bootstrap into the page concerned. The caller
126 * has made sure it's suitably aligned.
129 static unsigned long __cpuinit setup_trampoline(void)
131 void *tramp = __va(SMP_TRAMPOLINE_BASE);
132 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
133 return virt_to_phys(tramp);
137 * The bootstrap kernel entry code has set these up. Save them for
141 static void __cpuinit smp_store_cpu_info(int id)
143 struct cpuinfo_x86 *c = cpu_data + id;
151 * New Funky TSC sync algorithm borrowed from IA64.
152 * Main advantage is that it doesn't reset the TSCs fully and
153 * in general looks more robust and it works better than my earlier
154 * attempts. I believe it was written by David Mosberger. Some minor
155 * adjustments for x86-64 by me -AK
157 * Original comment reproduced below.
159 * Synchronize TSC of the current (slave) CPU with the TSC of the
160 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
161 * eliminate the possibility of unaccounted-for errors (such as
162 * getting a machine check in the middle of a calibration step). The
163 * basic idea is for the slave to ask the master what itc value it has
164 * and to read its own itc before and after the master responds. Each
165 * iteration gives us three timestamps:
178 * The goal is to adjust the slave's TSC such that tm falls exactly
179 * half-way between t0 and t1. If we achieve this, the clocks are
180 * synchronized provided the interconnect between the slave and the
181 * master is symmetric. Even if the interconnect were asymmetric, we
182 * would still know that the synchronization error is smaller than the
183 * roundtrip latency (t0 - t1).
185 * When the interconnect is quiet and symmetric, this lets us
186 * synchronize the TSC to within one or two cycles. However, we can
187 * only *guarantee* that the synchronization is accurate to within a
188 * round-trip time, which is typically in the range of several hundred
189 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
190 * are usually almost perfectly synchronized, but we shouldn't assume
191 * that the accuracy is much better than half a micro second or so.
193 * [there are other errors like the latency of RDTSC and of the
194 * WRMSR. These can also account to hundreds of cycles. So it's
195 * probably worse. It claims 153 cycles error on a dual Opteron,
196 * but I suspect the numbers are actually somewhat worse -AK]
200 #define SLAVE (SMP_CACHE_BYTES/8)
202 /* Intentionally don't use cpu_relax() while TSC synchronization
203 because we don't want to go into funky power save modi or cause
204 hypervisors to schedule us away. Going to sleep would likely affect
205 latency and low latency is the primary objective here. -AK */
206 #define no_cpu_relax() barrier()
208 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
209 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
210 static int notscsync __cpuinitdata;
212 #undef DEBUG_TSC_SYNC
214 #define NUM_ROUNDS 64 /* magic value */
215 #define NUM_ITERS 5 /* likewise */
217 /* Callback on boot CPU */
218 static __cpuinit void sync_master(void *arg)
220 unsigned long flags, i;
224 local_irq_save(flags);
226 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
233 local_irq_restore(flags);
237 * Return the number of cycles by which our tsc differs from the tsc
238 * on the master (time-keeper) CPU. A positive number indicates our
239 * tsc is ahead of the master, negative that it is behind.
242 get_delta(long *rt, long *master)
244 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
245 unsigned long tcenter, t0, t1, tm;
248 for (i = 0; i < NUM_ITERS; ++i) {
251 while (!(tm = go[SLAVE]))
256 if (t1 - t0 < best_t1 - best_t0)
257 best_t0 = t0, best_t1 = t1, best_tm = tm;
260 *rt = best_t1 - best_t0;
261 *master = best_tm - best_t0;
263 /* average best_t0 and best_t1 without overflow: */
264 tcenter = (best_t0/2 + best_t1/2);
265 if (best_t0 % 2 + best_t1 % 2 == 2)
267 return tcenter - best_tm;
270 static __cpuinit void sync_tsc(unsigned int master)
273 long delta, adj, adjust_latency = 0;
274 unsigned long flags, rt, master_time_stamp, bound;
275 #ifdef DEBUG_TSC_SYNC
276 static struct syncdebug {
277 long rt; /* roundtrip time */
278 long master; /* master's timestamp */
279 long diff; /* difference between midpoint and master's timestamp */
280 long lat; /* estimate of tsc adjustment latency */
281 } t[NUM_ROUNDS] __cpuinitdata;
284 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
285 smp_processor_id(), master);
289 /* It is dangerous to broadcast IPI as cpus are coming up,
290 * as they may not be ready to accept them. So since
291 * we only need to send the ipi to the boot cpu direct
292 * the message, and avoid the race.
