1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
137 #include <linux/config.h>
138 #include <linux/module.h>
139 #include <linux/moduleparam.h>
140 #include <linux/kernel.h>
141 #include <linux/types.h>
142 #include <linux/slab.h>
143 #include <linux/delay.h>
144 #include <linux/init.h>
145 #include <linux/pci.h>
146 #include <linux/dma-mapping.h>
147 #include <linux/netdevice.h>
148 #include <linux/etherdevice.h>
149 #include <linux/mii.h>
150 #include <linux/if_vlan.h>
151 #include <linux/skbuff.h>
152 #include <linux/ethtool.h>
153 #include <linux/string.h>
154 #include <asm/unaligned.h>
157 #define DRV_NAME "e100"
158 #define DRV_EXT "-NAPI"
159 #define DRV_VERSION "3.4.14-k2"DRV_EXT
160 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
161 #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation"
162 #define PFX DRV_NAME ": "
164 #define E100_WATCHDOG_PERIOD (2 * HZ)
165 #define E100_NAPI_WEIGHT 16
167 MODULE_DESCRIPTION(DRV_DESCRIPTION);
168 MODULE_AUTHOR(DRV_COPYRIGHT);
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
172 static int debug = 3;
173 module_param(debug, int, 0);
174 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
175 #define DPRINTK(nlevel, klevel, fmt, args...) \
176 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
177 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
178 __FUNCTION__ , ## args))
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static struct pci_device_id e100_id_table[] = {
184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
227 MODULE_DEVICE_TABLE(pci, e100_id_table);
230 mac_82557_D100_A = 0,
231 mac_82557_D100_B = 1,
232 mac_82557_D100_C = 2,
233 mac_82558_D101_A4 = 4,
234 mac_82558_D101_B0 = 5,
238 mac_82550_D102_C = 13,
246 phy_100a = 0x000003E0,
247 phy_100c = 0x035002A8,
248 phy_82555_tx = 0x015002A8,
249 phy_nsc_tx = 0x5C002000,
250 phy_82562_et = 0x033002A8,
251 phy_82562_em = 0x032002A8,
252 phy_82562_ek = 0x031002A8,
253 phy_82562_eh = 0x017002A8,
254 phy_unknown = 0xFFFFFFFF,
257 /* CSR (Control/Status Registers) */
282 RU_UNINITIALIZED = -1,
286 stat_ack_not_ours = 0x00,
287 stat_ack_sw_gen = 0x04,
289 stat_ack_cu_idle = 0x20,
290 stat_ack_frame_rx = 0x40,
291 stat_ack_cu_cmd_done = 0x80,
292 stat_ack_not_present = 0xFF,
293 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
294 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298 irq_mask_none = 0x00,
306 ruc_load_base = 0x06,
309 cuc_dump_addr = 0x40,
310 cuc_dump_stats = 0x50,
311 cuc_load_base = 0x60,
312 cuc_dump_reset = 0x70,
316 cuc_dump_complete = 0x0000A005,
317 cuc_dump_reset_complete = 0x0000A007,
321 software_reset = 0x0000,
323 selective_reset = 0x0002,
326 enum eeprom_ctrl_lo {
334 mdi_write = 0x04000000,
335 mdi_read = 0x08000000,
336 mdi_ready = 0x10000000,
346 enum eeprom_offsets {
347 eeprom_cnfg_mdix = 0x03,
349 eeprom_config_asf = 0x0D,
350 eeprom_smbus_addr = 0x90,
353 enum eeprom_cnfg_mdix {
354 eeprom_mdix_enabled = 0x0080,
358 eeprom_id_wol = 0x0020,
361 enum eeprom_config_asf {
367 cb_complete = 0x8000,
396 struct rx *next, *prev;
401 #if defined(__BIG_ENDIAN_BITFIELD)
407 /*0*/ u8 X(byte_count:6, pad0:2);
408 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
409 /*2*/ u8 adaptive_ifs;
410 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
411 term_write_cache_line:1), pad3:4);
412 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
413 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
414 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
415 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
416 rx_discard_overruns:1), rx_save_bad_frames:1);
417 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
418 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
420 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
421 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
422 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
423 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
425 /*11*/ u8 X(linear_priority:3, pad11:5);
426 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
427 /*13*/ u8 ip_addr_lo;
428 /*14*/ u8 ip_addr_hi;
429 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
430 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
431 pad15_2:1), crs_or_cdt:1);
432 /*16*/ u8 fc_delay_lo;
433 /*17*/ u8 fc_delay_hi;
434 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
435 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
436 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
437 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
438 full_duplex_force:1), full_duplex_pin:1);
439 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
440 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
441 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
445 #define E100_MAX_MULTICAST_ADDRS 64
448 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
451 /* Important: keep total struct u32-aligned */
452 #define UCODE_SIZE 134
459 u32 ucode[UCODE_SIZE];
460 struct config config;
473 u32 dump_buffer_addr;
475 struct cb *next, *prev;
481 lb_none = 0, lb_mac = 1, lb_phy = 3,
485 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
486 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
487 tx_multiple_collisions, tx_total_collisions;
488 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
489 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
490 rx_short_frame_errors;
491 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
492 u16 xmt_tco_frames, rcv_tco_frames;
512 struct param_range rfds;
513 struct param_range cbs;
517 /* Begin: frequently used values: keep adjacent for cache effect */
518 u32 msg_enable ____cacheline_aligned;
519 struct net_device *netdev;
520 struct pci_dev *pdev;
522 struct rx *rxs ____cacheline_aligned;
523 struct rx *rx_to_use;
524 struct rx *rx_to_clean;
525 struct rfd blank_rfd;
526 enum ru_state ru_running;
528 spinlock_t cb_lock ____cacheline_aligned;
530 struct csr __iomem *csr;
531 enum scb_cmd_lo cuc_cmd;
532 unsigned int cbs_avail;
534 struct cb *cb_to_use;
535 struct cb *cb_to_send;
536 struct cb *cb_to_clean;
538 /* End: frequently used values: keep adjacent for cache effect */
542 promiscuous = (1 << 1),
543 multicast_all = (1 << 2),
544 wol_magic = (1 << 3),
545 ich_10h_workaround = (1 << 4),
546 } flags ____cacheline_aligned;
550 struct params params;
551 struct net_device_stats net_stats;
552 struct timer_list watchdog;
553 struct timer_list blink_timer;
554 struct mii_if_info mii;
555 struct work_struct tx_timeout_task;
556 enum loopback loopback;
561 dma_addr_t cbs_dma_addr;
567 u32 tx_single_collisions;
568 u32 tx_multiple_collisions;
573 u32 rx_fc_unsupported;
575 u32 rx_over_length_errors;
583 static inline void e100_write_flush(struct nic *nic)
585 /* Flush previous PCI writes through intermediate bridges
586 * by doing a benign read */
587 (void)readb(&nic->csr->scb.status);
590 static inline void e100_enable_irq(struct nic *nic)
594 spin_lock_irqsave(&nic->cmd_lock, flags);
595 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
596 spin_unlock_irqrestore(&nic->cmd_lock, flags);
597 e100_write_flush(nic);
600 static inline void e100_disable_irq(struct nic *nic)
604 spin_lock_irqsave(&nic->cmd_lock, flags);
605 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
606 spin_unlock_irqrestore(&nic->cmd_lock, flags);
607 e100_write_flush(nic);
610 static void e100_hw_reset(struct nic *nic)
612 /* Put CU and RU into idle with a selective reset to get
613 * device off of PCI bus */
614 writel(selective_reset, &nic->csr->port);
615 e100_write_flush(nic); udelay(20);
617 /* Now fully reset device */
618 writel(software_reset, &nic->csr->port);
619 e100_write_flush(nic); udelay(20);
621 /* Mask off our interrupt line - it's unmasked after reset */
622 e100_disable_irq(nic);
625 static int e100_self_test(struct nic *nic)
627 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
629 /* Passing the self-test is a pretty good indication
630 * that the device can DMA to/from host memory */
632 nic->mem->selftest.signature = 0;
633 nic->mem->selftest.result = 0xFFFFFFFF;
635 writel(selftest | dma_addr, &nic->csr->port);
636 e100_write_flush(nic);
637 /* Wait 10 msec for self-test to complete */
640 /* Interrupts are enabled after self-test */
641 e100_disable_irq(nic);
643 /* Check results of self-test */
644 if(nic->mem->selftest.result != 0) {
645 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
646 nic->mem->selftest.result);
649 if(nic->mem->selftest.signature == 0) {
650 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
657 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
659 u32 cmd_addr_data[3];
663 /* Three cmds: write/erase enable, write data, write/erase disable */
664 cmd_addr_data[0] = op_ewen << (addr_len - 2);
665 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
667 cmd_addr_data[2] = op_ewds << (addr_len - 2);
669 /* Bit-bang cmds to write word to eeprom */
670 for(j = 0; j < 3; j++) {
673 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
674 e100_write_flush(nic); udelay(4);
676 for(i = 31; i >= 0; i--) {
677 ctrl = (cmd_addr_data[j] & (1 << i)) ?
679 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
680 e100_write_flush(nic); udelay(4);
682 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
683 e100_write_flush(nic); udelay(4);
685 /* Wait 10 msec for cmd to complete */
689 writeb(0, &nic->csr->eeprom_ctrl_lo);
690 e100_write_flush(nic); udelay(4);
694 /* General technique stolen from the eepro100 driver - very clever */
695 static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
702 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
