2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
24 #include <asm/a.out.h>
28 #include <asm/machvec.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
42 extern void ia64_tlb_init (void);
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
53 struct page *zero_page_memmap_ptr; /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
57 lazy_mmu_prot_update (pte_t pte)
64 return; /* not an executable page... */
67 addr = (unsigned long) page_address(page);
69 if (test_bit(PG_arch_1, &page->flags))
70 return; /* i-cache is already coherent with d-cache */
72 if (PageCompound(page)) {
73 order = compound_order(page);
74 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
77 flush_icache_range(addr, addr + PAGE_SIZE);
78 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
82 * Since DMA is i-cache coherent, any (complete) pages that were written via
83 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
84 * flush them when they get mapped into an executable vm-area.
87 dma_mark_clean(void *addr, size_t size)
89 unsigned long pg_addr, end;
91 pg_addr = PAGE_ALIGN((unsigned long) addr);
92 end = (unsigned long) addr + size;
93 while (pg_addr + PAGE_SIZE <= end) {
94 struct page *page = virt_to_page(pg_addr);
95 set_bit(PG_arch_1, &page->flags);
101 ia64_set_rbs_bot (void)
103 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
105 if (stack_size > MAX_USER_STACK_SIZE)
106 stack_size = MAX_USER_STACK_SIZE;
107 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
111 * This performs some platform-dependent address space initialization.
112 * On IA-64, we want to setup the VM area for the register backing
113 * store (which grows upwards) and install the gateway page which is
114 * used for signal trampolines, etc.
117 ia64_init_addr_space (void)
119 struct vm_area_struct *vma;
124 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
125 * the problem. When the process attempts to write to the register backing store
126 * for the first time, it will get a SEGFAULT in this case.
128 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
130 vma->vm_mm = current->mm;
131 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
132 vma->vm_end = vma->vm_start + PAGE_SIZE;
133 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
134 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
135 down_write(¤t->mm->mmap_sem);
136 if (insert_vm_struct(current->mm, vma)) {
137 up_write(¤t->mm->mmap_sem);
138 kmem_cache_free(vm_area_cachep, vma);
141 up_write(¤t->mm->mmap_sem);
144 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
145 if (!(current->personality & MMAP_PAGE_ZERO)) {
146 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
148 vma->vm_mm = current->mm;
149 vma->vm_end = PAGE_SIZE;
150 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
151 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
152 down_write(¤t->mm->mmap_sem);
153 if (insert_vm_struct(current->mm, vma)) {
154 up_write(¤t->mm->mmap_sem);
155 kmem_cache_free(vm_area_cachep, vma);
158 up_write(¤t->mm->mmap_sem);
166 unsigned long addr, eaddr;
168 addr = (unsigned long) ia64_imva(__init_begin);
169 eaddr = (unsigned long) ia64_imva(__init_end);
170 while (addr < eaddr) {
171 ClearPageReserved(virt_to_page(addr));
172 init_page_count(virt_to_page(addr));
177 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
178 (__init_end - __init_begin) >> 10);
182 free_initrd_mem (unsigned long start, unsigned long end)
186 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
187 * Thus EFI and the kernel may have different page sizes. It is
188 * therefore possible to have the initrd share the same page as
189 * the end of the kernel (given current setup).
191 * To avoid freeing/using the wrong page (kernel sized) we:
192 * - align up the beginning of initrd
193 * - align down the end of initrd
196 * |=============| a000
202 * |=============| 8000
205 * |/////////////| 7000
208 * |=============| 6000
211 * K=kernel using 8KB pages
213 * In this example, we must free page 8000 ONLY. So we must align up
214 * initrd_start and keep initrd_end as is.
216 start = PAGE_ALIGN(start);
217 end = end & PAGE_MASK;
220 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
222 for (; start < end; start += PAGE_SIZE) {
223 if (!virt_addr_valid(start))
225 page = virt_to_page(start);
226 ClearPageReserved(page);
227 init_page_count(page);
234 * This installs a clean page in the kernel's page table.
