[MIPS] Add __ucmpdi2 implementation
[linux-2.6] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23  *  enough at me, Linus for the original (flawed) idea, Matthew
24  *  Kirkwood for proof-of-concept implementation.
25  *
26  *  "The futexes are also cursed."
27  *  "But they come in a choice of three flavours!"
28  *
29  *  This program is free software; you can redistribute it and/or modify
30  *  it under the terms of the GNU General Public License as published by
31  *  the Free Software Foundation; either version 2 of the License, or
32  *  (at your option) any later version.
33  *
34  *  This program is distributed in the hope that it will be useful,
35  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
36  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
37  *  GNU General Public License for more details.
38  *
39  *  You should have received a copy of the GNU General Public License
40  *  along with this program; if not, write to the Free Software
41  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
42  */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <asm/futex.h>
56
57 #include "rtmutex_common.h"
58
59 #ifdef CONFIG_DEBUG_RT_MUTEXES
60 # include "rtmutex-debug.h"
61 #else
62 # include "rtmutex.h"
63 #endif
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68  * Priority Inheritance state:
69  */
70 struct futex_pi_state {
71         /*
72          * list of 'owned' pi_state instances - these have to be
73          * cleaned up in do_exit() if the task exits prematurely:
74          */
75         struct list_head list;
76
77         /*
78          * The PI object:
79          */
80         struct rt_mutex pi_mutex;
81
82         struct task_struct *owner;
83         atomic_t refcount;
84
85         union futex_key key;
86 };
87
88 /*
89  * We use this hashed waitqueue instead of a normal wait_queue_t, so
90  * we can wake only the relevant ones (hashed queues may be shared).
91  *
92  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94  * The order of wakup is always to make the first condition true, then
95  * wake up q->waiters, then make the second condition true.
96  */
97 struct futex_q {
98         struct plist_node list;
99         wait_queue_head_t waiters;
100
101         /* Which hash list lock to use: */
102         spinlock_t *lock_ptr;
103
104         /* Key which the futex is hashed on: */
105         union futex_key key;
106
107         /* For fd, sigio sent using these: */
108         int fd;
109         struct file *filp;
110
111         /* Optional priority inheritance state: */
112         struct futex_pi_state *pi_state;
113         struct task_struct *task;
114
115         /*
116          * This waiter is used in case of requeue from a
117          * normal futex to a PI-futex
118          */
119         struct rt_mutex_waiter waiter;
120 };
121
122 /*
123  * Split the global futex_lock into every hash list lock.
124  */
125 struct futex_hash_bucket {
126         spinlock_t lock;
127         struct plist_head chain;
128 };
129
130 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
131
132 /* Futex-fs vfsmount entry: */
133 static struct vfsmount *futex_mnt;
134
135 /*
136  * We hash on the keys returned from get_futex_key (see below).
137  */
138 static struct futex_hash_bucket *hash_futex(union futex_key *key)
139 {
140         u32 hash = jhash2((u32*)&key->both.word,
141                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
142                           key->both.offset);
143         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
144 }
145
146 /*
147  * Return 1 if two futex_keys are equal, 0 otherwise.
148  */
149 static inline int match_futex(union futex_key *key1, union futex_key *key2)
150 {
151         return (key1->both.word == key2->both.word
152                 && key1->both.ptr == key2->both.ptr
153                 && key1->both.offset == key2->both.offset);
154 }
155
156 /**
157  * get_futex_key - Get parameters which are the keys for a futex.
158  * @uaddr: virtual address of the futex
159  * @shared: NULL for a PROCESS_PRIVATE futex,
160  *      &current->mm->mmap_sem for a PROCESS_SHARED futex
161  * @key: address where result is stored.
162  *
163  * Returns a negative error code or 0
164  * The key words are stored in *key on success.
165  *
166  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
167  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
168  * We can usually work out the index without swapping in the page.
169  *
170  * fshared is NULL for PROCESS_PRIVATE futexes
171  * For other futexes, it points to &current->mm->mmap_sem and
172  * caller must have taken the reader lock. but NOT any spinlocks.
173  */
174 int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
175                   union futex_key *key)
176 {
177         unsigned long address = (unsigned long)uaddr;
178         struct mm_struct *mm = current->mm;
179         struct vm_area_struct *vma;
180         struct page *page;
181         int err;
182
183         /*
184          * The futex address must be "naturally" aligned.
185          */
186         key->both.offset = address % PAGE_SIZE;
187         if (unlikely((address % sizeof(u32)) != 0))
188                 return -EINVAL;
189         address -= key->both.offset;
190
191         /*
192          * PROCESS_PRIVATE futexes are fast.
193          * As the mm cannot disappear under us and the 'key' only needs
194          * virtual address, we dont even have to find the underlying vma.
195          * Note : We do have to check 'uaddr' is a valid user address,
196          *        but access_ok() should be faster than find_vma()
197          */
198         if (!fshared) {
199                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
200                         return -EFAULT;
201                 key->private.mm = mm;
202                 key->private.address = address;
203                 return 0;
204         }
205         /*
206          * The futex is hashed differently depending on whether
207          * it's in a shared or private mapping.  So check vma first.
208          */
209         vma = find_extend_vma(mm, address);
210         if (unlikely(!vma))
211                 return -EFAULT;
212
213         /*
214          * Permissions.
215          */
216         if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
217                 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
218
219         /* Save the user address in the ley */
220         key->uaddr = uaddr;
221
222         /*
223          * Private mappings are handled in a simple way.
224          *
225          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
226          * it's a read-only handle, it's expected that futexes attach to
227          * the object not the particular process.  Therefore we use
228          * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
229          * mappings of _writable_ handles.
230          */
231         if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
232                 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
233                 key->private.mm = mm;
234                 key->private.address = address;
235                 return 0;
236         }
237
238         /*
239          * Linear file mappings are also simple.
240          */
241         key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
242         key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
243         if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
244                 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
245                                      + vma->vm_pgoff);
246                 return 0;
247         }
248
249         /*
250          * We could walk the page table to read the non-linear
251          * pte, and get the page index without fetching the page
252          * from swap.  But that's a lot of code to duplicate here
253          * for a rare case, so we simply fetch the page.
254          */
255         err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
256         if (err >= 0) {
257                 key->shared.pgoff =
258                         page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
259                 put_page(page);
260                 return 0;
261         }
262         return err;
263 }
264 EXPORT_SYMBOL_GPL(get_futex_key);
265
266 /*
267  * Take a reference to the resource addressed by a key.
268  * Can be called while holding spinlocks.
269  *
270  */
271 inline void get_futex_key_refs(union futex_key *key)
272 {
273         if (key->both.ptr == 0)
274                 return;
275         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
276                 case FUT_OFF_INODE:
277                         atomic_inc(&key->shared.inode->i_count);
278                         break;
279                 case FUT_OFF_MMSHARED:
280                         atomic_inc(&key->private.mm->mm_count);
281                         break;
282         }
283 }
284 EXPORT_SYMBOL_GPL(get_futex_key_refs);
285
286 /*
287  * Drop a reference to the resource addressed by a key.
288  * The hash bucket spinlock must not be held.
289  */
290 void drop_futex_key_refs(union futex_key *key)
291 {
292         if (key->both.ptr == 0)
293                 return;
294         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
295                 case FUT_OFF_INODE:
296                         iput(key->shared.inode);
297                         break;
298                 case FUT_OFF_MMSHARED:
299                         mmdrop(key->private.mm);
300                         break;
301         }
302 }
303 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
304
305 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
306 {
307         int ret;
308
309         pagefault_disable();
310         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
311         pagefault_enable();
312
313         return ret ? -EFAULT : 0;
314 }
315
316 /*
317  * Fault handling.
318  * if fshared is non NULL, current->mm->mmap_sem is already held
319  */
320 static int futex_handle_fault(unsigned long address,
321                               struct rw_semaphore *fshared, int attempt)
322 {
323         struct vm_area_struct * vma;
324         struct mm_struct *mm = current->mm;
325         int ret = -EFAULT;
326
327         if (attempt > 2)
328                 return ret;
329
330         if (!fshared)
331                 down_read(&mm->mmap_sem);
332         vma = find_vma(mm, address);
333         if (vma && address >= vma->vm_start &&
334             (vma->vm_flags & VM_WRITE)) {
335                 switch (handle_mm_fault(mm, vma, address, 1)) {
336                 case VM_FAULT_MINOR:
337                         ret = 0;
338                         current->min_flt++;
339                         break;
340                 case VM_FAULT_MAJOR:
341                         ret = 0;
342                         current->maj_flt++;
343                         break;
344                 }
345         }
346         if (!fshared)
347                 up_read(&mm->mmap_sem);
348         return ret;
349 }
350
351 /*
352  * PI code:
353  */
354 static int refill_pi_state_cache(void)
355 {
356         struct futex_pi_state *pi_state;
357
358         if (likely(current->pi_state_cache))
359                 return 0;
360
361         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
362
363         if (!pi_state)
364                 return -ENOMEM;
365
366         INIT_LIST_HEAD(&pi_state->list);
367         /* pi_mutex gets initialized later */
368         pi_state->owner = NULL;
369         atomic_set(&pi_state->refcount, 1);
370
371         current->pi_state_cache = pi_state;
372
373         return 0;
374 }
375
376 static struct futex_pi_state * alloc_pi_state(void)
377 {
378         struct futex_pi_state *pi_state = current->pi_state_cache;
379
380         WARN_ON(!pi_state);
381         current->pi_state_cache = NULL;
382
383         return pi_state;
384 }
385
386 static void free_pi_state(struct futex_pi_state *pi_state)
387 {
388         if (!atomic_dec_and_test(&pi_state->refcount))
389                 return;
390
391         /*
392          * If pi_state->owner is NULL, the owner is most probably dying
393          * and has cleaned up the pi_state already
394          */
395         if (pi_state->owner) {
396                 spin_lock_irq(&pi_state->owner->pi_lock);
397                 list_del_init(&pi_state->list);
398                 spin_unlock_irq(&pi_state->owner->pi_lock);
399
400                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
401         }
402
403         if (current->pi_state_cache)
404                 kfree(pi_state);
405         else {
406                 /*
407                  * pi_state->list is already empty.