705 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
706 e100_write_flush(nic); udelay(4);
708 /* Bit-bang to read word from eeprom */
709 for(i = 31; i >= 0; i--) {
710 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
711 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
712 e100_write_flush(nic); udelay(4);
714 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
715 e100_write_flush(nic); udelay(4);
717 /* Eeprom drives a dummy zero to EEDO after receiving
718 * complete address. Use this to adjust addr_len. */
719 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
720 if(!(ctrl & eedo) && i > 16) {
721 *addr_len -= (i - 16);
725 data = (data << 1) | (ctrl & eedo ? 1 : 0);
729 writeb(0, &nic->csr->eeprom_ctrl_lo);
730 e100_write_flush(nic); udelay(4);
732 return le16_to_cpu(data);
735 /* Load entire EEPROM image into driver cache and validate checksum */
736 static int e100_eeprom_load(struct nic *nic)
738 u16 addr, addr_len = 8, checksum = 0;
740 /* Try reading with an 8-bit addr len to discover actual addr len */
741 e100_eeprom_read(nic, &addr_len, 0);
742 nic->eeprom_wc = 1 << addr_len;
744 for(addr = 0; addr < nic->eeprom_wc; addr++) {
745 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
746 if(addr < nic->eeprom_wc - 1)
747 checksum += cpu_to_le16(nic->eeprom[addr]);
750 /* The checksum, stored in the last word, is calculated such that
751 * the sum of words should be 0xBABA */
752 checksum = le16_to_cpu(0xBABA - checksum);
753 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
754 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
761 /* Save (portion of) driver EEPROM cache to device and update checksum */
762 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
764 u16 addr, addr_len = 8, checksum = 0;
766 /* Try reading with an 8-bit addr len to discover actual addr len */
767 e100_eeprom_read(nic, &addr_len, 0);
768 nic->eeprom_wc = 1 << addr_len;
770 if(start + count >= nic->eeprom_wc)
773 for(addr = start; addr < start + count; addr++)
774 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
776 /* The checksum, stored in the last word, is calculated such that
777 * the sum of words should be 0xBABA */
778 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
779 checksum += cpu_to_le16(nic->eeprom[addr]);
780 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
781 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
782 nic->eeprom[nic->eeprom_wc - 1]);
787 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
788 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
789 static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
795 spin_lock_irqsave(&nic->cmd_lock, flags);
797 /* Previous command is accepted when SCB clears */
798 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
799 if(likely(!readb(&nic->csr->scb.cmd_lo)))
802 if(unlikely(i > E100_WAIT_SCB_FAST))
805 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
810 if(unlikely(cmd != cuc_resume))
811 writel(dma_addr, &nic->csr->scb.gen_ptr);
812 writeb(cmd, &nic->csr->scb.cmd_lo);
815 spin_unlock_irqrestore(&nic->cmd_lock, flags);
820 static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
821 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
827 spin_lock_irqsave(&nic->cb_lock, flags);
829 if(unlikely(!nic->cbs_avail)) {
835 nic->cb_to_use = cb->next;
839 if(unlikely(!nic->cbs_avail))
842 cb_prepare(nic, cb, skb);
844 /* Order is important otherwise we'll be in a race with h/w:
845 * set S-bit in current first, then clear S-bit in previous. */
846 cb->command |= cpu_to_le16(cb_s);
848 cb->prev->command &= cpu_to_le16(~cb_s);
850 while(nic->cb_to_send != nic->cb_to_use) {
851 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
852 nic->cb_to_send->dma_addr))) {
853 /* Ok, here's where things get sticky. It's
854 * possible that we can't schedule the command
855 * because the controller is too busy, so
856 * let's just queue the command and try again
857 * when another command is scheduled. */
860 schedule_work(&nic->tx_timeout_task);
864 nic->cuc_cmd = cuc_resume;
865 nic->cb_to_send = nic->cb_to_send->next;
870 spin_unlock_irqrestore(&nic->cb_lock, flags);
875 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
880 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
882 for(i = 0; i < 100; i++) {
884 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
889 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
890 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
891 return (u16)data_out;
894 static int mdio_read(struct net_device *netdev, int addr, int reg)
896 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
899 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
901 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
904 static void e100_get_defaults(struct nic *nic)
906 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
907 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
909 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
910 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
911 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
912 if(nic->mac == mac_unknown)
913 nic->mac = mac_82557_D100_A;
915 nic->params.rfds = rfds;
916 nic->params.cbs = cbs;
918 /* Quadwords to DMA into FIFO before starting frame transmit */
919 nic->tx_threshold = 0xE0;
921 /* no interrupt for every tx completion, delay = 256us if not 557*/
922 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
923 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
925 /* Template for a freshly allocated RFD */
926 nic->blank_rfd.command = cpu_to_le16(cb_el);
927 nic->blank_rfd.rbd = 0xFFFFFFFF;
928 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
931 nic->mii.phy_id_mask = 0x1F;
932 nic->mii.reg_num_mask = 0x1F;
933 nic->mii.dev = nic->netdev;
934 nic->mii.mdio_read = mdio_read;
935 nic->mii.mdio_write = mdio_write;
938 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
940 struct config *config = &cb->u.config;
941 u8 *c = (u8 *)config;
943 cb->command = cpu_to_le16(cb_config);
945 memset(config, 0, sizeof(struct config));
947 config->byte_count = 0x16; /* bytes in this struct */
948 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
949 config->direct_rx_dma = 0x1; /* reserved */
950 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
951 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
952 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
953 config->tx_underrun_retry = 0x3; /* # of underrun retries */
954 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
956 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
957 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
958 config->ifs = 0x6; /* x16 = inter frame spacing */
959 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
960 config->pad15_1 = 0x1;
961 config->pad15_2 = 0x1;
962 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
963 config->fc_delay_hi = 0x40; /* time delay for fc frame */
964 config->tx_padding = 0x1; /* 1=pad short frames */
965 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
967 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
968 config->pad20_1 = 0x1F;
969 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
970 config->pad21_1 = 0x5;
972 config->adaptive_ifs = nic->adaptive_ifs;
973 config->loopback = nic->loopback;
975 if(nic->mii.force_media && nic->mii.full_duplex)
976 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
978 if(nic->flags & promiscuous || nic->loopback) {
979 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
980 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
981 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
984 if(nic->flags & multicast_all)
985 config->multicast_all = 0x1; /* 1=accept, 0=no */
987 /* disable WoL when up */
988 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
989 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
991 if(nic->mac >= mac_82558_D101_A4) {
992 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
993 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
994 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
995 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
996 if(nic->mac >= mac_82559_D101M)
997 config->tno_intr = 0x1; /* TCO stats enable */
999 config->standard_stat_counter = 0x0;
1002 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1003 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1004 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1005 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1006 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1007 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1010 /********************************************************/
1011 /* Micro code for 8086:1229 Rev 8 */
1012 /********************************************************/
1014 /* Parameter values for the D101M B-step */
1015 #define D101M_CPUSAVER_TIMER_DWORD 78
1016 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1017 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1019 #define D101M_B_RCVBUNDLE_UCODE \
