2 * net/dccp/packet_history.c
4 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
5 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
7 * An implementation of the DCCP protocol
9 * This code has been developed by the University of Waikato WAND
10 * research group. For further information please see http://www.wand.net.nz/
11 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
13 * This code also uses code from Lulea University, rereleased as GPL by its
15 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
17 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
18 * and to make it work as a loadable module in the DCCP stack written by
19 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
21 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
33 * You should have received a copy of the GNU General Public License
34 * along with this program; if not, write to the Free Software
35 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include "packet_history.h"
41 #include "../../dccp.h"
44 * tfrc_tx_hist_entry - Simple singly-linked TX history list
45 * @next: next oldest entry (LIFO order)
46 * @seqno: sequence number of this entry
47 * @stamp: send time of packet with sequence number @seqno
49 struct tfrc_tx_hist_entry {
50 struct tfrc_tx_hist_entry *next;
56 * Transmitter History Routines
58 static struct kmem_cache *tfrc_tx_hist_slab;
60 int __init tfrc_tx_packet_history_init(void)
62 tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
63 sizeof(struct tfrc_tx_hist_entry),
64 0, SLAB_HWCACHE_ALIGN, NULL);
65 return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
68 void tfrc_tx_packet_history_exit(void)
70 if (tfrc_tx_hist_slab != NULL) {
71 kmem_cache_destroy(tfrc_tx_hist_slab);
72 tfrc_tx_hist_slab = NULL;
76 static struct tfrc_tx_hist_entry *
77 tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry *head, u64 seqno)
79 while (head != NULL && head->seqno != seqno)
85 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
87 struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
92 entry->stamp = ktime_get_real();
97 EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
99 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
101 struct tfrc_tx_hist_entry *head = *headp;
103 while (head != NULL) {
104 struct tfrc_tx_hist_entry *next = head->next;
106 kmem_cache_free(tfrc_tx_hist_slab, head);
112 EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
114 u32 tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry *head, const u64 seqno,
118 struct tfrc_tx_hist_entry *packet = tfrc_tx_hist_find_entry(head, seqno);
120 if (packet != NULL) {
121 rtt = ktime_us_delta(now, packet->stamp);
123 * Garbage-collect older (irrelevant) entries:
125 tfrc_tx_hist_purge(&packet->next);
130 EXPORT_SYMBOL_GPL(tfrc_tx_hist_rtt);
134 * Receiver History Routines
136 static struct kmem_cache *tfrc_rx_hist_slab;
138 int __init tfrc_rx_packet_history_init(void)
140 tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
141 sizeof(struct tfrc_rx_hist_entry),
142 0, SLAB_HWCACHE_ALIGN, NULL);
143 return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
146 void tfrc_rx_packet_history_exit(void)
148 if (tfrc_rx_hist_slab != NULL) {
149 kmem_cache_destroy(tfrc_rx_hist_slab);
150 tfrc_rx_hist_slab = NULL;
154 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
155 const struct sk_buff *skb,
158 const struct dccp_hdr *dh = dccp_hdr(skb);
160 entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
161 entry->tfrchrx_ccval = dh->dccph_ccval;
162 entry->tfrchrx_type = dh->dccph_type;
163 entry->tfrchrx_ndp = ndp;
164 entry->tfrchrx_tstamp = ktime_get_real();
167 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
168 const struct sk_buff *skb,
171 struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
173 tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
175 EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
177 /* has the packet contained in skb been seen before? */
178 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
180 const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
183 if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
186 for (i = 1; i <= h->loss_count; i++)
187 if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
192 EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
194 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
196 const u8 idx_a = tfrc_rx_hist_index(h, a),
197 idx_b = tfrc_rx_hist_index(h, b);
198 struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
200 h->ring[idx_a] = h->ring[idx_b];
201 h->ring[idx_b] = tmp;
205 * Private helper functions for loss detection.
207 * In the descriptions, `Si' refers to the sequence number of entry number i,
208 * whose NDP count is `Ni' (lower case is used for variables).
209 * Note: All __after_loss functions expect that a test against duplicates has
210 * been performed already: the seqno of the skb must not be less than the
211 * seqno of loss_prev; and it must not equal that of any valid hist_entry.
213 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
215 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
216 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
217 s2 = DCCP_SKB_CB(skb)->dccpd_seq;
218 int n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp,
219 d12 = dccp_delta_seqno(s1, s2), d2;
221 if (d12 > 0) { /* S1 < S2 */
223 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
228 d2 = dccp_delta_seqno(s0, s2);
230 if (d2 == 1 || n2 >= d2) { /* S2 is direct successor of S0 */
233 if (d21 == 1 || n1 >= d21) {
234 /* hole is filled: S0, S2, and S1 are consecutive */
236 h->loss_start = tfrc_rx_hist_index(h, 1);
238 /* gap between S2 and S1: just update loss_prev */
239 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
241 } else { /* hole between S0 and S2 */
243 * Reorder history to insert S2 between S0 and s1
245 tfrc_rx_hist_swap(h, 0, 3);
246 h->loss_start = tfrc_rx_hist_index(h, 3);
247 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
252 /* return 1 if a new loss event has been identified */
253 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
255 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
256 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
257 s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
258 s3 = DCCP_SKB_CB(skb)->dccpd_seq;
259 int n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp,
260 d23 = dccp_delta_seqno(s2, s3), d13, d3, d31;
262 if (d23 > 0) { /* S2 < S3 */
264 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
269 d13 = dccp_delta_seqno(s1, s3);
273 * The sequence number order is S1, S3, S2
274 * Reorder history to insert entry between S1 and S2
276 tfrc_rx_hist_swap(h, 2, 3);
277 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
284 d3 = dccp_delta_seqno(s0, s3);
286 if (d3 == 1 || n3 >= d3) { /* S3 is a successor of S0 */
288 if (d31 == 1 || n1 >= d31) {
289 /* hole between S0 and S1 filled by S3 */
290 int d2 = dccp_delta_seqno(s1, s2),
291 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
293 if (d2 == 1 || n2 >= d2) {
294 /* entire hole filled by S0, S3, S1, S2 */
295 h->loss_start = tfrc_rx_hist_index(h, 2);
298 /* gap remains between S1 and S2 */
299 h->loss_start = tfrc_rx_hist_index(h, 1);
303 } else /* gap exists between S3 and S1, loss_count stays at 2 */
304 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
310 * The remaining case: S3 is not a successor of S0.