408                  * clear pi_state->owner.
409                  * refcount is at 0 - put it back to 1.
410                  */
411                 pi_state->owner = NULL;
412                 atomic_set(&pi_state->refcount, 1);
413                 current->pi_state_cache = pi_state;
414         }
415 }
416
417 /*
418  * Look up the task based on what TID userspace gave us.
419  * We dont trust it.
420  */
421 static struct task_struct * futex_find_get_task(pid_t pid)
422 {
423         struct task_struct *p;
424
425         rcu_read_lock();
426         p = find_task_by_pid(pid);
427         if (!p)
428                 goto out_unlock;
429         if ((current->euid != p->euid) && (current->euid != p->uid)) {
430                 p = NULL;
431                 goto out_unlock;
432         }
433         if (p->exit_state != 0) {
434                 p = NULL;
435                 goto out_unlock;
436         }
437         get_task_struct(p);
438 out_unlock:
439         rcu_read_unlock();
440
441         return p;
442 }
443
444 /*
445  * This task is holding PI mutexes at exit time => bad.
446  * Kernel cleans up PI-state, but userspace is likely hosed.
447  * (Robust-futex cleanup is separate and might save the day for userspace.)
448  */
449 void exit_pi_state_list(struct task_struct *curr)
450 {
451         struct list_head *next, *head = &curr->pi_state_list;
452         struct futex_pi_state *pi_state;
453         struct futex_hash_bucket *hb;
454         union futex_key key;
455
456         /*
457          * We are a ZOMBIE and nobody can enqueue itself on
458          * pi_state_list anymore, but we have to be careful
459          * versus waiters unqueueing themselves:
460          */
461         spin_lock_irq(&curr->pi_lock);
462         while (!list_empty(head)) {
463
464                 next = head->next;
465                 pi_state = list_entry(next, struct futex_pi_state, list);
466                 key = pi_state->key;
467                 hb = hash_futex(&key);
468                 spin_unlock_irq(&curr->pi_lock);
469
470                 spin_lock(&hb->lock);
471
472                 spin_lock_irq(&curr->pi_lock);
473                 /*
474                  * We dropped the pi-lock, so re-check whether this
475                  * task still owns the PI-state:
476                  */
477                 if (head->next != next) {
478                         spin_unlock(&hb->lock);
479                         continue;
480                 }
481
482                 WARN_ON(pi_state->owner != curr);
483                 WARN_ON(list_empty(&pi_state->list));
484                 list_del_init(&pi_state->list);
485                 pi_state->owner = NULL;
486                 spin_unlock_irq(&curr->pi_lock);
487
488                 rt_mutex_unlock(&pi_state->pi_mutex);
489
490                 spin_unlock(&hb->lock);
491
492                 spin_lock_irq(&curr->pi_lock);
493         }
494         spin_unlock_irq(&curr->pi_lock);
495 }
496
497 static int
498 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
499                 union futex_key *key, struct futex_pi_state **ps)
500 {
501         struct futex_pi_state *pi_state = NULL;
502         struct futex_q *this, *next;
503         struct plist_head *head;
504         struct task_struct *p;
505         pid_t pid;
506
507         head = &hb->chain;
508
509         plist_for_each_entry_safe(this, next, head, list) {
510                 if (match_futex(&this->key, key)) {
511                         /*
512                          * Another waiter already exists - bump up
513                          * the refcount and return its pi_state:
514                          */
515                         pi_state = this->pi_state;
516                         /*
517                          * Userspace might have messed up non PI and PI futexes
518                          */
519                         if (unlikely(!pi_state))
520                                 return -EINVAL;
521
522                         WARN_ON(!atomic_read(&pi_state->refcount));
523
524                         atomic_inc(&pi_state->refcount);
525                         *ps = pi_state;
526
527                         return 0;
528                 }
529         }
530
531         /*
532          * We are the first waiter - try to look up the real owner and attach
533          * the new pi_state to it, but bail out when the owner died bit is set
534          * and TID = 0:
535          */
536         pid = uval & FUTEX_TID_MASK;
537         if (!pid && (uval & FUTEX_OWNER_DIED))
538                 return -ESRCH;
539         p = futex_find_get_task(pid);
540         if (!p)
541                 return -ESRCH;
542
543         pi_state = alloc_pi_state();
544
545         /*
546          * Initialize the pi_mutex in locked state and make 'p'
547          * the owner of it:
548          */
549         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
550
551         /* Store the key for possible exit cleanups: */
552         pi_state->key = *key;
553
554         spin_lock_irq(&p->pi_lock);
555         WARN_ON(!list_empty(&pi_state->list));
556         list_add(&pi_state->list, &p->pi_state_list);
557         pi_state->owner = p;
558         spin_unlock_irq(&p->pi_lock);
559
560         put_task_struct(p);
561
562         *ps = pi_state;
563
564         return 0;
565 }
566
567 /*
568  * The hash bucket lock must be held when this is called.
569  * Afterwards, the futex_q must not be accessed.
570  */
571 static void wake_futex(struct futex_q *q)
572 {
573         plist_del(&q->list, &q->list.plist);
574         if (q->filp)
575                 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
576         /*
577          * The lock in wake_up_all() is a crucial memory barrier after the
578          * plist_del() and also before assigning to q->lock_ptr.
579          */
580         wake_up_all(&q->waiters);
581         /*
582          * The waiting task can free the futex_q as soon as this is written,
583          * without taking any locks.  This must come last.
584          *
585          * A memory barrier is required here to prevent the following store
586          * to lock_ptr from getting ahead of the wakeup. Clearing the lock
587          * at the end of wake_up_all() does not prevent this store from
588          * moving.
589          */
590         smp_wmb();
591         q->lock_ptr = NULL;
592 }
593
594 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
595 {
596         struct task_struct *new_owner;
597         struct futex_pi_state *pi_state = this->pi_state;
598         u32 curval, newval;
599
600         if (!pi_state)
601                 return -EINVAL;
602
603         spin_lock(&pi_state->pi_mutex.wait_lock);
604         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
605
606         /*
607          * This happens when we have stolen the lock and the original
608          * pending owner did not enqueue itself back on the rt_mutex.
609          * Thats not a tragedy. We know that way, that a lock waiter
610          * is on the fly. We make the futex_q waiter the pending owner.
611          */
612         if (!new_owner)
613                 new_owner = this->task;
614
615         /*
616          * We pass it to the next owner. (The WAITERS bit is always
617          * kept enabled while there is PI state around. We must also
618          * preserve the owner died bit.)
619          */
620         if (!(uval & FUTEX_OWNER_DIED)) {
621                 newval = FUTEX_WAITERS | new_owner->pid;
622                 /* Keep the FUTEX_WAITER_REQUEUED flag if it was set */
623                 newval |= (uval & FUTEX_WAITER_REQUEUED);
624
625                 pagefault_disable();
626                 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
627                 pagefault_enable();
628                 if (curval == -EFAULT)
629                         return -EFAULT;
630                 if (curval != uval)
631                         return -EINVAL;
632         }
633
634         spin_lock_irq(&pi_state->owner->pi_lock);
635         WARN_ON(list_empty(&pi_state->list));
636         list_del_init(&pi_state->list);
637         spin_unlock_irq(&pi_state->owner->pi_lock);
638
639         spin_lock_irq(&new_owner->pi_lock);
640         WARN_ON(!list_empty(&pi_state->list));
641         list_add(&pi_state->list, &new_owner->pi_state_list);
642         pi_state->owner = new_owner;
643         spin_unlock_irq(&new_owner->pi_lock);
644
645         spin_unlock(&pi_state->pi_mutex.wait_lock);
646         rt_mutex_unlock(&pi_state->pi_mutex);
647
648         return 0;
649 }
650
651 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
652 {
653         u32 oldval;
654
655         /*
656          * There is no waiter, so we unlock the futex. The owner died
657          * bit has not to be preserved here. We are the owner:
658          */
659         pagefault_disable();
660         oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
661         pagefault_enable();
662
663         if (oldval == -EFAULT)
664                 return oldval;
665         if (oldval != uval)
666                 return -EAGAIN;
667
668         return 0;
669 }
670
671 /*
672  * Express the locking dependencies for lockdep:
673  */
674 static inline void
675 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
676 {
677         if (hb1 <= hb2) {
678                 spin_lock(&hb1->lock);
679                 if (hb1 < hb2)
680                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
681         } else { /* hb1 > hb2 */
682                 spin_lock(&hb2->lock);
683                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
684         }
685 }
686
687 /*
688  * Wake up all waiters hashed on the physical page that is mapped
689  * to this virtual address:
690  */
691 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
692                       int nr_wake)
693 {
694         struct futex_hash_bucket *hb;
695         struct futex_q *this, *next;
696         struct plist_head *head;
697         union futex_key key;
698         int ret;
699
700         if (fshared)
701                 down_read(fshared);
702
703         ret = get_futex_key(uaddr, fshared, &key);
704         if (unlikely(ret != 0))
705                 goto out;
706
707         hb = hash_futex(&key);
708         spin_lock(&hb->lock);
709         head = &hb->chain;
710
711         plist_for_each_entry_safe(this, next, head, list) {
712                 if (match_futex (&this->key, &key)) {
713                         if (this->pi_state) {
714                                 ret = -EINVAL;
715                                 break;
716                         }
717                         wake_futex(this);
718                         if (++ret >= nr_wake)
719                                 break;
720                 }
721         }
722
723         spin_unlock(&hb->lock);
724 out:
725         if (fshared)
726                 up_read(fshared);
727         return ret;
728 }
729
730 /*
731  * Called from futex_requeue_pi.