236 static struct page * __init
237 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
244 if (!PageReserved(page))
245 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
248 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
251 pud = pud_alloc(&init_mm, pgd, address);
254 pmd = pmd_alloc(&init_mm, pud, address);
257 pte = pte_alloc_kernel(pmd, address);
262 set_pte(pte, mk_pte(page, pgprot));
265 /* no need for flush_tlb */
275 * Map the gate page twice: once read-only to export the ELF
276 * headers etc. and once execute-only page to enable
277 * privilege-promotion via "epc":
279 page = virt_to_page(ia64_imva(__start_gate_section));
280 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
281 #ifdef HAVE_BUGGY_SEGREL
282 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
283 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
285 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
286 /* Fill in the holes (if any) with read-only zero pages: */
290 for (addr = GATE_ADDR + PAGE_SIZE;
291 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
294 put_kernel_page(ZERO_PAGE(0), addr,
296 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
305 ia64_mmu_init (void *my_cpu_data)
307 unsigned long pta, impl_va_bits;
308 extern void __devinit tlb_init (void);
310 #ifdef CONFIG_DISABLE_VHPT
311 # define VHPT_ENABLE_BIT 0
313 # define VHPT_ENABLE_BIT 1
317 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318 * address space. The IA-64 architecture guarantees that at least 50 bits of
319 * virtual address space are implemented but if we pick a large enough page size
320 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
322 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323 * problem in practice. Alternatively, we could truncate the top of the mapped
324 * address space to not permit mappings that would overlap with the VMLPT.
328 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
330 * The virtual page table has to cover the entire implemented address space within
331 * a region even though not all of this space may be mappable. The reason for
332 * this is that the Access bit and Dirty bit fault handlers perform
333 * non-speculative accesses to the virtual page table, so the address range of the
334 * virtual page table itself needs to be covered by virtual page table.
336 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
337 # define POW2(n) (1ULL << (n))
339 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
341 if (impl_va_bits < 51 || impl_va_bits > 61)
342 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
344 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
345 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
346 * the test makes sure that our mapped space doesn't overlap the
347 * unimplemented hole in the middle of the region.
349 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
350 (mapped_space_bits > impl_va_bits - 1))
351 panic("Cannot build a big enough virtual-linear page table"
352 " to cover mapped address space.\n"
353 " Try using a smaller page size.\n");
356 /* place the VMLPT at the end of each page-table mapped region: */
357 pta = POW2(61) - POW2(vmlpt_bits);
360 * Set the (virtually mapped linear) page table address. Bit
361 * 8 selects between the short and long format, bits 2-7 the
362 * size of the table, and bit 0 whether the VHPT walker is
365 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
369 #ifdef CONFIG_HUGETLB_PAGE
370 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
375 #ifdef CONFIG_VIRTUAL_MEM_MAP
376 int vmemmap_find_next_valid_pfn(int node, int i)
378 unsigned long end_address, hole_next_pfn;
379 unsigned long stop_address;
380 pg_data_t *pgdat = NODE_DATA(node);
382 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
383 end_address = PAGE_ALIGN(end_address);
385 stop_address = (unsigned long) &vmem_map[
386 pgdat->node_start_pfn + pgdat->node_spanned_pages];
394 pgd = pgd_offset_k(end_address);
395 if (pgd_none(*pgd)) {
396 end_address += PGDIR_SIZE;
400 pud = pud_offset(pgd, end_address);
401 if (pud_none(*pud)) {
402 end_address += PUD_SIZE;
406 pmd = pmd_offset(pud, end_address);
407 if (pmd_none(*pmd)) {
408 end_address += PMD_SIZE;
412 pte = pte_offset_kernel(pmd, end_address);
414 if (pte_none(*pte)) {
415 end_address += PAGE_SIZE;
417 if ((end_address < stop_address) &&
418 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
422 /* Found next valid vmem_map page */
424 } while (end_address < stop_address);
426 end_address = min(end_address, stop_address);
427 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
428 hole_next_pfn = end_address / sizeof(struct page);
429 return hole_next_pfn - pgdat->node_start_pfn;
433 create_mem_map_page_table (u64 start, u64 end, void *arg)
435 unsigned long address, start_page, end_page;
436 struct page *map_start, *map_end;
443 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
444 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
446 start_page = (unsigned long) map_start & PAGE_MASK;
447 end_page = PAGE_ALIGN((unsigned long) map_end);
448 node = paddr_to_nid(__pa(start));
450 for (address = start_page; address < end_page; address += PAGE_SIZE) {
451 pgd = pgd_offset_k(address);
453 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
454 pud = pud_offset(pgd, address);
457 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
458 pmd = pmd_offset(pud, address);
461 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
462 pte = pte_offset_kernel(pmd, address);
465 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
471 struct memmap_init_callback_data {
479 virtual_memmap_init (u64 start, u64 end, void *arg)
481 struct memmap_init_callback_data *args;
482 struct page *map_start, *map_end;
484 args = (struct memmap_init_callback_data *) arg;
485 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
486 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
488 if (map_start < args->start)
489 map_start = args->start;
490 if (map_end > args->end)
494 * We have to initialize "out of bounds" struct page elements that fit completely
495 * on the same pages that were allocated for the "in bounds" elements because they
496 * may be referenced later (and found to be "reserved").