294 smp_call_function_single(master, sync_master, NULL, 1, 0);
296 while (go[MASTER]) /* wait for master to be ready */
299 spin_lock_irqsave(&tsc_sync_lock, flags);
301 for (i = 0; i < NUM_ROUNDS; ++i) {
302 delta = get_delta(&rt, &master_time_stamp);
304 done = 1; /* let's lock on to this... */
311 adjust_latency += -delta;
312 adj = -delta + adjust_latency/4;
317 wrmsrl(MSR_IA32_TSC, t + adj);
319 #ifdef DEBUG_TSC_SYNC
321 t[i].master = master_time_stamp;
323 t[i].lat = adjust_latency/4;
327 spin_unlock_irqrestore(&tsc_sync_lock, flags);
329 #ifdef DEBUG_TSC_SYNC
330 for (i = 0; i < NUM_ROUNDS; ++i)
331 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
332 t[i].rt, t[i].master, t[i].diff, t[i].lat);
336 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
337 "maxerr %lu cycles)\n",
338 smp_processor_id(), master, delta, rt);
341 static void __cpuinit tsc_sync_wait(void)
344 * When the CPU has synchronized TSCs assume the BIOS
345 * or the hardware already synced. Otherwise we could
346 * mess up a possible perfect synchronization with a
347 * not-quite-perfect algorithm.
349 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
354 static __init int notscsync_setup(char *s)
359 __setup("notscsync", notscsync_setup);
361 static atomic_t init_deasserted __cpuinitdata;
364 * Report back to the Boot Processor.
367 void __cpuinit smp_callin(void)
370 unsigned long timeout;
373 * If waken up by an INIT in an 82489DX configuration
374 * we may get here before an INIT-deassert IPI reaches
375 * our local APIC. We have to wait for the IPI or we'll
376 * lock up on an APIC access.
378 while (!atomic_read(&init_deasserted))
382 * (This works even if the APIC is not enabled.)
384 phys_id = GET_APIC_ID(apic_read(APIC_ID));
385 cpuid = smp_processor_id();
386 if (cpu_isset(cpuid, cpu_callin_map)) {
387 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
390 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
393 * STARTUP IPIs are fragile beasts as they might sometimes
394 * trigger some glue motherboard logic. Complete APIC bus
395 * silence for 1 second, this overestimates the time the
396 * boot CPU is spending to send the up to 2 STARTUP IPIs
397 * by a factor of two. This should be enough.
401 * Waiting 2s total for startup (udelay is not yet working)
403 timeout = jiffies + 2*HZ;
404 while (time_before(jiffies, timeout)) {
406 * Has the boot CPU finished it's STARTUP sequence?
408 if (cpu_isset(cpuid, cpu_callout_map))
413 if (!time_before(jiffies, timeout)) {
414 panic("smp_callin: CPU%d started up but did not get a callout!\n",
419 * the boot CPU has finished the init stage and is spinning
420 * on callin_map until we finish. We are free to set up this
421 * CPU, first the APIC. (this is probably redundant on most
425 Dprintk("CALLIN, before setup_local_APIC().\n");
431 * Need to enable IRQs because it can take longer and then
432 * the NMI watchdog might kill us.
437 Dprintk("Stack at about %p\n",&cpuid);
439 disable_APIC_timer();
442 * Save our processor parameters
444 smp_store_cpu_info(cpuid);
447 * Allow the master to continue.
449 cpu_set(cpuid, cpu_callin_map);
452 /* maps the cpu to the sched domain representing multi-core */
453 cpumask_t cpu_coregroup_map(int cpu)
455 struct cpuinfo_x86 *c = cpu_data + cpu;
457 * For perf, we return last level cache shared map.