1021 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1022 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1023 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1024 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1025 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1026 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1027 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1028 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1029 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1030 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1031 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1032 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1033 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1034 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1035 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1036 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1037 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1038 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1039 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1040 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1041 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1042 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1043 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1044 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1045 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1046 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1047 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1048 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1049 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1050 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1051 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1052 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1053 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1056 /********************************************************/
1057 /* Micro code for 8086:1229 Rev 9 */
1058 /********************************************************/
1060 /* Parameter values for the D101S */
1061 #define D101S_CPUSAVER_TIMER_DWORD 78
1062 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1063 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1065 #define D101S_RCVBUNDLE_UCODE \
1067 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1068 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1069 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1070 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1071 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1072 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1073 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1074 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1075 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1076 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1077 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1078 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1079 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1080 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1081 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1082 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1083 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1084 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1085 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1086 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1087 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1088 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1089 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1090 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1091 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1092 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1093 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1094 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1095 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1096 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1097 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1098 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1099 0x00041000, 0x00010004, 0x00380700 \
1102 /********************************************************/
1103 /* Micro code for the 8086:1229 Rev F/10 */
1104 /********************************************************/
1106 /* Parameter values for the D102 E-step */
1107 #define D102_E_CPUSAVER_TIMER_DWORD 42
1108 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1109 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1111 #define D102_E_RCVBUNDLE_UCODE \
1113 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1114 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1115 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1116 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1117 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1118 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1119 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1120 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1121 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1122 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1123 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1124 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1125 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1126 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1128 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1129 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1130 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1131 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1132 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1133 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1134 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1135 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1136 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1137 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1138 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1139 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1140 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1141 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1142 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1143 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1144 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1145 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1148 static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1152 u32 ucode[UCODE_SIZE + 1];
1158 { D101M_B_RCVBUNDLE_UCODE,
1160 D101M_CPUSAVER_TIMER_DWORD,
1161 D101M_CPUSAVER_BUNDLE_DWORD,
1162 D101M_CPUSAVER_MIN_SIZE_DWORD },
1163 { D101S_RCVBUNDLE_UCODE,
1165 D101S_CPUSAVER_TIMER_DWORD,
1166 D101S_CPUSAVER_BUNDLE_DWORD,
1167 D101S_CPUSAVER_MIN_SIZE_DWORD },
1168 { D102_E_RCVBUNDLE_UCODE,
1170 D102_E_CPUSAVER_TIMER_DWORD,
1171 D102_E_CPUSAVER_BUNDLE_DWORD,
1172 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1173 { D102_E_RCVBUNDLE_UCODE,
1175 D102_E_CPUSAVER_TIMER_DWORD,
1176 D102_E_CPUSAVER_BUNDLE_DWORD,
1177 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1182 #define BUNDLESMALL 1
1183 #define BUNDLEMAX 50
1184 #define INTDELAY 15000
1188 /* do not load u-code for ICH devices */
1189 if (nic->flags & ich)
1192 /* Search for ucode match against h/w rev_id */
1194 if (nic->mac == opts->mac) {
1196 u32 *ucode = opts->ucode;
1198 /* Insert user-tunable settings */
1199 ucode[opts->timer_dword] &= 0xFFFF0000;
1200 ucode[opts->timer_dword] |=
1202 ucode[opts->bundle_dword] &= 0xFFFF0000;
1203 ucode[opts->bundle_dword] |= (u16) BUNDLEMAX;
1204 ucode[opts->min_size_dword] &= 0xFFFF0000;
1205 ucode[opts->min_size_dword] |=
1206 (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1208 for(i = 0; i < UCODE_SIZE; i++)
1209 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1210 cb->command = cpu_to_le16(cb_ucode);
1216 cb->command = cpu_to_le16(cb_nop);
1219 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1220 struct sk_buff *skb)
1222 cb->command = cpu_to_le16(cb_iaaddr);
1223 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1226 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1228 cb->command = cpu_to_le16(cb_dump);
1229 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1230 offsetof(struct mem, dump_buf));
1233 #define NCONFIG_AUTO_SWITCH 0x0080
1234 #define MII_NSC_CONG MII_RESV1
1235 #define NSC_CONG_ENABLE 0x0100
1236 #define NSC_CONG_TXREADY 0x0400
1237 #define ADVERTISE_FC_SUPPORTED 0x0400
1238 static int e100_phy_init(struct nic *nic)
1240 struct net_device *netdev = nic->netdev;
1242 u16 bmcr, stat, id_lo, id_hi, cong;
1244 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1245 for(addr = 0; addr < 32; addr++) {
1246 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1247 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1248 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1249 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1250 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1253 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1257 /* Selected the phy and isolate the rest */
1258 for(addr = 0; addr < 32; addr++) {
1259 if(addr != nic->mii.phy_id) {
1260 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1262 bmcr = mdio_read(netdev, addr, MII_BMCR);
1263 mdio_write(netdev, addr, MII_BMCR,
1264 bmcr & ~BMCR_ISOLATE);
1269 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1270 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1271 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1272 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1274 /* Handle National tx phys */
1275 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1276 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1277 /* Disable congestion control */
1278 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1279 cong |= NSC_CONG_TXREADY;
1280 cong &= ~NSC_CONG_ENABLE;
1281 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1284 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1285 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) {
1286 /* enable/disable MDI/MDI-X auto-switching.