732  * Set FUTEX_WAITERS and FUTEX_WAITER_REQUEUED flags on the
733  * PI-futex value; search its associated pi_state if an owner exist
734  * or create a new one without owner.
735  */
736 static inline int
737 lookup_pi_state_for_requeue(u32 __user *uaddr, struct futex_hash_bucket *hb,
738                             union futex_key *key,
739                             struct futex_pi_state **pi_state)
740 {
741         u32 curval, uval, newval;
742
743 retry:
744         /*
745          * We can't handle a fault cleanly because we can't
746          * release the locks here. Simply return the fault.
747          */
748         if (get_futex_value_locked(&curval, uaddr))
749                 return -EFAULT;
750
751         /* set the flags FUTEX_WAITERS and FUTEX_WAITER_REQUEUED */
752         if ((curval & (FUTEX_WAITERS | FUTEX_WAITER_REQUEUED))
753             != (FUTEX_WAITERS | FUTEX_WAITER_REQUEUED)) {
754                 /*
755                  * No waiters yet, we prepare the futex to have some waiters.
756                  */
757
758                 uval = curval;
759                 newval = uval | FUTEX_WAITERS | FUTEX_WAITER_REQUEUED;
760
761                 pagefault_disable();
762                 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
763                 pagefault_enable();
764
765                 if (unlikely(curval == -EFAULT))
766                         return -EFAULT;
767                 if (unlikely(curval != uval))
768                         goto retry;
769         }
770
771         if (!(curval & FUTEX_TID_MASK)
772             || lookup_pi_state(curval, hb, key, pi_state)) {
773                 /* the futex has no owner (yet) or the lookup failed:
774                    allocate one pi_state without owner */
775
776                 *pi_state = alloc_pi_state();
777
778                 /* Already stores the key: */
779                 (*pi_state)->key = *key;
780
781                 /* init the mutex without owner */
782                 __rt_mutex_init(&(*pi_state)->pi_mutex, NULL);
783         }
784
785         return 0;
786 }
787
788 /*
789  * Keep the first nr_wake waiter from futex1, wake up one,
790  * and requeue the next nr_requeue waiters following hashed on
791  * one physical page to another physical page (PI-futex uaddr2)
792  */
793 static int futex_requeue_pi(u32 __user *uaddr1,
794                             struct rw_semaphore *fshared,
795                             u32 __user *uaddr2,
796                             int nr_wake, int nr_requeue, u32 *cmpval)
797 {
798         union futex_key key1, key2;
799         struct futex_hash_bucket *hb1, *hb2;
800         struct plist_head *head1;
801         struct futex_q *this, *next;
802         struct futex_pi_state *pi_state2 = NULL;
803         struct rt_mutex_waiter *waiter, *top_waiter = NULL;
804         struct rt_mutex *lock2 = NULL;
805         int ret, drop_count = 0;
806
807         if (refill_pi_state_cache())
808                 return -ENOMEM;
809
810 retry:
811         /*
812          * First take all the futex related locks:
813          */
814         if (fshared)
815                 down_read(fshared);
816
817         ret = get_futex_key(uaddr1, fshared, &key1);
818         if (unlikely(ret != 0))
819                 goto out;
820         ret = get_futex_key(uaddr2, fshared, &key2);
821         if (unlikely(ret != 0))
822                 goto out;
823
824         hb1 = hash_futex(&key1);
825         hb2 = hash_futex(&key2);
826
827         double_lock_hb(hb1, hb2);
828
829         if (likely(cmpval != NULL)) {
830                 u32 curval;
831
832                 ret = get_futex_value_locked(&curval, uaddr1);
833
834                 if (unlikely(ret)) {
835                         spin_unlock(&hb1->lock);
836                         if (hb1 != hb2)
837                                 spin_unlock(&hb2->lock);
838
839                         /*
840                          * If we would have faulted, release mmap_sem, fault
841                          * it in and start all over again.
842                          */
843                         if (fshared)
844                                 up_read(fshared);
845
846                         ret = get_user(curval, uaddr1);
847
848                         if (!ret)
849                                 goto retry;
850
851                         return ret;
852                 }
853                 if (curval != *cmpval) {
854                         ret = -EAGAIN;
855                         goto out_unlock;
856                 }
857         }
858
859         head1 = &hb1->chain;
860         plist_for_each_entry_safe(this, next, head1, list) {
861                 if (!match_futex (&this->key, &key1))
862                         continue;
863                 if (++ret <= nr_wake) {
864                         wake_futex(this);
865                 } else {
866                         /*
867                          * FIRST: get and set the pi_state
868                          */
869                         if (!pi_state2) {
870                                 int s;
871                                 /* do this only the first time we requeue someone */
872                                 s = lookup_pi_state_for_requeue(uaddr2, hb2,
873                                                                 &key2, &pi_state2);
874                                 if (s) {
875                                         ret = s;
876                                         goto out_unlock;
877                                 }
878
879                                 lock2 = &pi_state2->pi_mutex;
880                                 spin_lock(&lock2->wait_lock);
881
882                                 /* Save the top waiter of the wait_list */
883                                 if (rt_mutex_has_waiters(lock2))
884                                         top_waiter = rt_mutex_top_waiter(lock2);
885                         } else
886                                 atomic_inc(&pi_state2->refcount);
887
888
889                         this->pi_state = pi_state2;
890
891                         /*
892                          * SECOND: requeue futex_q to the correct hashbucket
893                          */
894
895                         /*
896                          * If key1 and key2 hash to the same bucket, no need to
897                          * requeue.
898                          */
899                         if (likely(head1 != &hb2->chain)) {
900                                 plist_del(&this->list, &hb1->chain);
901                                 plist_add(&this->list, &hb2->chain);
902                                 this->lock_ptr = &hb2->lock;
903 #ifdef CONFIG_DEBUG_PI_LIST
904                                 this->list.plist.lock = &hb2->lock;
905 #endif
906                         }
907                         this->key = key2;
908                         get_futex_key_refs(&key2);
909                         drop_count++;
910
911
912                         /*
913                          * THIRD: queue it to lock2
914                          */
915                         spin_lock_irq(&this->task->pi_lock);
916                         waiter = &this->waiter;
917                         waiter->task = this->task;
918                         waiter->lock = lock2;
919                         plist_node_init(&waiter->list_entry, this->task->prio);
920                         plist_node_init(&waiter->pi_list_entry, this->task->prio);
921                         plist_add(&waiter->list_entry, &lock2->wait_list);
922                         this->task->pi_blocked_on = waiter;
923                         spin_unlock_irq(&this->task->pi_lock);
924
925                         if (ret - nr_wake >= nr_requeue)
926                                 break;
927                 }
928         }
929
930         /* If we've requeued some tasks and the top_waiter of the rt_mutex
931            has changed, we must adjust the priority of the owner, if any */
932         if (drop_count) {
933                 struct task_struct *owner = rt_mutex_owner(lock2);
934                 if (owner &&
935                     (top_waiter != (waiter = rt_mutex_top_waiter(lock2)))) {
936                         int chain_walk = 0;
937
938                         spin_lock_irq(&owner->pi_lock);
939                         if (top_waiter)
940                                 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
941                         else
942                                 /*
943                                  * There was no waiters before the requeue,
944                                  * the flag must be updated
945                                  */
946                                 mark_rt_mutex_waiters(lock2);
947
948                         plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
949                         __rt_mutex_adjust_prio(owner);
950                         if (owner->pi_blocked_on) {
951                                 chain_walk = 1;
952                                 get_task_struct(owner);
953                         }
954
955                         spin_unlock_irq(&owner->pi_lock);
956                         spin_unlock(&lock2->wait_lock);
957
958                         if (chain_walk)
959                                 rt_mutex_adjust_prio_chain(owner, 0, lock2, NULL,
960                                                            current);
961                 } else {
962                         /* No owner or the top_waiter does not change */
963                         mark_rt_mutex_waiters(lock2);
964                         spin_unlock(&lock2->wait_lock);
965                 }
966         }
967
968 out_unlock:
969         spin_unlock(&hb1->lock);
970         if (hb1 != hb2)
971                 spin_unlock(&hb2->lock);
972
973         /* drop_futex_key_refs() must be called outside the spinlocks. */
974         while (--drop_count >= 0)
975                 drop_futex_key_refs(&key1);
976
977 out:
978         if (fshared)
979                 up_read(fshared);
980         return ret;
981 }
982
983 /*
984  * Wake up all waiters hashed on the physical page that is mapped
985  * to this virtual address:
986  */
987 static int
988 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
989               u32 __user *uaddr2,
990               int nr_wake, int nr_wake2, int op)
991 {
992         union futex_key key1, key2;
993         struct futex_hash_bucket *hb1, *hb2;
994         struct plist_head *head;
995         struct futex_q *this, *next;
996         int ret, op_ret, attempt = 0;
997
998 retryfull:
999         if (fshared)
1000                 down_read(fshared);
1001
1002         ret = get_futex_key(uaddr1, fshared, &key1);
1003         if (unlikely(ret != 0))
1004                 goto out;
1005         ret = get_futex_key(uaddr2, fshared, &key2);
1006         if (unlikely(ret != 0))
1007                 goto out;
1008
1009         hb1 = hash_futex(&key1);
1010         hb2 = hash_futex(&key2);
1011
1012 retry:
1013         double_lock_hb(hb1, hb2);
1014
1015         op_ret = futex_atomic_op_inuser(op, uaddr2);
1016         if (unlikely(op_ret < 0)) {
1017                 u32 dummy;
1018
1019                 spin_unlock(&hb1->lock);
1020                 if (hb1 != hb2)
1021                         spin_unlock(&hb2->lock);
1022
1023 #ifndef CONFIG_MMU
1024                 /*
1025                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1026                  * but we might get them from range checking
1027                  */
1028                 ret = op_ret;
1029                 goto out;
1030 #endif
1031
1032                 if (unlikely(op_ret != -EFAULT)) {
1033                         ret = op_ret;
1034                         goto out;
1035                 }
1036
1037                 /*
1038                  * futex_atomic_op_inuser needs to both read and write
1039                  * *(int __user *)uaddr2, but we can't modify it
1040                  * non-atomically.  Therefore, if get_user below is not
1041                  * enough, we need to handle the fault ourselves, while
1042                  * still holding the mmap_sem.