311 * Sequence order is S0, S3, S1, S2; reorder to insert between S0 and S1
313 tfrc_rx_hist_swap(h, 0, 3);
314 h->loss_start = tfrc_rx_hist_index(h, 3);
315 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
321 /* return the signed modulo-2^48 sequence number distance from entry e1 to e2 */
322 static s64 tfrc_rx_hist_delta_seqno(struct tfrc_rx_hist *h, u8 e1, u8 e2)
324 DCCP_BUG_ON(e1 > h->loss_count || e2 > h->loss_count);
326 return dccp_delta_seqno(tfrc_rx_hist_entry(h, e1)->tfrchrx_seqno,
327 tfrc_rx_hist_entry(h, e2)->tfrchrx_seqno);
330 /* recycle RX history records to continue loss detection if necessary */
331 static void __three_after_loss(struct tfrc_rx_hist *h)
334 * The distance between S0 and S1 is always greater than 1 and the NDP
335 * count of S1 is smaller than this distance. Otherwise there would
336 * have been no loss. Hence it is only necessary to see whether there
337 * are further missing data packets between S1/S2 and S2/S3.
339 int d2 = tfrc_rx_hist_delta_seqno(h, 1, 2),
340 d3 = tfrc_rx_hist_delta_seqno(h, 2, 3),
341 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
342 n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
344 if (d2 == 1 || n2 >= d2) { /* S2 is successor to S1 */
346 if (d3 == 1 || n3 >= d3) {
347 /* S3 is successor of S2: entire hole is filled */
348 h->loss_start = tfrc_rx_hist_index(h, 3);
351 /* gap between S2 and S3 */
352 h->loss_start = tfrc_rx_hist_index(h, 2);
356 } else { /* gap between S1 and S2 */
357 h->loss_start = tfrc_rx_hist_index(h, 1);
363 * tfrc_rx_handle_loss - Loss detection and further processing
364 * @h: The non-empty RX history object
365 * @lh: Loss Intervals database to update
366 * @skb: Currently received packet
367 * @ndp: The NDP count belonging to @skb
368 * @calc_first_li: Caller-dependent computation of first loss interval in @lh
369 * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
370 * Chooses action according to pending loss, updates LI database when a new
371 * loss was detected, and does required post-processing. Returns 1 when caller
372 * should send feedback, 0 otherwise.
374 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
375 struct tfrc_loss_hist *lh,
376 struct sk_buff *skb, u32 ndp,
377 u32 (*calc_first_li)(struct sock *), struct sock *sk)
381 if (h->loss_count == 1) {
382 __one_after_loss(h, skb, ndp);
383 } else if (h->loss_count != 2) {
384 DCCP_BUG("invalid loss_count %d", h->loss_count);
385 } else if (__two_after_loss(h, skb, ndp)) {
387 * Update Loss Interval database and recycle RX records
389 is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
390 __three_after_loss(h);
394 EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
396 int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
400 for (i = 0; i <= TFRC_NDUPACK; i++) {
401 h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
402 if (h->ring[i] == NULL)
406 h->loss_count = h->loss_start = 0;
411 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
416 EXPORT_SYMBOL_GPL(tfrc_rx_hist_alloc);
418 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
422 for (i = 0; i <= TFRC_NDUPACK; ++i)
423 if (h->ring[i] != NULL) {
424 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
428 EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
431 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
433 static inline struct tfrc_rx_hist_entry *
434 tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
440 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
442 static inline struct tfrc_rx_hist_entry *
443 tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
445 return h->ring[h->rtt_sample_prev];
449 * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
450 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
451 * to compute a sample with given data - calling function should check this.
453 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
456 delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
457 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
459 if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
460 if (h->rtt_sample_prev == 2) { /* previous candidate stored */
461 sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
462 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
464 sample = 4 / sample *
465 ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
466 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
468 * FIXME: This condition is in principle not
469 * possible but occurs when CCID is used for
470 * two-way data traffic. I have tried to trace
471 * it, but the cause does not seem to be here.
473 DCCP_BUG("please report to dccp@vger.kernel.org"
474 " => prev = %u, last = %u",
475 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
476 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
477 } else if (delta_v < 1) {
478 h->rtt_sample_prev = 1;
479 goto keep_ref_for_next_time;
482 } else if (delta_v == 4) /* optimal match */
483 sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
484 else { /* suboptimal match */
485 h->rtt_sample_prev = 2;
486 goto keep_ref_for_next_time;
489 if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
490 DCCP_WARN("RTT sample %u too large, using max\n", sample);
491 sample = DCCP_SANE_RTT_MAX;
494 h->rtt_sample_prev = 0; /* use current entry as next reference */
495 keep_ref_for_next_time:
499 EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);