1287 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */
1288 if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) ||
1289 (nic->mac == mac_82551_10) || (nic->mii.force_media) ||
1290 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))
1291 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0);
1293 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH);
1299 static int e100_hw_init(struct nic *nic)
1305 DPRINTK(HW, ERR, "e100_hw_init\n");
1306 if(!in_interrupt() && (err = e100_self_test(nic)))
1309 if((err = e100_phy_init(nic)))
1311 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1313 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1315 if((err = e100_exec_cb(nic, NULL, e100_load_ucode)))
1317 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1319 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1321 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1322 nic->dma_addr + offsetof(struct mem, stats))))
1324 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1327 e100_disable_irq(nic);
1332 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1334 struct net_device *netdev = nic->netdev;
1335 struct dev_mc_list *list = netdev->mc_list;
1336 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1338 cb->command = cpu_to_le16(cb_multi);
1339 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1340 for(i = 0; list && i < count; i++, list = list->next)
1341 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1345 static void e100_set_multicast_list(struct net_device *netdev)
1347 struct nic *nic = netdev_priv(netdev);
1349 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1350 netdev->mc_count, netdev->flags);
1352 if(netdev->flags & IFF_PROMISC)
1353 nic->flags |= promiscuous;
1355 nic->flags &= ~promiscuous;
1357 if(netdev->flags & IFF_ALLMULTI ||
1358 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1359 nic->flags |= multicast_all;
1361 nic->flags &= ~multicast_all;
1363 e100_exec_cb(nic, NULL, e100_configure);
1364 e100_exec_cb(nic, NULL, e100_multi);
1367 static void e100_update_stats(struct nic *nic)
1369 struct net_device_stats *ns = &nic->net_stats;
1370 struct stats *s = &nic->mem->stats;
1371 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1372 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1375 /* Device's stats reporting may take several microseconds to
1376 * complete, so where always waiting for results of the
1377 * previous command. */
1379 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1381 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1382 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1383 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1384 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1385 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1386 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1387 ns->collisions += nic->tx_collisions;
1388 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1389 le32_to_cpu(s->tx_lost_crs);
1390 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1391 nic->rx_over_length_errors;
1392 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1393 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1394 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1395 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1396 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1397 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1398 le32_to_cpu(s->rx_alignment_errors) +
1399 le32_to_cpu(s->rx_short_frame_errors) +
1400 le32_to_cpu(s->rx_cdt_errors);
1401 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1402 nic->tx_single_collisions +=
1403 le32_to_cpu(s->tx_single_collisions);
1404 nic->tx_multiple_collisions +=
1405 le32_to_cpu(s->tx_multiple_collisions);
1406 if(nic->mac >= mac_82558_D101_A4) {
1407 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1408 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1409 nic->rx_fc_unsupported +=
1410 le32_to_cpu(s->fc_rcv_unsupported);
1411 if(nic->mac >= mac_82559_D101M) {
1412 nic->tx_tco_frames +=
1413 le16_to_cpu(s->xmt_tco_frames);
1414 nic->rx_tco_frames +=
1415 le16_to_cpu(s->rcv_tco_frames);
1421 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1422 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1425 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1427 /* Adjust inter-frame-spacing (IFS) between two transmits if
1428 * we're getting collisions on a half-duplex connection. */
1430 if(duplex == DUPLEX_HALF) {
1431 u32 prev = nic->adaptive_ifs;
1432 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1434 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1435 (nic->tx_frames > min_frames)) {
1436 if(nic->adaptive_ifs < 60)
1437 nic->adaptive_ifs += 5;
1438 } else if (nic->tx_frames < min_frames) {
1439 if(nic->adaptive_ifs >= 5)
1440 nic->adaptive_ifs -= 5;
1442 if(nic->adaptive_ifs != prev)
1443 e100_exec_cb(nic, NULL, e100_configure);
1447 static void e100_watchdog(unsigned long data)
1449 struct nic *nic = (struct nic *)data;
1450 struct ethtool_cmd cmd;
1452 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1454 /* mii library handles link maintenance tasks */
1456 mii_ethtool_gset(&nic->mii, &cmd);
1458 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1459 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1460 cmd.speed == SPEED_100 ? "100" : "10",
1461 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1462 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1463 DPRINTK(LINK, INFO, "link down\n");
1466 mii_check_link(&nic->mii);
1468 /* Software generated interrupt to recover from (rare) Rx
1469 * allocation failure.