1043                  */
1044                 if (attempt++) {
1045                         ret = futex_handle_fault((unsigned long)uaddr2,
1046                                                 fshared, attempt);
1047                         if (ret)
1048                                 goto out;
1049                         goto retry;
1050                 }
1051
1052                 /*
1053                  * If we would have faulted, release mmap_sem,
1054                  * fault it in and start all over again.
1055                  */
1056                 if (fshared)
1057                         up_read(fshared);
1058
1059                 ret = get_user(dummy, uaddr2);
1060                 if (ret)
1061                         return ret;
1062
1063                 goto retryfull;
1064         }
1065
1066         head = &hb1->chain;
1067
1068         plist_for_each_entry_safe(this, next, head, list) {
1069                 if (match_futex (&this->key, &key1)) {
1070                         wake_futex(this);
1071                         if (++ret >= nr_wake)
1072                                 break;
1073                 }
1074         }
1075
1076         if (op_ret > 0) {
1077                 head = &hb2->chain;
1078
1079                 op_ret = 0;
1080                 plist_for_each_entry_safe(this, next, head, list) {
1081                         if (match_futex (&this->key, &key2)) {
1082                                 wake_futex(this);
1083                                 if (++op_ret >= nr_wake2)
1084                                         break;
1085                         }
1086                 }
1087                 ret += op_ret;
1088         }
1089
1090         spin_unlock(&hb1->lock);
1091         if (hb1 != hb2)
1092                 spin_unlock(&hb2->lock);
1093 out:
1094         if (fshared)
1095                 up_read(fshared);
1096         return ret;
1097 }
1098
1099 /*
1100  * Requeue all waiters hashed on one physical page to another
1101  * physical page.
1102  */
1103 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
1104                          u32 __user *uaddr2,
1105                          int nr_wake, int nr_requeue, u32 *cmpval)
1106 {
1107         union futex_key key1, key2;
1108         struct futex_hash_bucket *hb1, *hb2;
1109         struct plist_head *head1;
1110         struct futex_q *this, *next;
1111         int ret, drop_count = 0;
1112
1113  retry:
1114         if (fshared)
1115                 down_read(fshared);
1116
1117         ret = get_futex_key(uaddr1, fshared, &key1);
1118         if (unlikely(ret != 0))
1119                 goto out;
1120         ret = get_futex_key(uaddr2, fshared, &key2);
1121         if (unlikely(ret != 0))
1122                 goto out;
1123
1124         hb1 = hash_futex(&key1);
1125         hb2 = hash_futex(&key2);
1126
1127         double_lock_hb(hb1, hb2);
1128
1129         if (likely(cmpval != NULL)) {
1130                 u32 curval;
1131
1132                 ret = get_futex_value_locked(&curval, uaddr1);
1133
1134                 if (unlikely(ret)) {
1135                         spin_unlock(&hb1->lock);
1136                         if (hb1 != hb2)
1137                                 spin_unlock(&hb2->lock);
1138
1139                         /*
1140                          * If we would have faulted, release mmap_sem, fault
1141                          * it in and start all over again.
1142                          */
1143                         if (fshared)
1144                                 up_read(fshared);
1145
1146                         ret = get_user(curval, uaddr1);
1147
1148                         if (!ret)
1149                                 goto retry;
1150
1151                         return ret;
1152                 }
1153                 if (curval != *cmpval) {
1154                         ret = -EAGAIN;
1155                         goto out_unlock;
1156                 }
1157         }
1158
1159         head1 = &hb1->chain;
1160         plist_for_each_entry_safe(this, next, head1, list) {
1161                 if (!match_futex (&this->key, &key1))
1162                         continue;
1163                 if (++ret <= nr_wake) {
1164                         wake_futex(this);
1165                 } else {
1166                         /*
1167                          * If key1 and key2 hash to the same bucket, no need to
1168                          * requeue.
1169                          */
1170                         if (likely(head1 != &hb2->chain)) {
1171                                 plist_del(&this->list, &hb1->chain);
1172                                 plist_add(&this->list, &hb2->chain);
1173                                 this->lock_ptr = &hb2->lock;
1174 #ifdef CONFIG_DEBUG_PI_LIST
1175                                 this->list.plist.lock = &hb2->lock;
1176 #endif
1177                         }
1178                         this->key = key2;
1179                         get_futex_key_refs(&key2);
1180                         drop_count++;
1181
1182                         if (ret - nr_wake >= nr_requeue)
1183                                 break;
1184                 }
1185         }
1186
1187 out_unlock:
1188         spin_unlock(&hb1->lock);
1189         if (hb1 != hb2)
1190                 spin_unlock(&hb2->lock);
1191
1192         /* drop_futex_key_refs() must be called outside the spinlocks. */
1193         while (--drop_count >= 0)
1194                 drop_futex_key_refs(&key1);
1195
1196 out:
1197         if (fshared)
1198                 up_read(fshared);
1199         return ret;
1200 }
1201
1202 /* The key must be already stored in q->key. */
1203 static inline struct futex_hash_bucket *
1204 queue_lock(struct futex_q *q, int fd, struct file *filp)
1205 {
1206         struct futex_hash_bucket *hb;
1207
1208         q->fd = fd;
1209         q->filp = filp;
1210
1211         init_waitqueue_head(&q->waiters);
1212
1213         get_futex_key_refs(&q->key);
1214         hb = hash_futex(&q->key);
1215         q->lock_ptr = &hb->lock;
1216
1217         spin_lock(&hb->lock);
1218         return hb;
1219 }
1220
1221 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1222 {
1223         int prio;
1224
1225         /*
1226          * The priority used to register this element is
1227          * - either the real thread-priority for the real-time threads
1228          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1229          * - or MAX_RT_PRIO for non-RT threads.
1230          * Thus, all RT-threads are woken first in priority order, and
1231          * the others are woken last, in FIFO order.
1232          */
1233         prio = min(current->normal_prio, MAX_RT_PRIO);
1234
1235         plist_node_init(&q->list, prio);
1236 #ifdef CONFIG_DEBUG_PI_LIST
1237         q->list.plist.lock = &hb->lock;
1238 #endif
1239         plist_add(&q->list, &hb->chain);
1240         q->task = current;
1241         spin_unlock(&hb->lock);
1242 }
1243
1244 static inline void
1245 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1246 {
1247         spin_unlock(&hb->lock);
1248         drop_futex_key_refs(&q->key);
1249 }
1250
1251 /*
1252  * queue_me and unqueue_me must be called as a pair, each
1253  * exactly once.  They are called with the hashed spinlock held.
1254  */
1255
1256 /* The key must be already stored in q->key. */
1257 static void queue_me(struct futex_q *q, int fd, struct file *filp)
1258 {
1259         struct futex_hash_bucket *hb;
1260
1261         hb = queue_lock(q, fd, filp);
1262         __queue_me(q, hb);
1263 }
1264
1265 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1266 static int unqueue_me(struct futex_q *q)
1267 {
1268         spinlock_t *lock_ptr;
1269         int ret = 0;
1270
1271         /* In the common case we don't take the spinlock, which is nice. */
1272  retry:
1273         lock_ptr = q->lock_ptr;
1274         barrier();
1275         if (lock_ptr != 0) {
1276                 spin_lock(lock_ptr);
1277                 /*
1278                  * q->lock_ptr can change between reading it and
1279                  * spin_lock(), causing us to take the wrong lock.  This
1280                  * corrects the race condition.