498 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
499 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
500 / sizeof(struct page));
502 if (map_start < map_end)
503 memmap_init_zone((unsigned long)(map_end - map_start),
504 args->nid, args->zone, page_to_pfn(map_start),
510 memmap_init (unsigned long size, int nid, unsigned long zone,
511 unsigned long start_pfn)
514 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
517 struct memmap_init_callback_data args;
519 start = pfn_to_page(start_pfn);
521 args.end = start + size;
525 efi_memmap_walk(virtual_memmap_init, &args);
530 ia64_pfn_valid (unsigned long pfn)
533 struct page *pg = pfn_to_page(pfn);
535 return (__get_user(byte, (char __user *) pg) == 0)
536 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
537 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
539 EXPORT_SYMBOL(ia64_pfn_valid);
542 find_largest_hole (u64 start, u64 end, void *arg)
546 static u64 last_end = PAGE_OFFSET;
548 /* NOTE: this algorithm assumes efi memmap table is ordered */
550 if (*max_gap < (start - last_end))
551 *max_gap = start - last_end;
556 #endif /* CONFIG_VIRTUAL_MEM_MAP */
559 register_active_ranges(u64 start, u64 end, void *arg)
561 int nid = paddr_to_nid(__pa(start));
566 if (start > crashk_res.start && start < crashk_res.end)
567 start = crashk_res.end;
568 if (end > crashk_res.start && end < crashk_res.end)
569 end = crashk_res.start;
573 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
574 __pa(end) >> PAGE_SHIFT);
579 count_reserved_pages (u64 start, u64 end, void *arg)
581 unsigned long num_reserved = 0;
582 unsigned long *count = arg;
584 for (; start < end; start += PAGE_SIZE)
585 if (PageReserved(virt_to_page(start)))
587 *count += num_reserved;
592 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
594 unsigned long pfn_start, pfn_end;
595 #ifdef CONFIG_FLATMEM
596 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
597 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
599 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
600 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
602 min_low_pfn = min(min_low_pfn, pfn_start);
603 max_low_pfn = max(max_low_pfn, pfn_end);
608 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
609 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
610 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
611 * useful for performance testing, but conceivably could also come in handy for debugging
615 static int nolwsys __initdata;
618 nolwsys_setup (char *s)
624 __setup("nolwsys", nolwsys_setup);
629 long reserved_pages, codesize, datasize, initsize;
632 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
634 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
635 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
636 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
640 * This needs to be called _after_ the command line has been parsed but _before_
641 * any drivers that may need the PCI DMA interface are initialized or bootmem has
647 #ifdef CONFIG_FLATMEM
650 max_mapnr = max_low_pfn;
653 high_memory = __va(max_low_pfn * PAGE_SIZE);
655 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
656 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
657 kclist_add(&kcore_kernel, _stext, _end - _stext);
659 for_each_online_pgdat(pgdat)
660 if (pgdat->bdata->node_bootmem_map)
661 totalram_pages += free_all_bootmem_node(pgdat);
664 efi_memmap_walk(count_reserved_pages, &reserved_pages);
666 codesize = (unsigned long) _etext - (unsigned long) _stext;
667 datasize = (unsigned long) _edata - (unsigned long) _etext;
668 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
670 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
671 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
672 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
673 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
677 * For fsyscall entrpoints with no light-weight handler, use the ordinary
678 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
679 * code can tell them apart.
681 for (i = 0; i < NR_syscalls; ++i) {
682 extern unsigned long fsyscall_table[NR_syscalls];
683 extern unsigned long sys_call_table[NR_syscalls];
685 if (!fsyscall_table[i] || nolwsys)
686 fsyscall_table[i] = sys_call_table[i] | 1;
690 #ifdef CONFIG_IA32_SUPPORT
695 #ifdef CONFIG_MEMORY_HOTPLUG
696 void online_page(struct page *page)
698 ClearPageReserved(page);
699 init_page_count(page);
705 int arch_add_memory(int nid, u64 start, u64 size)
709 unsigned long start_pfn = start >> PAGE_SHIFT;
710 unsigned long nr_pages = size >> PAGE_SHIFT;
713 pgdat = NODE_DATA(nid);
715 zone = pgdat->node_zones + ZONE_NORMAL;
716 ret = __add_pages(zone, start_pfn, nr_pages);
719 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
725 int remove_memory(u64 start, u64 size)
729 EXPORT_SYMBOL_GPL(remove_memory);