1470 * Unfortunately have to use a spinlock to not re-enable interrupts
1471 * accidentally, due to hardware that shares a register between the
1472 * interrupt mask bit and the SW Interrupt generation bit */
1473 spin_lock_irq(&nic->cmd_lock);
1474 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1475 spin_unlock_irq(&nic->cmd_lock);
1476 e100_write_flush(nic);
1478 e100_update_stats(nic);
1479 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1481 if(nic->mac <= mac_82557_D100_C)
1482 /* Issue a multicast command to workaround a 557 lock up */
1483 e100_set_multicast_list(nic->netdev);
1485 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1486 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1487 nic->flags |= ich_10h_workaround;
1489 nic->flags &= ~ich_10h_workaround;
1491 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1494 static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1495 struct sk_buff *skb)
1497 cb->command = nic->tx_command;
1498 /* interrupt every 16 packets regardless of delay */
1499 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1500 cb->command |= cpu_to_le16(cb_i);
1501 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1502 cb->u.tcb.tcb_byte_count = 0;
1503 cb->u.tcb.threshold = nic->tx_threshold;
1504 cb->u.tcb.tbd_count = 1;
1505 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1506 skb->data, skb->len, PCI_DMA_TODEVICE));
1507 /* check for mapping failure? */
1508 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1511 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1513 struct nic *nic = netdev_priv(netdev);
1516 if(nic->flags & ich_10h_workaround) {
1517 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1518 Issue a NOP command followed by a 1us delay before
1519 issuing the Tx command. */
1520 if(e100_exec_cmd(nic, cuc_nop, 0))
1521 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1525 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1529 /* We queued the skb, but now we're out of space. */
1530 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1531 netif_stop_queue(netdev);
1534 /* This is a hard error - log it. */
1535 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1536 netif_stop_queue(netdev);
1540 netdev->trans_start = jiffies;
1544 static inline int e100_tx_clean(struct nic *nic)
1549 spin_lock(&nic->cb_lock);
1551 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1552 nic->cb_to_clean->status);
1554 /* Clean CBs marked complete */
1555 for(cb = nic->cb_to_clean;
1556 cb->status & cpu_to_le16(cb_complete);
1557 cb = nic->cb_to_clean = cb->next) {
1558 if(likely(cb->skb != NULL)) {
1559 nic->net_stats.tx_packets++;
1560 nic->net_stats.tx_bytes += cb->skb->len;
1562 pci_unmap_single(nic->pdev,
1563 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1564 le16_to_cpu(cb->u.tcb.tbd.size),
1566 dev_kfree_skb_any(cb->skb);
1574 spin_unlock(&nic->cb_lock);
1576 /* Recover from running out of Tx resources in xmit_frame */
1577 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1578 netif_wake_queue(nic->netdev);
1583 static void e100_clean_cbs(struct nic *nic)
1586 while(nic->cbs_avail != nic->params.cbs.count) {
1587 struct cb *cb = nic->cb_to_clean;
1589 pci_unmap_single(nic->pdev,
1590 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1591 le16_to_cpu(cb->u.tcb.tbd.size),
1593 dev_kfree_skb(cb->skb);
1595 nic->cb_to_clean = nic->cb_to_clean->next;
1598 pci_free_consistent(nic->pdev,
1599 sizeof(struct cb) * nic->params.cbs.count,
1600 nic->cbs, nic->cbs_dma_addr);
1604 nic->cuc_cmd = cuc_start;
1605 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1609 static int e100_alloc_cbs(struct nic *nic)
1612 unsigned int i, count = nic->params.cbs.count;
1614 nic->cuc_cmd = cuc_start;
1615 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1618 nic->cbs = pci_alloc_consistent(nic->pdev,
1619 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1623 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1624 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1625 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1627 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1628 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1629 ((i+1) % count) * sizeof(struct cb));
1633 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1634 nic->cbs_avail = count;
1639 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1641 if(!nic->rxs) return;
1642 if(RU_SUSPENDED != nic->ru_running) return;
1644 /* handle init time starts */
1645 if(!rx) rx = nic->rxs;
1647 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1649 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1650 nic->ru_running = RU_RUNNING;
1654 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1655 static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1657 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
1660 /* Align, init, and map the RFD. */
1661 rx->skb->dev = nic->netdev;
1662 skb_reserve(rx->skb, NET_IP_ALIGN);
1663 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1664 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1665 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1667 if(pci_dma_mapping_error(rx->dma_addr)) {
1668 dev_kfree_skb_any(rx->skb);
1674 /* Link the RFD to end of RFA by linking previous RFD to
1675 * this one, and clearing EL bit of previous. */
1677 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1678 put_unaligned(cpu_to_le32(rx->dma_addr),
1679 (u32 *)&prev_rfd->link);
1681 prev_rfd->command &= ~cpu_to_le16(cb_el);
1682 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1683 sizeof(struct rfd), PCI_DMA_TODEVICE);
1689 static inline int e100_rx_indicate(struct nic *nic, struct rx *rx,
1690 unsigned int *work_done, unsigned int work_to_do)
1692 struct sk_buff *skb = rx->skb;
1693 struct rfd *rfd = (struct rfd *)skb->data;
1694 u16 rfd_status, actual_size;
1696 if(unlikely(work_done && *work_done >= work_to_do))
1699 /* Need to sync before taking a peek at cb_complete bit */
1700 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1701 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1702 rfd_status = le16_to_cpu(rfd->status);
1704 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1706 /* If data isn't ready, nothing to indicate */
1707 if(unlikely(!(rfd_status & cb_complete)))
1710 /* Get actual data size */
1711 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1712 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1713 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1716 pci_unmap_single(nic->pdev, rx->dma_addr,
1717 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1719 /* this allows for a fast restart without re-enabling interrupts */
1720 if(le16_to_cpu(rfd->command) & cb_el)
1721 nic->ru_running = RU_SUSPENDED;
1723 /* Pull off the RFD and put the actual data (minus eth hdr) */
1724 skb_reserve(skb, sizeof(struct rfd));
1725 skb_put(skb, actual_size);
1726 skb->protocol = eth_type_trans(skb, nic->netdev);
1728 if(unlikely(!(rfd_status & cb_ok))) {
1729 /* Don't indicate if hardware indicates errors */
1730 dev_kfree_skb_any(skb);
1731 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1732 /* Don't indicate oversized frames */
1733 nic->rx_over_length_errors++;
1734 dev_kfree_skb_any(skb);
1736 nic->net_stats.rx_packets++;
1737 nic->net_stats.rx_bytes += actual_size;
1738 nic->netdev->last_rx = jiffies;
1739 netif_receive_skb(skb);
1749 static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1750 unsigned int work_to_do)
1753 int restart_required = 0;
1754 struct rx *rx_to_start = NULL;
1756 /* are we already rnr? then pay attention!!! this ensures that
1757 * the state machine progression never allows a start with a