458 * And for power savings, we return cpu_core_map
460 if (sched_mc_power_savings || sched_smt_power_savings)
461 return cpu_core_map[cpu];
463 return c->llc_shared_map;
466 /* representing cpus for which sibling maps can be computed */
467 static cpumask_t cpu_sibling_setup_map;
469 static inline void set_cpu_sibling_map(int cpu)
472 struct cpuinfo_x86 *c = cpu_data;
474 cpu_set(cpu, cpu_sibling_setup_map);
476 if (smp_num_siblings > 1) {
477 for_each_cpu_mask(i, cpu_sibling_setup_map) {
478 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
479 c[cpu].cpu_core_id == c[i].cpu_core_id) {
480 cpu_set(i, cpu_sibling_map[cpu]);
481 cpu_set(cpu, cpu_sibling_map[i]);
482 cpu_set(i, cpu_core_map[cpu]);
483 cpu_set(cpu, cpu_core_map[i]);
484 cpu_set(i, c[cpu].llc_shared_map);
485 cpu_set(cpu, c[i].llc_shared_map);
489 cpu_set(cpu, cpu_sibling_map[cpu]);
492 cpu_set(cpu, c[cpu].llc_shared_map);
494 if (current_cpu_data.x86_max_cores == 1) {
495 cpu_core_map[cpu] = cpu_sibling_map[cpu];
496 c[cpu].booted_cores = 1;
500 for_each_cpu_mask(i, cpu_sibling_setup_map) {
501 if (cpu_llc_id[cpu] != BAD_APICID &&
502 cpu_llc_id[cpu] == cpu_llc_id[i]) {
503 cpu_set(i, c[cpu].llc_shared_map);
504 cpu_set(cpu, c[i].llc_shared_map);
506 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
507 cpu_set(i, cpu_core_map[cpu]);
508 cpu_set(cpu, cpu_core_map[i]);
510 * Does this new cpu bringup a new core?
512 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
514 * for each core in package, increment
515 * the booted_cores for this new cpu
517 if (first_cpu(cpu_sibling_map[i]) == i)
518 c[cpu].booted_cores++;
520 * increment the core count for all
521 * the other cpus in this package
525 } else if (i != cpu && !c[cpu].booted_cores)
526 c[cpu].booted_cores = c[i].booted_cores;
532 * Setup code on secondary processor (after comming out of the trampoline)
534 void __cpuinit start_secondary(void)
537 * Dont put anything before smp_callin(), SMP
538 * booting is too fragile that we want to limit the
539 * things done here to the most necessary things.
545 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
548 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
549 setup_secondary_APIC_clock();
551 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
553 if (nmi_watchdog == NMI_IO_APIC) {
554 disable_8259A_irq(0);
555 enable_NMI_through_LVT0(NULL);
562 * The sibling maps must be set before turing the online map on for
565 set_cpu_sibling_map(smp_processor_id());
568 * Wait for TSC sync to not schedule things before.
569 * We still process interrupts, which could see an inconsistent
570 * time in that window unfortunately.
571 * Do this here because TSC sync has global unprotected state.
576 * We need to hold call_lock, so there is no inconsistency
577 * between the time smp_call_function() determines number of
578 * IPI receipients, and the time when the determination is made
579 * for which cpus receive the IPI in genapic_flat.c. Holding this
580 * lock helps us to not include this cpu in a currently in progress
581 * smp_call_function().
583 lock_ipi_call_lock();
584 spin_lock(&vector_lock);
586 /* Setup the per cpu irq handling data structures */
587 __setup_vector_irq(smp_processor_id());
589 * Allow the master to continue.
591 cpu_set(smp_processor_id(), cpu_online_map);
592 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
593 spin_unlock(&vector_lock);
594 unlock_ipi_call_lock();
599 extern volatile unsigned long init_rsp;
600 extern void (*initial_code)(void);
603 static void inquire_remote_apic(int apicid)
605 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
606 char *names[] = { "ID", "VERSION", "SPIV" };
609 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
611 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
612 printk("... APIC #%d %s: ", apicid, names[i]);
617 apic_wait_icr_idle();
619 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
620 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
625 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
626 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
629 case APIC_ICR_RR_VALID:
630 status = apic_read(APIC_RRR);
631 printk("%08x\n", status);
641 * Kick the secondary to wake up.
643 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
645 unsigned long send_status = 0, accept_status = 0;
646 int maxlvt, timeout, num_starts, j;
648 Dprintk("Asserting INIT.\n");
651 * Turn INIT on target chip
653 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
658 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
661 Dprintk("Waiting for send to finish...\n");
666 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
667 } while (send_status && (timeout++ < 1000));
671 Dprintk("Deasserting INIT.\n");
674 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
677 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
679 Dprintk("Waiting for send to finish...\n");
684 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
685 } while (send_status && (timeout++ < 1000));
688 atomic_set(&init_deasserted, 1);
693 * Run STARTUP IPI loop.