1281                  *
1282                  * Reasoning goes like this: if we have the wrong lock,
1283                  * q->lock_ptr must have changed (maybe several times)
1284                  * between reading it and the spin_lock().  It can
1285                  * change again after the spin_lock() but only if it was
1286                  * already changed before the spin_lock().  It cannot,
1287                  * however, change back to the original value.  Therefore
1288                  * we can detect whether we acquired the correct lock.
1289                  */
1290                 if (unlikely(lock_ptr != q->lock_ptr)) {
1291                         spin_unlock(lock_ptr);
1292                         goto retry;
1293                 }
1294                 WARN_ON(plist_node_empty(&q->list));
1295                 plist_del(&q->list, &q->list.plist);
1296
1297                 BUG_ON(q->pi_state);
1298
1299                 spin_unlock(lock_ptr);
1300                 ret = 1;
1301         }
1302
1303         drop_futex_key_refs(&q->key);
1304         return ret;
1305 }
1306
1307 /*
1308  * PI futexes can not be requeued and must remove themself from the
1309  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1310  * and dropped here.
1311  */
1312 static void unqueue_me_pi(struct futex_q *q)
1313 {
1314         WARN_ON(plist_node_empty(&q->list));
1315         plist_del(&q->list, &q->list.plist);
1316
1317         BUG_ON(!q->pi_state);
1318         free_pi_state(q->pi_state);
1319         q->pi_state = NULL;
1320
1321         spin_unlock(q->lock_ptr);
1322
1323         drop_futex_key_refs(&q->key);
1324 }
1325
1326 /*
1327  * Fixup the pi_state owner with current.
1328  *
1329  * The cur->mm semaphore must be  held, it is released at return of this
1330  * function.
1331  */
1332 static int fixup_pi_state_owner(u32 __user *uaddr, struct rw_semaphore *fshared,
1333                                 struct futex_q *q,
1334                                 struct futex_hash_bucket *hb,
1335                                 struct task_struct *curr)
1336 {
1337         u32 newtid = curr->pid | FUTEX_WAITERS;
1338         struct futex_pi_state *pi_state = q->pi_state;
1339         u32 uval, curval, newval;
1340         int ret;
1341
1342         /* Owner died? */
1343         if (pi_state->owner != NULL) {
1344                 spin_lock_irq(&pi_state->owner->pi_lock);
1345                 WARN_ON(list_empty(&pi_state->list));
1346                 list_del_init(&pi_state->list);
1347                 spin_unlock_irq(&pi_state->owner->pi_lock);
1348         } else
1349                 newtid |= FUTEX_OWNER_DIED;
1350
1351         pi_state->owner = curr;
1352
1353         spin_lock_irq(&curr->pi_lock);
1354         WARN_ON(!list_empty(&pi_state->list));
1355         list_add(&pi_state->list, &curr->pi_state_list);
1356         spin_unlock_irq(&curr->pi_lock);
1357
1358         /* Unqueue and drop the lock */
1359         unqueue_me_pi(q);
1360         if (fshared)
1361                 up_read(fshared);
1362         /*
1363          * We own it, so we have to replace the pending owner
1364          * TID. This must be atomic as we have preserve the
1365          * owner died bit here.
1366          */
1367         ret = get_user(uval, uaddr);
1368         while (!ret) {
1369                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1370                 newval |= (uval & FUTEX_WAITER_REQUEUED);
1371                 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1372                                                        uval, newval);
1373                 if (curval == -EFAULT)
1374                         ret = -EFAULT;
1375                 if (curval == uval)
1376                         break;
1377                 uval = curval;
1378         }
1379         return ret;
1380 }
1381
1382 /*
1383  * In case we must use restart_block to restart a futex_wait,
1384  * we encode in the 'arg3' shared capability
1385  */
1386 #define ARG3_SHARED  1
1387
1388 static long futex_wait_restart(struct restart_block *restart);
1389 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1390                       u32 val, ktime_t *abs_time)
1391 {
1392         struct task_struct *curr = current;
1393         DECLARE_WAITQUEUE(wait, curr);
1394         struct futex_hash_bucket *hb;
1395         struct futex_q q;
1396         u32 uval;
1397         int ret;
1398         struct hrtimer_sleeper t, *to = NULL;
1399         int rem = 0;
1400
1401         q.pi_state = NULL;
1402  retry:
1403         if (fshared)
1404                 down_read(fshared);
1405
1406         ret = get_futex_key(uaddr, fshared, &q.key);
1407         if (unlikely(ret != 0))
1408                 goto out_release_sem;
1409
1410         hb = queue_lock(&q, -1, NULL);
1411
1412         /*
1413          * Access the page AFTER the futex is queued.
1414          * Order is important:
1415          *
1416          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1417          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1418          *
1419          * The basic logical guarantee of a futex is that it blocks ONLY
1420          * if cond(var) is known to be true at the time of blocking, for
1421          * any cond.  If we queued after testing *uaddr, that would open
1422          * a race condition where we could block indefinitely with
1423          * cond(var) false, which would violate the guarantee.
1424          *
1425          * A consequence is that futex_wait() can return zero and absorb
1426          * a wakeup when *uaddr != val on entry to the syscall.  This is
1427          * rare, but normal.
1428          *
1429          * for shared futexes, we hold the mmap semaphore, so the mapping
1430          * cannot have changed since we looked it up in get_futex_key.
1431          */
1432         ret = get_futex_value_locked(&uval, uaddr);
1433
1434         if (unlikely(ret)) {
1435                 queue_unlock(&q, hb);
1436
1437                 /*
1438                  * If we would have faulted, release mmap_sem, fault it in and
1439                  * start all over again.
1440                  */
1441                 if (fshared)
1442                         up_read(fshared);
1443
1444                 ret = get_user(uval, uaddr);
1445
1446                 if (!ret)
1447                         goto retry;
1448                 return ret;
1449         }
1450         ret = -EWOULDBLOCK;
1451         if (uval != val)
1452                 goto out_unlock_release_sem;
1453
1454         /*
1455          * This rt_mutex_waiter structure is prepared here and will
1456          * be used only if this task is requeued from a normal futex to
1457          * a PI-futex with futex_requeue_pi.
1458          */
1459         debug_rt_mutex_init_waiter(&q.waiter);
1460         q.waiter.task = NULL;
1461
1462         /* Only actually queue if *uaddr contained val.  */
1463         __queue_me(&q, hb);
1464
1465         /*
1466          * Now the futex is queued and we have checked the data, we
1467          * don't want to hold mmap_sem while we sleep.
1468          */
1469         if (fshared)
1470                 up_read(fshared);
1471
1472         /*
1473          * There might have been scheduling since the queue_me(), as we
1474          * cannot hold a spinlock across the get_user() in case it
1475          * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1476          * queueing ourselves into the futex hash.  This code thus has to
1477          * rely on the futex_wake() code removing us from hash when it
1478          * wakes us up.
1479          */
1480
1481         /* add_wait_queue is the barrier after __set_current_state. */
1482         __set_current_state(TASK_INTERRUPTIBLE);
1483         add_wait_queue(&q.waiters, &wait);
1484         /*
1485          * !plist_node_empty() is safe here without any lock.
1486          * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1487          */
1488         if (likely(!plist_node_empty(&q.list))) {
1489                 if (!abs_time)
1490                         schedule();
1491                 else {
1492                         to = &t;
1493                         hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1494                         hrtimer_init_sleeper(&t, current);
1495                         t.timer.expires = *abs_time;
1496
1497                         hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1498
1499                         /*
1500                          * the timer could have already expired, in which
1501                          * case current would be flagged for rescheduling.
1502                          * Don't bother calling schedule.
1503                          */
1504                         if (likely(t.task))
1505                                 schedule();
1506
1507                         hrtimer_cancel(&t.timer);
1508
1509                         /* Flag if a timeout occured */
1510                         rem = (t.task == NULL);
1511                 }
1512         }
1513         __set_current_state(TASK_RUNNING);
1514
1515         /*
1516          * NOTE: we don't remove ourselves from the waitqueue because
1517          * we are the only user of it.
1518          */
1519
1520         if (q.pi_state) {
1521                 /*
1522                  * We were woken but have been requeued on a PI-futex.
1523                  * We have to complete the lock acquisition by taking
1524                  * the rtmutex.
1525                  */
1526
1527                 struct rt_mutex *lock = &q.pi_state->pi_mutex;
1528
1529                 spin_lock(&lock->wait_lock);
1530                 if (unlikely(q.waiter.task)) {
1531                         remove_waiter(lock, &q.waiter);
1532                 }
1533                 spin_unlock(&lock->wait_lock);
1534
1535                 if (rem)
1536                         ret = -ETIMEDOUT;
1537                 else
1538                         ret = rt_mutex_timed_lock(lock, to, 1);
1539
1540                 if (fshared)
1541                         down_read(fshared);
1542                 spin_lock(q.lock_ptr);
1543
1544                 /*
1545                  * Got the lock. We might not be the anticipated owner if we
1546                  * did a lock-steal - fix up the PI-state in that case.
1547                  */
1548                 if (!ret && q.pi_state->owner != curr) {
1549                         /*
1550                          * We MUST play with the futex we were requeued on,
1551                          * NOT the current futex.