1758 * partially cleaned list, avoiding a race between hardware
1759 * and rx_to_clean when in NAPI mode */
1760 if(RU_SUSPENDED == nic->ru_running)
1761 restart_required = 1;
1763 /* Indicate newly arrived packets */
1764 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1765 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1766 if(-EAGAIN == err) {
1767 /* hit quota so have more work to do, restart once
1768 * cleanup is complete */
1769 restart_required = 0;
1771 } else if(-ENODATA == err)
1772 break; /* No more to clean */
1775 /* save our starting point as the place we'll restart the receiver */
1776 if(restart_required)
1777 rx_to_start = nic->rx_to_clean;
1779 /* Alloc new skbs to refill list */
1780 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1781 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1782 break; /* Better luck next time (see watchdog) */
1785 if(restart_required) {
1787 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1788 e100_start_receiver(nic, rx_to_start);
1794 static void e100_rx_clean_list(struct nic *nic)
1797 unsigned int i, count = nic->params.rfds.count;
1799 nic->ru_running = RU_UNINITIALIZED;
1802 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1804 pci_unmap_single(nic->pdev, rx->dma_addr,
1805 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1806 dev_kfree_skb(rx->skb);
1813 nic->rx_to_use = nic->rx_to_clean = NULL;
1816 static int e100_rx_alloc_list(struct nic *nic)
1819 unsigned int i, count = nic->params.rfds.count;
1821 nic->rx_to_use = nic->rx_to_clean = NULL;
1822 nic->ru_running = RU_UNINITIALIZED;
1824 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1826 memset(nic->rxs, 0, sizeof(struct rx) * count);
1828 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1829 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1830 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1831 if(e100_rx_alloc_skb(nic, rx)) {
1832 e100_rx_clean_list(nic);
1837 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1838 nic->ru_running = RU_SUSPENDED;
1843 static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1845 struct net_device *netdev = dev_id;
1846 struct nic *nic = netdev_priv(netdev);
1847 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1849 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1851 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1852 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1855 /* Ack interrupt(s) */
1856 writeb(stat_ack, &nic->csr->scb.stat_ack);
1858 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1859 if(stat_ack & stat_ack_rnr)
1860 nic->ru_running = RU_SUSPENDED;
1862 if(likely(netif_rx_schedule_prep(netdev))) {
1863 e100_disable_irq(nic);
1864 __netif_rx_schedule(netdev);
1870 static int e100_poll(struct net_device *netdev, int *budget)
1872 struct nic *nic = netdev_priv(netdev);
1873 unsigned int work_to_do = min(netdev->quota, *budget);
1874 unsigned int work_done = 0;
1877 e100_rx_clean(nic, &work_done, work_to_do);
1878 tx_cleaned = e100_tx_clean(nic);
1880 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1881 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1882 netif_rx_complete(netdev);
1883 e100_enable_irq(nic);
1887 *budget -= work_done;
1888 netdev->quota -= work_done;
1893 #ifdef CONFIG_NET_POLL_CONTROLLER
1894 static void e100_netpoll(struct net_device *netdev)
1896 struct nic *nic = netdev_priv(netdev);
1898 e100_disable_irq(nic);
1899 e100_intr(nic->pdev->irq, netdev, NULL);
1901 e100_enable_irq(nic);
1905 static struct net_device_stats *e100_get_stats(struct net_device *netdev)
1907 struct nic *nic = netdev_priv(netdev);
1908 return &nic->net_stats;
1911 static int e100_set_mac_address(struct net_device *netdev, void *p)
1913 struct nic *nic = netdev_priv(netdev);
1914 struct sockaddr *addr = p;
1916 if (!is_valid_ether_addr(addr->sa_data))
1917 return -EADDRNOTAVAIL;
1919 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1920 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1925 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1927 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1929 netdev->mtu = new_mtu;
1934 static int e100_asf(struct nic *nic)
1936 /* ASF can be enabled from eeprom */
1937 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1938 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
1939 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
1940 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
1944 static int e100_up(struct nic *nic)
1948 if((err = e100_rx_alloc_list(nic)))
1950 if((err = e100_alloc_cbs(nic)))
1951 goto err_rx_clean_list;
1952 if((err = e100_hw_init(nic)))
1954 e100_set_multicast_list(nic->netdev);
1955 e100_start_receiver(nic, 0);
1956 mod_timer(&nic->watchdog, jiffies);
1957 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
1958 nic->netdev->name, nic->netdev)))
1960 netif_wake_queue(nic->netdev);
1961 netif_poll_enable(nic->netdev);
1962 /* enable ints _after_ enabling poll, preventing a race between
1963 * disable ints+schedule */
1964 e100_enable_irq(nic);
1968 del_timer_sync(&nic->watchdog);
1970 e100_clean_cbs(nic);
1972 e100_rx_clean_list(nic);
1976 static void e100_down(struct nic *nic)
1978 /* wait here for poll to complete */
1979 netif_poll_disable(nic->netdev);
1980 netif_stop_queue(nic->netdev);
1982 free_irq(nic->pdev->irq, nic->netdev);
1983 del_timer_sync(&nic->watchdog);
1984 netif_carrier_off(nic->netdev);
1985 e100_clean_cbs(nic);
1986 e100_rx_clean_list(nic);
1989 static void e100_tx_timeout(struct net_device *netdev)
1991 struct nic *nic = netdev_priv(netdev);
1993 /* Reset outside of interrupt context, to avoid request_irq
1994 * in interrupt context */
1995 schedule_work(&nic->tx_timeout_task);
1998 static void e100_tx_timeout_task(struct net_device *netdev)
2000 struct nic *nic = netdev_priv(netdev);
2002 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2003 readb(&nic->csr->scb.status));
2004 e100_down(netdev_priv(netdev));
2005 e100_up(netdev_priv(netdev));
2008 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2011 struct sk_buff *skb;
2013 /* Use driver resources to perform internal MAC or PHY
2014 * loopback test. A single packet is prepared and transmitted
2015 * in loopback mode, and the test passes if the received
2016 * packet compares byte-for-byte to the transmitted packet. */
2018 if((err = e100_rx_alloc_list(nic)))
2020 if((err = e100_alloc_cbs(nic)))
2023 /* ICH PHY loopback is broken so do MAC loopback instead */
2024 if(nic->flags & ich && loopback_mode == lb_phy)
2025 loopback_mode = lb_mac;
2027 nic->loopback = loopback_mode;
2028 if((err = e100_hw_init(nic)))
2029 goto err_loopback_none;
2031 if(loopback_mode == lb_phy)
2032 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2035 e100_start_receiver(nic, 0);
2037 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
2039 goto err_loopback_none;
2041 skb_put(skb, ETH_DATA_LEN);
2042 memset(skb->data, 0xFF, ETH_DATA_LEN);
2043 e100_xmit_frame(skb, nic->netdev);
2047 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2048 skb->data, ETH_DATA_LEN))
2052 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2053 nic->loopback = lb_none;
2055 e100_clean_cbs(nic);
2057 e100_rx_clean_list(nic);
2061 #define MII_LED_CONTROL 0x1B
2062 static void e100_blink_led(unsigned long data)
2064 struct nic *nic = (struct nic *)data;
2072 nic->leds = (nic->leds & led_on) ? led_off :
2073 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2074 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2075 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2078 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2080 struct nic *nic = netdev_priv(netdev);