695 Dprintk("#startup loops: %d.\n", num_starts);
697 maxlvt = get_maxlvt();
699 for (j = 1; j <= num_starts; j++) {
700 Dprintk("Sending STARTUP #%d.\n",j);
701 apic_write(APIC_ESR, 0);
703 Dprintk("After apic_write.\n");
710 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
712 /* Boot on the stack */
713 /* Kick the second */
714 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
717 * Give the other CPU some time to accept the IPI.
721 Dprintk("Startup point 1.\n");
723 Dprintk("Waiting for send to finish...\n");
728 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
729 } while (send_status && (timeout++ < 1000));
732 * Give the other CPU some time to accept the IPI.
736 * Due to the Pentium erratum 3AP.
739 apic_write(APIC_ESR, 0);
741 accept_status = (apic_read(APIC_ESR) & 0xEF);
742 if (send_status || accept_status)
745 Dprintk("After Startup.\n");
748 printk(KERN_ERR "APIC never delivered???\n");
750 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
752 return (send_status | accept_status);
756 struct work_struct work;
757 struct task_struct *idle;
758 struct completion done;
762 void do_fork_idle(struct work_struct *work)
764 struct create_idle *c_idle =
765 container_of(work, struct create_idle, work);
767 c_idle->idle = fork_idle(c_idle->cpu);
768 complete(&c_idle->done);
774 static int __cpuinit do_boot_cpu(int cpu, int apicid)
776 unsigned long boot_error;
778 unsigned long start_rip;
779 struct create_idle c_idle = {
780 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
782 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
785 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
786 if (!cpu_gdt_descr[cpu].address &&
787 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
788 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
792 /* Allocate node local memory for AP pdas */
793 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
794 struct x8664_pda *newpda, *pda;
795 int node = cpu_to_node(cpu);
797 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
800 memcpy(newpda, pda, sizeof (struct x8664_pda));
801 cpu_pda(cpu) = newpda;
804 "Could not allocate node local PDA for CPU %d on node %d\n",
808 alternatives_smp_switch(1);
810 c_idle.idle = get_idle_for_cpu(cpu);
813 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
814 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
815 init_idle(c_idle.idle, cpu);
820 * During cold boot process, keventd thread is not spun up yet.
821 * When we do cpu hot-add, we create idle threads on the fly, we should
822 * not acquire any attributes from the calling context. Hence the clean
823 * way to create kernel_threads() is to do that from keventd().
824 * We do the current_is_keventd() due to the fact that ACPI notifier
825 * was also queuing to keventd() and when the caller is already running
826 * in context of keventd(), we would end up with locking up the keventd
829 if (!keventd_up() || current_is_keventd())
830 c_idle.work.func(&c_idle.work);
832 schedule_work(&c_idle.work);
833 wait_for_completion(&c_idle.done);
836 if (IS_ERR(c_idle.idle)) {
837 printk("failed fork for CPU %d\n", cpu);
838 return PTR_ERR(c_idle.idle);
841 set_idle_for_cpu(cpu, c_idle.idle);
845 cpu_pda(cpu)->pcurrent = c_idle.idle;
847 start_rip = setup_trampoline();
849 init_rsp = c_idle.idle->thread.rsp;
850 per_cpu(init_tss,cpu).rsp0 = init_rsp;
851 initial_code = start_secondary;
852 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
854 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
855 cpus_weight(cpu_present_map),
859 * This grunge runs the startup process for
860 * the targeted processor.
863 atomic_set(&init_deasserted, 0);
865 Dprintk("Setting warm reset code and vector.\n");
867 CMOS_WRITE(0xa, 0xf);
870 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
872 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
876 * Be paranoid about clearing APIC errors.
878 apic_write(APIC_ESR, 0);
882 * Status is now clean
887 * Starting actual IPI sequence...
889 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
893 * allow APs to start initializing.