1552                          * We can retrieve it from the key of the pi_state
1553                          */
1554                         uaddr = q.pi_state->key.uaddr;
1555
1556                         /* mmap_sem and hash_bucket lock are unlocked at
1557                            return of this function */
1558                         ret = fixup_pi_state_owner(uaddr, fshared,
1559                                                    &q, hb, curr);
1560                 } else {
1561                         /*
1562                          * Catch the rare case, where the lock was released
1563                          * when we were on the way back before we locked
1564                          * the hash bucket.
1565                          */
1566                         if (ret && q.pi_state->owner == curr) {
1567                                 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1568                                         ret = 0;
1569                         }
1570                         /* Unqueue and drop the lock */
1571                         unqueue_me_pi(&q);
1572                         if (fshared)
1573                                 up_read(fshared);
1574                 }
1575
1576                 debug_rt_mutex_free_waiter(&q.waiter);
1577
1578                 return ret;
1579         }
1580
1581         debug_rt_mutex_free_waiter(&q.waiter);
1582
1583         /* If we were woken (and unqueued), we succeeded, whatever. */
1584         if (!unqueue_me(&q))
1585                 return 0;
1586         if (rem)
1587                 return -ETIMEDOUT;
1588
1589         /*
1590          * We expect signal_pending(current), but another thread may
1591          * have handled it for us already.
1592          */
1593         if (!abs_time)
1594                 return -ERESTARTSYS;
1595         else {
1596                 struct restart_block *restart;
1597                 restart = &current_thread_info()->restart_block;
1598                 restart->fn = futex_wait_restart;
1599                 restart->arg0 = (unsigned long)uaddr;
1600                 restart->arg1 = (unsigned long)val;
1601                 restart->arg2 = (unsigned long)abs_time;
1602                 restart->arg3 = 0;
1603                 if (fshared)
1604                         restart->arg3 |= ARG3_SHARED;
1605                 return -ERESTART_RESTARTBLOCK;
1606         }
1607
1608  out_unlock_release_sem:
1609         queue_unlock(&q, hb);
1610
1611  out_release_sem:
1612         if (fshared)
1613                 up_read(fshared);
1614         return ret;
1615 }
1616
1617
1618 static long futex_wait_restart(struct restart_block *restart)
1619 {
1620         u32 __user *uaddr = (u32 __user *)restart->arg0;
1621         u32 val = (u32)restart->arg1;
1622         ktime_t *abs_time = (ktime_t *)restart->arg2;
1623         struct rw_semaphore *fshared = NULL;
1624
1625         restart->fn = do_no_restart_syscall;
1626         if (restart->arg3 & ARG3_SHARED)
1627                 fshared = &current->mm->mmap_sem;
1628         return (long)futex_wait(uaddr, fshared, val, abs_time);
1629 }
1630
1631
1632 static void set_pi_futex_owner(struct futex_hash_bucket *hb,
1633                                union futex_key *key, struct task_struct *p)
1634 {
1635         struct plist_head *head;
1636         struct futex_q *this, *next;
1637         struct futex_pi_state *pi_state = NULL;
1638         struct rt_mutex *lock;
1639
1640         /* Search a waiter that should already exists */
1641
1642         head = &hb->chain;
1643
1644         plist_for_each_entry_safe(this, next, head, list) {
1645                 if (match_futex (&this->key, key)) {
1646                         pi_state = this->pi_state;
1647                         break;
1648                 }
1649         }
1650
1651         BUG_ON(!pi_state);
1652
1653         /* set p as pi_state's owner */
1654         lock = &pi_state->pi_mutex;
1655
1656         spin_lock(&lock->wait_lock);
1657         spin_lock_irq(&p->pi_lock);
1658
1659         list_add(&pi_state->list, &p->pi_state_list);
1660         pi_state->owner = p;
1661
1662
1663         /* set p as pi_mutex's owner */
1664         debug_rt_mutex_proxy_lock(lock, p);
1665         WARN_ON(rt_mutex_owner(lock));
1666         rt_mutex_set_owner(lock, p, 0);
1667         rt_mutex_deadlock_account_lock(lock, p);
1668
1669         plist_add(&rt_mutex_top_waiter(lock)->pi_list_entry,
1670                   &p->pi_waiters);
1671         __rt_mutex_adjust_prio(p);
1672
1673         spin_unlock_irq(&p->pi_lock);
1674         spin_unlock(&lock->wait_lock);
1675 }
1676
1677 /*
1678  * Userspace tried a 0 -> TID atomic transition of the futex value
1679  * and failed. The kernel side here does the whole locking operation:
1680  * if there are waiters then it will block, it does PI, etc. (Due to
1681  * races the kernel might see a 0 value of the futex too.)
1682  */
1683 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1684                          int detect, ktime_t *time, int trylock)
1685 {
1686         struct hrtimer_sleeper timeout, *to = NULL;
1687         struct task_struct *curr = current;
1688         struct futex_hash_bucket *hb;
1689         u32 uval, newval, curval;
1690         struct futex_q q;
1691         int ret, lock_held, attempt = 0;
1692
1693         if (refill_pi_state_cache())
1694                 return -ENOMEM;
1695
1696         if (time) {
1697                 to = &timeout;
1698                 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1699                 hrtimer_init_sleeper(to, current);
1700                 to->timer.expires = *time;
1701         }
1702
1703         q.pi_state = NULL;
1704  retry:
1705         if (fshared)
1706                 down_read(fshared);
1707
1708         ret = get_futex_key(uaddr, fshared, &q.key);
1709         if (unlikely(ret != 0))
1710                 goto out_release_sem;
1711
1712         hb = queue_lock(&q, -1, NULL);
1713
1714  retry_locked:
1715         lock_held = 0;
1716
1717         /*
1718          * To avoid races, we attempt to take the lock here again
1719          * (by doing a 0 -> TID atomic cmpxchg), while holding all
1720          * the locks. It will most likely not succeed.
1721          */
1722         newval = current->pid;
1723
1724         pagefault_disable();
1725         curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1726         pagefault_enable();
1727
1728         if (unlikely(curval == -EFAULT))
1729                 goto uaddr_faulted;
1730
1731         /* We own the lock already */
1732         if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1733                 if (!detect && 0)
1734                         force_sig(SIGKILL, current);
1735                 /*
1736                  * Normally, this check is done in user space.
1737                  * In case of requeue, the owner may attempt to lock this futex,
1738                  * even if the ownership has already been given by the previous
1739                  * waker.
1740                  * In the usual case, this is a case of deadlock, but not in case
1741                  * of REQUEUE_PI.
1742                  */
1743                 if (!(curval & FUTEX_WAITER_REQUEUED))
1744                         ret = -EDEADLK;
1745                 goto out_unlock_release_sem;
1746         }
1747
1748         /*
1749          * Surprise - we got the lock. Just return
1750          * to userspace:
1751          */
1752         if (unlikely(!curval))
1753                 goto out_unlock_release_sem;
1754
1755         uval = curval;
1756         /*
1757          * In case of a requeue, check if there already is an owner
1758          * If not, just take the futex.
1759          */
1760         if ((curval & FUTEX_WAITER_REQUEUED) && !(curval & FUTEX_TID_MASK)) {
1761                 /* set current as futex owner */
1762                 newval = curval | current->pid;
1763                 lock_held = 1;
1764         } else
1765                 /* Set the WAITERS flag, so the owner will know it has someone
1766                    to wake at next unlock */
1767                 newval = curval | FUTEX_WAITERS;
1768
1769         pagefault_disable();
1770         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1771         pagefault_enable();
1772
1773         if (unlikely(curval == -EFAULT))
1774                 goto uaddr_faulted;
1775         if (unlikely(curval != uval))
1776                 goto retry_locked;
1777
1778         if (lock_held) {
1779                 set_pi_futex_owner(hb, &q.key, curr);
1780                 goto out_unlock_release_sem;
1781         }
1782
1783         /*
1784          * We dont have the lock. Look up the PI state (or create it if
1785          * we are the first waiter):
1786          */
1787         ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1788
1789         if (unlikely(ret)) {
1790                 /*
1791                  * There were no waiters and the owner task lookup
1792                  * failed. When the OWNER_DIED bit is set, then we
1793                  * know that this is a robust futex and we actually
1794                  * take the lock. This is safe as we are protected by
1795                  * the hash bucket lock. We also set the waiters bit
1796                  * unconditionally here, to simplify glibc handling of
1797                  * multiple tasks racing to acquire the lock and
1798                  * cleanup the problems which were left by the dead
1799                  * owner.
1800                  */
1801                 if (curval & FUTEX_OWNER_DIED) {
1802                         uval = newval;
1803                         newval = current->pid |
1804                                 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1805
1806                         pagefault_disable();
1807                         curval = futex_atomic_cmpxchg_inatomic(uaddr,
1808                                                                uval, newval);
1809                         pagefault_enable();
1810
1811                         if (unlikely(curval == -EFAULT))
1812                                 goto uaddr_faulted;
1813                         if (unlikely(curval != uval))
1814                                 goto retry_locked;
1815                         ret = 0;
1816                 }
1817                 goto out_unlock_release_sem;
1818         }
1819
1820         /*
1821          * Only actually queue now that the atomic ops are done:
1822          */
1823         __queue_me(&q, hb);
1824
1825         /*
1826          * Now the futex is queued and we have checked the data, we
1827          * don't want to hold mmap_sem while we sleep.