2081 return mii_ethtool_gset(&nic->mii, cmd);
2084 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2086 struct nic *nic = netdev_priv(netdev);
2089 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2090 err = mii_ethtool_sset(&nic->mii, cmd);
2091 e100_exec_cb(nic, NULL, e100_configure);
2096 static void e100_get_drvinfo(struct net_device *netdev,
2097 struct ethtool_drvinfo *info)
2099 struct nic *nic = netdev_priv(netdev);
2100 strcpy(info->driver, DRV_NAME);
2101 strcpy(info->version, DRV_VERSION);
2102 strcpy(info->fw_version, "N/A");
2103 strcpy(info->bus_info, pci_name(nic->pdev));
2106 static int e100_get_regs_len(struct net_device *netdev)
2108 struct nic *nic = netdev_priv(netdev);
2109 #define E100_PHY_REGS 0x1C
2110 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
2111 sizeof(nic->mem->dump_buf) / sizeof(u32)
2112 return E100_REGS_LEN * sizeof(u32);
2115 static void e100_get_regs(struct net_device *netdev,
2116 struct ethtool_regs *regs, void *p)
2118 struct nic *nic = netdev_priv(netdev);
2122 regs->version = (1 << 24) | nic->rev_id;
2123 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
2124 readb(&nic->csr->scb.cmd_lo) << 16 |
2125 readw(&nic->csr->scb.status);
2126 for(i = E100_PHY_REGS; i >= 0; i--)
2127 buff[1 + E100_PHY_REGS - i] =
2128 mdio_read(netdev, nic->mii.phy_id, i);
2129 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2130 e100_exec_cb(nic, NULL, e100_dump);
2132 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2133 sizeof(nic->mem->dump_buf));
2136 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2138 struct nic *nic = netdev_priv(netdev);
2139 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2140 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2143 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2145 struct nic *nic = netdev_priv(netdev);
2147 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2151 nic->flags |= wol_magic;
2153 nic->flags &= ~wol_magic;
2155 e100_exec_cb(nic, NULL, e100_configure);
2160 static u32 e100_get_msglevel(struct net_device *netdev)
2162 struct nic *nic = netdev_priv(netdev);
2163 return nic->msg_enable;
2166 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2168 struct nic *nic = netdev_priv(netdev);
2169 nic->msg_enable = value;
2172 static int e100_nway_reset(struct net_device *netdev)
2174 struct nic *nic = netdev_priv(netdev);
2175 return mii_nway_restart(&nic->mii);
2178 static u32 e100_get_link(struct net_device *netdev)
2180 struct nic *nic = netdev_priv(netdev);
2181 return mii_link_ok(&nic->mii);
2184 static int e100_get_eeprom_len(struct net_device *netdev)
2186 struct nic *nic = netdev_priv(netdev);
2187 return nic->eeprom_wc << 1;
2190 #define E100_EEPROM_MAGIC 0x1234
2191 static int e100_get_eeprom(struct net_device *netdev,
2192 struct ethtool_eeprom *eeprom, u8 *bytes)
2194 struct nic *nic = netdev_priv(netdev);
2196 eeprom->magic = E100_EEPROM_MAGIC;
2197 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2202 static int e100_set_eeprom(struct net_device *netdev,
2203 struct ethtool_eeprom *eeprom, u8 *bytes)
2205 struct nic *nic = netdev_priv(netdev);
2207 if(eeprom->magic != E100_EEPROM_MAGIC)
2210 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2212 return e100_eeprom_save(nic, eeprom->offset >> 1,
2213 (eeprom->len >> 1) + 1);
2216 static void e100_get_ringparam(struct net_device *netdev,
2217 struct ethtool_ringparam *ring)
2219 struct nic *nic = netdev_priv(netdev);
2220 struct param_range *rfds = &nic->params.rfds;
2221 struct param_range *cbs = &nic->params.cbs;
2223 ring->rx_max_pending = rfds->max;
2224 ring->tx_max_pending = cbs->max;
2225 ring->rx_mini_max_pending = 0;
2226 ring->rx_jumbo_max_pending = 0;
2227 ring->rx_pending = rfds->count;
2228 ring->tx_pending = cbs->count;
2229 ring->rx_mini_pending = 0;
2230 ring->rx_jumbo_pending = 0;
2233 static int e100_set_ringparam(struct net_device *netdev,
2234 struct ethtool_ringparam *ring)
2236 struct nic *nic = netdev_priv(netdev);
2237 struct param_range *rfds = &nic->params.rfds;
2238 struct param_range *cbs = &nic->params.cbs;
2240 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2243 if(netif_running(netdev))
2245 rfds->count = max(ring->rx_pending, rfds->min);
2246 rfds->count = min(rfds->count, rfds->max);
2247 cbs->count = max(ring->tx_pending, cbs->min);
2248 cbs->count = min(cbs->count, cbs->max);
2249 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2250 rfds->count, cbs->count);
2251 if(netif_running(netdev))
2257 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2258 "Link test (on/offline)",
2259 "Eeprom test (on/offline)",
2260 "Self test (offline)",
2261 "Mac loopback (offline)",
2262 "Phy loopback (offline)",
2264 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2266 static int e100_diag_test_count(struct net_device *netdev)
2268 return E100_TEST_LEN;
2271 static void e100_diag_test(struct net_device *netdev,
2272 struct ethtool_test *test, u64 *data)
2274 struct ethtool_cmd cmd;
2275 struct nic *nic = netdev_priv(netdev);
2278 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2279 data[0] = !mii_link_ok(&nic->mii);
2280 data[1] = e100_eeprom_load(nic);
2281 if(test->flags & ETH_TEST_FL_OFFLINE) {
2283 /* save speed, duplex & autoneg settings */
2284 err = mii_ethtool_gset(&nic->mii, &cmd);
2286 if(netif_running(netdev))
2288 data[2] = e100_self_test(nic);
2289 data[3] = e100_loopback_test(nic, lb_mac);
2290 data[4] = e100_loopback_test(nic, lb_phy);
2292 /* restore speed, duplex & autoneg settings */
2293 err = mii_ethtool_sset(&nic->mii, &cmd);
2295 if(netif_running(netdev))
2298 for(i = 0; i < E100_TEST_LEN; i++)
2299 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2301 msleep_interruptible(4 * 1000);
2304 static int e100_phys_id(struct net_device *netdev, u32 data)
2306 struct nic *nic = netdev_priv(netdev);
2308 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2309 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2310 mod_timer(&nic->blink_timer, jiffies);
2311 msleep_interruptible(data * 1000);
2312 del_timer_sync(&nic->blink_timer);
2313 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2318 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2319 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2320 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2321 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2322 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2323 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2324 "tx_heartbeat_errors", "tx_window_errors",
2325 /* device-specific stats */
2326 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2327 "tx_flow_control_pause", "rx_flow_control_pause",
2328 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2330 #define E100_NET_STATS_LEN 21
2331 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2333 static int e100_get_stats_count(struct net_device *netdev)
2335 return E100_STATS_LEN;
2338 static void e100_get_ethtool_stats(struct net_device *netdev,
2339 struct ethtool_stats *stats, u64 *data)
2341 struct nic *nic = netdev_priv(netdev);
2344 for(i = 0; i < E100_NET_STATS_LEN; i++)
2345 data[i] = ((unsigned long *)&nic->net_stats)[i];
2347 data[i++] = nic->tx_deferred;
2348 data[i++] = nic->tx_single_collisions;
2349 data[i++] = nic->tx_multiple_collisions;
2350 data[i++] = nic->tx_fc_pause;
2351 data[i++] = nic->rx_fc_pause;
2352 data[i++] = nic->rx_fc_unsupported;
2353 data[i++] = nic->tx_tco_frames;
2354 data[i++] = nic->rx_tco_frames;
2357 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2361 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2364 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2369 static struct ethtool_ops e100_ethtool_ops = {