895 Dprintk("Before Callout %d.\n", cpu);
896 cpu_set(cpu, cpu_callout_map);
897 Dprintk("After Callout %d.\n", cpu);
900 * Wait 5s total for a response
902 for (timeout = 0; timeout < 50000; timeout++) {
903 if (cpu_isset(cpu, cpu_callin_map))
904 break; /* It has booted */
908 if (cpu_isset(cpu, cpu_callin_map)) {
909 /* number CPUs logically, starting from 1 (BSP is 0) */
910 Dprintk("CPU has booted.\n");
913 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
915 /* trampoline started but...? */
916 printk("Stuck ??\n");
918 /* trampoline code not run */
919 printk("Not responding.\n");
921 inquire_remote_apic(apicid);
926 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
927 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
928 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
929 cpu_clear(cpu, cpu_present_map);
930 cpu_clear(cpu, cpu_possible_map);
931 x86_cpu_to_apicid[cpu] = BAD_APICID;
932 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
939 cycles_t cacheflush_time;
940 unsigned long cache_decay_ticks;
943 * Cleanup possible dangling ends...
945 static __cpuinit void smp_cleanup_boot(void)
948 * Paranoid: Set warm reset code and vector here back
954 * Reset trampoline flag
956 *((volatile int *) phys_to_virt(0x467)) = 0;
960 * Fall back to non SMP mode after errors.
962 * RED-PEN audit/test this more. I bet there is more state messed up here.
964 static __init void disable_smp(void)
966 cpu_present_map = cpumask_of_cpu(0);
967 cpu_possible_map = cpumask_of_cpu(0);
968 if (smp_found_config)
969 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
971 phys_cpu_present_map = physid_mask_of_physid(0);
972 cpu_set(0, cpu_sibling_map[0]);
973 cpu_set(0, cpu_core_map[0]);
976 #ifdef CONFIG_HOTPLUG_CPU
978 int additional_cpus __initdata = -1;
981 * cpu_possible_map should be static, it cannot change as cpu's
982 * are onlined, or offlined. The reason is per-cpu data-structures
983 * are allocated by some modules at init time, and dont expect to
984 * do this dynamically on cpu arrival/departure.
985 * cpu_present_map on the other hand can change dynamically.
986 * In case when cpu_hotplug is not compiled, then we resort to current
987 * behaviour, which is cpu_possible == cpu_present.
990 * Three ways to find out the number of additional hotplug CPUs:
991 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
992 * - The user can overwrite it with additional_cpus=NUM
993 * - Otherwise don't reserve additional CPUs.
994 * We do this because additional CPUs waste a lot of memory.
997 __init void prefill_possible_map(void)
1002 if (additional_cpus == -1) {
1003 if (disabled_cpus > 0)
1004 additional_cpus = disabled_cpus;
1006 additional_cpus = 0;
1008 possible = num_processors + additional_cpus;
1009 if (possible > NR_CPUS)
1012 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1014 max_t(int, possible - num_processors, 0));
1016 for (i = 0; i < possible; i++)
1017 cpu_set(i, cpu_possible_map);
1022 * Various sanity checks.
1024 static int __init smp_sanity_check(unsigned max_cpus)
1026 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1027 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1028 hard_smp_processor_id());
1029 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1033 * If we couldn't find an SMP configuration at boot time,
1034 * get out of here now!
1036 if (!smp_found_config) {
1037 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1039 if (APIC_init_uniprocessor())
1040 printk(KERN_NOTICE "Local APIC not detected."
1041 " Using dummy APIC emulation.\n");
1046 * Should not be necessary because the MP table should list the boot
1047 * CPU too, but we do it for the sake of robustness anyway.
1049 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1050 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1052 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1056 * If we couldn't find a local APIC, then get out of here now!
1058 if (!cpu_has_apic) {
1059 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1061 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1067 * If SMP should be disabled, then really disable it!
1070 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1079 * Prepare for SMP bootup. The MP table or ACPI has been read
1080 * earlier. Just do some sanity checking here and enable APIC mode.
1082 void __init smp_prepare_cpus(unsigned int max_cpus)
1084 nmi_watchdog_default();
1085 current_cpu_data = boot_cpu_data;
1086 current_thread_info()->cpu = 0; /* needed? */
1087 set_cpu_sibling_map(0);
1089 if (smp_sanity_check(max_cpus) < 0) {
1090 printk(KERN_INFO "SMP disabled\n");
1097 * Switch from PIC to APIC mode.
1101 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1102 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1103 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1104 /* Or can we switch back to PIC here? */
1108 * Now start the IO-APICs
1110 if (!skip_ioapic_setup && nr_ioapics)
1116 * Set up local APIC timer on boot CPU.