1828          */
1829         if (fshared)
1830                 up_read(fshared);
1831
1832         WARN_ON(!q.pi_state);
1833         /*
1834          * Block on the PI mutex:
1835          */
1836         if (!trylock)
1837                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1838         else {
1839                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1840                 /* Fixup the trylock return value: */
1841                 ret = ret ? 0 : -EWOULDBLOCK;
1842         }
1843
1844         if (fshared)
1845                 down_read(fshared);
1846         spin_lock(q.lock_ptr);
1847
1848         /*
1849          * Got the lock. We might not be the anticipated owner if we
1850          * did a lock-steal - fix up the PI-state in that case.
1851          */
1852         if (!ret && q.pi_state->owner != curr)
1853                 /* mmap_sem is unlocked at return of this function */
1854                 ret = fixup_pi_state_owner(uaddr, fshared, &q, hb, curr);
1855         else {
1856                 /*
1857                  * Catch the rare case, where the lock was released
1858                  * when we were on the way back before we locked
1859                  * the hash bucket.
1860                  */
1861                 if (ret && q.pi_state->owner == curr) {
1862                         if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1863                                 ret = 0;
1864                 }
1865                 /* Unqueue and drop the lock */
1866                 unqueue_me_pi(&q);
1867                 if (fshared)
1868                         up_read(fshared);
1869         }
1870
1871         if (!detect && ret == -EDEADLK && 0)
1872                 force_sig(SIGKILL, current);
1873
1874         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1875
1876  out_unlock_release_sem:
1877         queue_unlock(&q, hb);
1878
1879  out_release_sem:
1880         if (fshared)
1881                 up_read(fshared);
1882         return ret;
1883
1884  uaddr_faulted:
1885         /*
1886          * We have to r/w  *(int __user *)uaddr, but we can't modify it
1887          * non-atomically.  Therefore, if get_user below is not
1888          * enough, we need to handle the fault ourselves, while
1889          * still holding the mmap_sem.
1890          */
1891         if (attempt++) {
1892                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1893                                          attempt);
1894                 if (ret)
1895                         goto out_unlock_release_sem;
1896                 goto retry_locked;
1897         }
1898
1899         queue_unlock(&q, hb);
1900         if (fshared)
1901                 up_read(fshared);
1902
1903         ret = get_user(uval, uaddr);
1904         if (!ret && (uval != -EFAULT))
1905                 goto retry;
1906
1907         return ret;
1908 }
1909
1910 /*
1911  * Userspace attempted a TID -> 0 atomic transition, and failed.
1912  * This is the in-kernel slowpath: we look up the PI state (if any),
1913  * and do the rt-mutex unlock.
1914  */
1915 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1916 {
1917         struct futex_hash_bucket *hb;
1918         struct futex_q *this, *next;
1919         u32 uval;
1920         struct plist_head *head;
1921         union futex_key key;
1922         int ret, attempt = 0;
1923
1924 retry:
1925         if (get_user(uval, uaddr))
1926                 return -EFAULT;
1927         /*
1928          * We release only a lock we actually own:
1929          */
1930         if ((uval & FUTEX_TID_MASK) != current->pid)
1931                 return -EPERM;
1932         /*
1933          * First take all the futex related locks:
1934          */
1935         if (fshared)
1936                 down_read(fshared);
1937
1938         ret = get_futex_key(uaddr, fshared, &key);
1939         if (unlikely(ret != 0))
1940                 goto out;
1941
1942         hb = hash_futex(&key);
1943         spin_lock(&hb->lock);
1944
1945 retry_locked:
1946         /*
1947          * To avoid races, try to do the TID -> 0 atomic transition
1948          * again. If it succeeds then we can return without waking
1949          * anyone else up:
1950          */
1951         if (!(uval & FUTEX_OWNER_DIED)) {
1952                 pagefault_disable();
1953                 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1954                 pagefault_enable();
1955         }
1956
1957         if (unlikely(uval == -EFAULT))
1958                 goto pi_faulted;
1959         /*
1960          * Rare case: we managed to release the lock atomically,
1961          * no need to wake anyone else up:
1962          */
1963         if (unlikely(uval == current->pid))
1964                 goto out_unlock;
1965
1966         /*
1967          * Ok, other tasks may need to be woken up - check waiters
1968          * and do the wakeup if necessary:
1969          */
1970         head = &hb->chain;
1971
1972         plist_for_each_entry_safe(this, next, head, list) {
1973                 if (!match_futex (&this->key, &key))
1974                         continue;
1975                 ret = wake_futex_pi(uaddr, uval, this);
1976                 /*
1977                  * The atomic access to the futex value
1978                  * generated a pagefault, so retry the
1979                  * user-access and the wakeup:
1980                  */
1981                 if (ret == -EFAULT)
1982                         goto pi_faulted;
1983                 goto out_unlock;
1984         }
1985         /*
1986          * No waiters - kernel unlocks the futex:
1987          */
1988         if (!(uval & FUTEX_OWNER_DIED)) {
1989                 ret = unlock_futex_pi(uaddr, uval);
1990                 if (ret == -EFAULT)
1991                         goto pi_faulted;
1992         }
1993
1994 out_unlock:
1995         spin_unlock(&hb->lock);
1996 out:
1997         if (fshared)
1998                 up_read(fshared);
1999
2000         return ret;
2001
2002 pi_faulted:
2003         /*
2004          * We have to r/w  *(int __user *)uaddr, but we can't modify it
2005          * non-atomically.  Therefore, if get_user below is not
2006          * enough, we need to handle the fault ourselves, while
2007          * still holding the mmap_sem.
2008          */
2009         if (attempt++) {
2010                 ret = futex_handle_fault((unsigned long)uaddr, fshared,
2011                                          attempt);
2012                 if (ret)
2013                         goto out_unlock;
2014                 goto retry_locked;
2015         }
2016
2017         spin_unlock(&hb->lock);
2018         if (fshared)
2019                 up_read(fshared);
2020
2021         ret = get_user(uval, uaddr);
2022         if (!ret && (uval != -EFAULT))
2023                 goto retry;
2024
2025         return ret;
2026 }
2027
2028 static int futex_close(struct inode *inode, struct file *filp)
2029 {
2030         struct futex_q *q = filp->private_data;
2031
2032         unqueue_me(q);
2033         kfree(q);
2034
2035         return 0;
2036 }
2037
2038 /* This is one-shot: once it's gone off you need a new fd */
2039 static unsigned int futex_poll(struct file *filp,
2040                                struct poll_table_struct *wait)
2041 {
2042         struct futex_q *q = filp->private_data;
2043         int ret = 0;
2044
2045         poll_wait(filp, &q->waiters, wait);
2046
2047         /*
2048          * plist_node_empty() is safe here without any lock.
2049          * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
2050          */
2051         if (plist_node_empty(&q->list))
2052                 ret = POLLIN | POLLRDNORM;
2053
2054         return ret;
2055 }
2056
2057 static const struct file_operations futex_fops = {
2058         .release        = futex_close,
2059         .poll           = futex_poll,
2060 };
2061
2062 /*
2063  * Signal allows caller to avoid the race which would occur if they
2064  * set the sigio stuff up afterwards.
2065  */
2066 static int futex_fd(u32 __user *uaddr, int signal)
2067 {
2068         struct futex_q *q;
2069         struct file *filp;
2070         int ret, err;
2071         struct rw_semaphore *fshared;
2072         static unsigned long printk_interval;
2073
2074         if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
2075                 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
2076                         "will be removed from the kernel in June 2007\n",
2077                         current->comm);
2078         }
2079
2080         ret = -EINVAL;
2081         if (!valid_signal(signal))
2082                 goto out;
2083
2084         ret = get_unused_fd();
2085         if (ret < 0)
2086                 goto out;
2087         filp = get_empty_filp();
2088         if (!filp) {
2089                 put_unused_fd(ret);
2090                 ret = -ENFILE;
2091                 goto out;
2092         }
2093         filp->f_op = &futex_fops;
2094         filp->f_path.mnt = mntget(futex_mnt);
2095         filp->f_path.dentry = dget(futex_mnt->mnt_root);
2096         filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
2097
2098         if (signal) {
2099                 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
2100                 if (err < 0) {
2101                         goto error;
2102                 }
2103                 filp->f_owner.signum = signal;
2104         }
2105
2106         q = kmalloc(sizeof(*q), GFP_KERNEL);
2107         if (!q) {
2108                 err = -ENOMEM;
2109                 goto error;
2110         }
2111         q->pi_state = NULL;
2112
2113         fshared = &current->mm->mmap_sem;
2114         down_read(fshared);
2115         err = get_futex_key(uaddr, fshared, &q->key);
2116
2117         if (unlikely(err != 0)) {
2118                 up_read(fshared);
2119                 kfree(q);
2120                 goto error;
2121         }
2122
2123         /*
2124          * queue_me() must be called before releasing mmap_sem, because
2125          * key->shared.inode needs to be referenced while holding it.
2126          */
2127         filp->private_data = q;
2128
2129         queue_me(q, ret, filp);
2130         up_read(fshared);
2131
2132         /* Now we map fd to filp, so userspace can access it */
2133         fd_install(ret, filp);
2134 out:
2135         return ret;
2136 error:
2137         put_unused_fd(ret);
2138         put_filp(filp);
2139         ret = err;
2140         goto out;
2141 }
2142
2143 /*
2144  * Support for robust futexes: the kernel cleans up held futexes at
2145  * thread exit time.