2370 .get_settings = e100_get_settings,
2371 .set_settings = e100_set_settings,
2372 .get_drvinfo = e100_get_drvinfo,
2373 .get_regs_len = e100_get_regs_len,
2374 .get_regs = e100_get_regs,
2375 .get_wol = e100_get_wol,
2376 .set_wol = e100_set_wol,
2377 .get_msglevel = e100_get_msglevel,
2378 .set_msglevel = e100_set_msglevel,
2379 .nway_reset = e100_nway_reset,
2380 .get_link = e100_get_link,
2381 .get_eeprom_len = e100_get_eeprom_len,
2382 .get_eeprom = e100_get_eeprom,
2383 .set_eeprom = e100_set_eeprom,
2384 .get_ringparam = e100_get_ringparam,
2385 .set_ringparam = e100_set_ringparam,
2386 .self_test_count = e100_diag_test_count,
2387 .self_test = e100_diag_test,
2388 .get_strings = e100_get_strings,
2389 .phys_id = e100_phys_id,
2390 .get_stats_count = e100_get_stats_count,
2391 .get_ethtool_stats = e100_get_ethtool_stats,
2394 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2396 struct nic *nic = netdev_priv(netdev);
2398 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2401 static int e100_alloc(struct nic *nic)
2403 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2405 return nic->mem ? 0 : -ENOMEM;
2408 static void e100_free(struct nic *nic)
2411 pci_free_consistent(nic->pdev, sizeof(struct mem),
2412 nic->mem, nic->dma_addr);
2417 static int e100_open(struct net_device *netdev)
2419 struct nic *nic = netdev_priv(netdev);
2422 netif_carrier_off(netdev);
2423 if((err = e100_up(nic)))
2424 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2428 static int e100_close(struct net_device *netdev)
2430 e100_down(netdev_priv(netdev));
2434 static int __devinit e100_probe(struct pci_dev *pdev,
2435 const struct pci_device_id *ent)
2437 struct net_device *netdev;
2441 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2442 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2443 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2447 netdev->open = e100_open;
2448 netdev->stop = e100_close;
2449 netdev->hard_start_xmit = e100_xmit_frame;
2450 netdev->get_stats = e100_get_stats;
2451 netdev->set_multicast_list = e100_set_multicast_list;
2452 netdev->set_mac_address = e100_set_mac_address;
2453 netdev->change_mtu = e100_change_mtu;
2454 netdev->do_ioctl = e100_do_ioctl;
2455 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2456 netdev->tx_timeout = e100_tx_timeout;
2457 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2458 netdev->poll = e100_poll;
2459 netdev->weight = E100_NAPI_WEIGHT;
2460 #ifdef CONFIG_NET_POLL_CONTROLLER
2461 netdev->poll_controller = e100_netpoll;
2463 strcpy(netdev->name, pci_name(pdev));
2465 nic = netdev_priv(netdev);
2466 nic->netdev = netdev;
2468 nic->msg_enable = (1 << debug) - 1;
2469 pci_set_drvdata(pdev, netdev);
2471 if((err = pci_enable_device(pdev))) {
2472 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2473 goto err_out_free_dev;
2476 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2477 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2478 "base address, aborting.\n");
2480 goto err_out_disable_pdev;
2483 if((err = pci_request_regions(pdev, DRV_NAME))) {
2484 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2485 goto err_out_disable_pdev;
2488 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2489 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2490 goto err_out_free_res;
2493 SET_MODULE_OWNER(netdev);
2494 SET_NETDEV_DEV(netdev, &pdev->dev);
2496 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2498 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2500 goto err_out_free_res;
2503 if(ent->driver_data)
2508 e100_get_defaults(nic);
2510 /* locks must be initialized before calling hw_reset */
2511 spin_lock_init(&nic->cb_lock);
2512 spin_lock_init(&nic->cmd_lock);
2514 /* Reset the device before pci_set_master() in case device is in some
2515 * funky state and has an interrupt pending - hint: we don't have the
2516 * interrupt handler registered yet. */
2519 pci_set_master(pdev);
2521 init_timer(&nic->watchdog);
2522 nic->watchdog.function = e100_watchdog;
2523 nic->watchdog.data = (unsigned long)nic;
2524 init_timer(&nic->blink_timer);
2525 nic->blink_timer.function = e100_blink_led;
2526 nic->blink_timer.data = (unsigned long)nic;
2528 INIT_WORK(&nic->tx_timeout_task,
2529 (void (*)(void *))e100_tx_timeout_task, netdev);
2531 if((err = e100_alloc(nic))) {
2532 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2533 goto err_out_iounmap;
2536 if((err = e100_eeprom_load(nic)))
2541 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2542 if(!is_valid_ether_addr(netdev->dev_addr)) {
2543 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2544 "EEPROM, aborting.\n");
2549 /* Wol magic packet can be enabled from eeprom */
2550 if((nic->mac >= mac_82558_D101_A4) &&
2551 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2552 nic->flags |= wol_magic;
2554 /* ack any pending wake events, disable PME */
2555 pci_enable_wake(pdev, 0, 0);
2557 strcpy(netdev->name, "eth%d");
2558 if((err = register_netdev(netdev))) {
2559 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2563 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
2564 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2565 pci_resource_start(pdev, 0), pdev->irq,
2566 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2567 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2576 pci_release_regions(pdev);
2577 err_out_disable_pdev:
2578 pci_disable_device(pdev);
2580 pci_set_drvdata(pdev, NULL);
2581 free_netdev(netdev);
2585 static void __devexit e100_remove(struct pci_dev *pdev)
2587 struct net_device *netdev = pci_get_drvdata(pdev);
2590 struct nic *nic = netdev_priv(netdev);
2591 unregister_netdev(netdev);
2594 free_netdev(netdev);
2595 pci_release_regions(pdev);
2596 pci_disable_device(pdev);
2597 pci_set_drvdata(pdev, NULL);
2602 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2604 struct net_device *netdev = pci_get_drvdata(pdev);
2605 struct nic *nic = netdev_priv(netdev);
2607 if(netif_running(netdev))
2610 netif_device_detach(netdev);
2612 pci_save_state(pdev);
2613 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic)));
2614 pci_disable_device(pdev);
2615 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2620 static int e100_resume(struct pci_dev *pdev)
2622 struct net_device *netdev = pci_get_drvdata(pdev);
2623 struct nic *nic = netdev_priv(netdev);
2625 pci_set_power_state(pdev, PCI_D0);
2626 pci_restore_state(pdev);
2627 /* ack any pending wake events, disable PME */
2628 pci_enable_wake(pdev, 0, 0);
2629 if(e100_hw_init(nic))
2630 DPRINTK(HW, ERR, "e100_hw_init failed\n");
2632 netif_device_attach(netdev);
2633 if(netif_running(netdev))
2641 static void e100_shutdown(struct pci_dev *pdev)
2643 struct net_device *netdev = pci_get_drvdata(pdev);
2644 struct nic *nic = netdev_priv(netdev);
2647 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
2649 pci_enable_wake(pdev, 0, nic->flags & (wol_magic));
2654 static struct pci_driver e100_driver = {
2656 .id_table = e100_id_table,
2657 .probe = e100_probe,
2658 .remove = __devexit_p(e100_remove),
2660 .suspend = e100_suspend,
2661 .resume = e100_resume,
2663 .shutdown = e100_shutdown,
2666 static int __init e100_init_module(void)
2668 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2669 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2670 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2672 return pci_module_init(&e100_driver);
2675 static void __exit e100_cleanup_module(void)
2677 pci_unregister_driver(&e100_driver);
2680 module_init(e100_init_module);
2681 module_exit(e100_cleanup_module);