1119 setup_boot_APIC_clock();
1123 * Early setup to make printk work.
1125 void __init smp_prepare_boot_cpu(void)
1127 int me = smp_processor_id();
1128 cpu_set(me, cpu_online_map);
1129 cpu_set(me, cpu_callout_map);
1130 per_cpu(cpu_state, me) = CPU_ONLINE;
1134 * Entry point to boot a CPU.
1136 int __cpuinit __cpu_up(unsigned int cpu)
1139 int apicid = cpu_present_to_apicid(cpu);
1141 WARN_ON(irqs_disabled());
1143 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1145 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1146 !physid_isset(apicid, phys_cpu_present_map)) {
1147 printk("__cpu_up: bad cpu %d\n", cpu);
1152 * Already booted CPU?
1154 if (cpu_isset(cpu, cpu_callin_map)) {
1155 Dprintk("do_boot_cpu %d Already started\n", cpu);
1159 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1161 err = do_boot_cpu(cpu, apicid);
1163 Dprintk("do_boot_cpu failed %d\n", err);
1167 /* Unleash the CPU! */
1168 Dprintk("waiting for cpu %d\n", cpu);
1170 while (!cpu_isset(cpu, cpu_online_map))
1178 * Finish the SMP boot.
1180 void __init smp_cpus_done(unsigned int max_cpus)
1183 setup_ioapic_dest();
1184 check_nmi_watchdog();
1188 #ifdef CONFIG_HOTPLUG_CPU
1190 static void remove_siblinginfo(int cpu)
1193 struct cpuinfo_x86 *c = cpu_data;
1195 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1196 cpu_clear(cpu, cpu_core_map[sibling]);
1198 * last thread sibling in this cpu core going down
1200 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1201 c[sibling].booted_cores--;
1204 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1205 cpu_clear(cpu, cpu_sibling_map[sibling]);
1206 cpus_clear(cpu_sibling_map[cpu]);
1207 cpus_clear(cpu_core_map[cpu]);
1208 c[cpu].phys_proc_id = 0;
1209 c[cpu].cpu_core_id = 0;
1210 cpu_clear(cpu, cpu_sibling_setup_map);
1213 void remove_cpu_from_maps(void)
1215 int cpu = smp_processor_id();
1217 cpu_clear(cpu, cpu_callout_map);
1218 cpu_clear(cpu, cpu_callin_map);
1219 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1220 clear_node_cpumask(cpu);
1223 int __cpu_disable(void)
1225 int cpu = smp_processor_id();
1228 * Perhaps use cpufreq to drop frequency, but that could go
1229 * into generic code.
1231 * We won't take down the boot processor on i386 due to some
1232 * interrupts only being able to be serviced by the BSP.
1233 * Especially so if we're not using an IOAPIC -zwane
1238 if (nmi_watchdog == NMI_LOCAL_APIC)
1239 stop_apic_nmi_watchdog(NULL);
1244 * Allow any queued timer interrupts to get serviced
1245 * This is only a temporary solution until we cleanup
1246 * fixup_irqs as we do for IA64.
1251 local_irq_disable();
1252 remove_siblinginfo(cpu);
1254 spin_lock(&vector_lock);
1255 /* It's now safe to remove this processor from the online map */
1256 cpu_clear(cpu, cpu_online_map);
1257 spin_unlock(&vector_lock);
1258 remove_cpu_from_maps();
1259 fixup_irqs(cpu_online_map);
1263 void __cpu_die(unsigned int cpu)
1265 /* We don't do anything here: idle task is faking death itself. */
1268 for (i = 0; i < 10; i++) {
1269 /* They ack this in play_dead by setting CPU_DEAD */
1270 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1271 printk ("CPU %d is now offline\n", cpu);
1272 if (1 == num_online_cpus())
1273 alternatives_smp_switch(0);
1278 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1281 static __init int setup_additional_cpus(char *s)
1283 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL;
1285 early_param("additional_cpus", setup_additional_cpus);
1287 #else /* ... !CONFIG_HOTPLUG_CPU */
1289 int __cpu_disable(void)
1294 void __cpu_die(unsigned int cpu)
1296 /* We said "no" in __cpu_disable */
1299 #endif /* CONFIG_HOTPLUG_CPU */