2146  *
2147  * Implementation: user-space maintains a per-thread list of locks it
2148  * is holding. Upon do_exit(), the kernel carefully walks this list,
2149  * and marks all locks that are owned by this thread with the
2150  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2151  * always manipulated with the lock held, so the list is private and
2152  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2153  * field, to allow the kernel to clean up if the thread dies after
2154  * acquiring the lock, but just before it could have added itself to
2155  * the list. There can only be one such pending lock.
2156  */
2157
2158 /**
2159  * sys_set_robust_list - set the robust-futex list head of a task
2160  * @head: pointer to the list-head
2161  * @len: length of the list-head, as userspace expects
2162  */
2163 asmlinkage long
2164 sys_set_robust_list(struct robust_list_head __user *head,
2165                     size_t len)
2166 {
2167         /*
2168          * The kernel knows only one size for now:
2169          */
2170         if (unlikely(len != sizeof(*head)))
2171                 return -EINVAL;
2172
2173         current->robust_list = head;
2174
2175         return 0;
2176 }
2177
2178 /**
2179  * sys_get_robust_list - get the robust-futex list head of a task
2180  * @pid: pid of the process [zero for current task]
2181  * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2182  * @len_ptr: pointer to a length field, the kernel fills in the header size
2183  */
2184 asmlinkage long
2185 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
2186                     size_t __user *len_ptr)
2187 {
2188         struct robust_list_head __user *head;
2189         unsigned long ret;
2190
2191         if (!pid)
2192                 head = current->robust_list;
2193         else {
2194                 struct task_struct *p;
2195
2196                 ret = -ESRCH;
2197                 rcu_read_lock();
2198                 p = find_task_by_pid(pid);
2199                 if (!p)
2200                         goto err_unlock;
2201                 ret = -EPERM;
2202                 if ((current->euid != p->euid) && (current->euid != p->uid) &&
2203                                 !capable(CAP_SYS_PTRACE))
2204                         goto err_unlock;
2205                 head = p->robust_list;
2206                 rcu_read_unlock();
2207         }
2208
2209         if (put_user(sizeof(*head), len_ptr))
2210                 return -EFAULT;
2211         return put_user(head, head_ptr);
2212
2213 err_unlock:
2214         rcu_read_unlock();
2215
2216         return ret;
2217 }
2218
2219 /*
2220  * Process a futex-list entry, check whether it's owned by the
2221  * dying task, and do notification if so:
2222  */
2223 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2224 {
2225         u32 uval, nval, mval;
2226
2227 retry:
2228         if (get_user(uval, uaddr))
2229                 return -1;
2230
2231         if ((uval & FUTEX_TID_MASK) == curr->pid) {
2232                 /*
2233                  * Ok, this dying thread is truly holding a futex
2234                  * of interest. Set the OWNER_DIED bit atomically
2235                  * via cmpxchg, and if the value had FUTEX_WAITERS
2236                  * set, wake up a waiter (if any). (We have to do a
2237                  * futex_wake() even if OWNER_DIED is already set -
2238                  * to handle the rare but possible case of recursive
2239                  * thread-death.) The rest of the cleanup is done in
2240                  * userspace.
2241                  */
2242                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2243                 /* Also keep the FUTEX_WAITER_REQUEUED flag if set */
2244                 mval |= (uval & FUTEX_WAITER_REQUEUED);
2245                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2246
2247                 if (nval == -EFAULT)
2248                         return -1;
2249
2250                 if (nval != uval)
2251                         goto retry;
2252
2253                 /*
2254                  * Wake robust non-PI futexes here. The wakeup of
2255                  * PI futexes happens in exit_pi_state():
2256                  */
2257                 if (!pi) {
2258                         if (uval & FUTEX_WAITERS)
2259                                 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
2260                 }
2261         }
2262         return 0;
2263 }
2264
2265 /*
2266  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2267  */
2268 static inline int fetch_robust_entry(struct robust_list __user **entry,
2269                                      struct robust_list __user * __user *head,
2270                                      int *pi)
2271 {
2272         unsigned long uentry;
2273
2274         if (get_user(uentry, (unsigned long __user *)head))
2275                 return -EFAULT;
2276
2277         *entry = (void __user *)(uentry & ~1UL);
2278         *pi = uentry & 1;
2279
2280         return 0;
2281 }
2282
2283 /*
2284  * Walk curr->robust_list (very carefully, it's a userspace list!)
2285  * and mark any locks found there dead, and notify any waiters.
2286  *
2287  * We silently return on any sign of list-walking problem.
2288  */
2289 void exit_robust_list(struct task_struct *curr)
2290 {
2291         struct robust_list_head __user *head = curr->robust_list;
2292         struct robust_list __user *entry, *pending;
2293         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2294         unsigned long futex_offset;
2295
2296         /*
2297          * Fetch the list head (which was registered earlier, via
2298          * sys_set_robust_list()):
2299          */
2300         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2301                 return;
2302         /*
2303          * Fetch the relative futex offset:
2304          */
2305         if (get_user(futex_offset, &head->futex_offset))
2306                 return;
2307         /*
2308          * Fetch any possibly pending lock-add first, and handle it
2309          * if it exists:
2310          */
2311         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2312                 return;
2313
2314         if (pending)
2315                 handle_futex_death((void __user *)pending + futex_offset,
2316                                    curr, pip);
2317
2318         while (entry != &head->list) {
2319                 /*
2320                  * A pending lock might already be on the list, so
2321                  * don't process it twice:
2322                  */
2323                 if (entry != pending)
2324                         if (handle_futex_death((void __user *)entry + futex_offset,
2325                                                 curr, pi))
2326                                 return;
2327                 /*
2328                  * Fetch the next entry in the list:
2329                  */
2330                 if (fetch_robust_entry(&entry, &entry->next, &pi))
2331                         return;
2332                 /*
2333                  * Avoid excessively long or circular lists:
2334                  */
2335                 if (!--limit)
2336                         break;
2337
2338                 cond_resched();
2339         }
2340 }
2341
2342 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2343                 u32 __user *uaddr2, u32 val2, u32 val3)
2344 {
2345         int ret;
2346         int cmd = op & FUTEX_CMD_MASK;
2347         struct rw_semaphore *fshared = NULL;
2348
2349         if (!(op & FUTEX_PRIVATE_FLAG))
2350                 fshared = &current->mm->mmap_sem;
2351
2352         switch (cmd) {
2353         case FUTEX_WAIT:
2354                 ret = futex_wait(uaddr, fshared, val, timeout);
2355                 break;
2356         case FUTEX_WAKE:
2357                 ret = futex_wake(uaddr, fshared, val);
2358                 break;
2359         case FUTEX_FD:
2360                 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2361                 ret = futex_fd(uaddr, val);
2362                 break;
2363         case FUTEX_REQUEUE:
2364                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2365                 break;
2366         case FUTEX_CMP_REQUEUE:
2367                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2368                 break;
2369         case FUTEX_WAKE_OP:
2370                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2371                 break;
2372         case FUTEX_LOCK_PI:
2373                 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2374                 break;
2375         case FUTEX_UNLOCK_PI:
2376                 ret = futex_unlock_pi(uaddr, fshared);
2377                 break;
2378         case FUTEX_TRYLOCK_PI:
2379                 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2380                 break;
2381         case FUTEX_CMP_REQUEUE_PI:
2382                 ret = futex_requeue_pi(uaddr, fshared, uaddr2, val, val2, &val3);
2383                 break;
2384         default:
2385                 ret = -ENOSYS;
2386         }
2387         return ret;
2388 }
2389
2390
2391 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2392                           struct timespec __user *utime, u32 __user *uaddr2,
2393                           u32 val3)
2394 {
2395         struct timespec ts;
2396         ktime_t t, *tp = NULL;
2397         u32 val2 = 0;
2398         int cmd = op & FUTEX_CMD_MASK;
2399
2400         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
2401                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2402                         return -EFAULT;
2403                 if (!timespec_valid(&ts))
2404                         return -EINVAL;
2405
2406                 t = timespec_to_ktime(ts);
2407                 if (cmd == FUTEX_WAIT)
2408                         t = ktime_add(ktime_get(), t);
2409                 tp = &t;
2410         }
2411         /*
2412          * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2413          */
2414         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE
2415             || cmd == FUTEX_CMP_REQUEUE_PI)
2416                 val2 = (u32) (unsigned long) utime;
2417
2418         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2419 }
2420
2421 static int futexfs_get_sb(struct file_system_type *fs_type,
2422                           int flags, const char *dev_name, void *data,
2423                           struct vfsmount *mnt)
2424 {
2425         return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
2426 }
2427
2428 static struct file_system_type futex_fs_type = {
2429         .name           = "futexfs",
2430         .get_sb         = futexfs_get_sb,
2431         .kill_sb        = kill_anon_super,
2432 };
2433
2434 static int __init init(void)
2435 {
2436         int i = register_filesystem(&futex_fs_type);
2437
2438         if (i)
2439                 return i;
2440
2441         futex_mnt = kern_mount(&futex_fs_type);
2442         if (IS_ERR(futex_mnt)) {
2443                 unregister_filesystem(&futex_fs_type);
2444                 return PTR_ERR(futex_mnt);
2445         }
2446
2447         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2448                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2449                 spin_lock_init(&futex_queues[i].lock);
2450         }
2451         return 0;
2452 }
2453 __initcall(init);