2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2004-2008 Cavium Networks
9 #include <linux/interrupt.h>
10 #include <linux/hardirq.h>
12 #include <asm/octeon/octeon.h>
14 DEFINE_RWLOCK(octeon_irq_ciu0_rwlock);
15 DEFINE_RWLOCK(octeon_irq_ciu1_rwlock);
16 DEFINE_SPINLOCK(octeon_irq_msi_lock);
18 static void octeon_irq_core_ack(unsigned int irq)
20 unsigned int bit = irq - OCTEON_IRQ_SW0;
22 * We don't need to disable IRQs to make these atomic since
23 * they are already disabled earlier in the low level
26 clear_c0_status(0x100 << bit);
27 /* The two user interrupts must be cleared manually. */
29 clear_c0_cause(0x100 << bit);
32 static void octeon_irq_core_eoi(unsigned int irq)
34 struct irq_desc *desc = irq_desc + irq;
35 unsigned int bit = irq - OCTEON_IRQ_SW0;
37 * If an IRQ is being processed while we are disabling it the
38 * handler will attempt to unmask the interrupt after it has
41 if (desc->status & IRQ_DISABLED)
44 /* There is a race here. We should fix it. */
47 * We don't need to disable IRQs to make these atomic since
48 * they are already disabled earlier in the low level
51 set_c0_status(0x100 << bit);
54 static void octeon_irq_core_enable(unsigned int irq)
57 unsigned int bit = irq - OCTEON_IRQ_SW0;
60 * We need to disable interrupts to make sure our updates are
63 local_irq_save(flags);
64 set_c0_status(0x100 << bit);
65 local_irq_restore(flags);
68 static void octeon_irq_core_disable_local(unsigned int irq)
71 unsigned int bit = irq - OCTEON_IRQ_SW0;
73 * We need to disable interrupts to make sure our updates are
76 local_irq_save(flags);
77 clear_c0_status(0x100 << bit);
78 local_irq_restore(flags);
81 static void octeon_irq_core_disable(unsigned int irq)
84 on_each_cpu((void (*)(void *)) octeon_irq_core_disable_local,
85 (void *) (long) irq, 1);
87 octeon_irq_core_disable_local(irq);
91 static struct irq_chip octeon_irq_chip_core = {
93 .enable = octeon_irq_core_enable,
94 .disable = octeon_irq_core_disable,
95 .ack = octeon_irq_core_ack,
96 .eoi = octeon_irq_core_eoi,
100 static void octeon_irq_ciu0_ack(unsigned int irq)
103 * In order to avoid any locking accessing the CIU, we
104 * acknowledge CIU interrupts by disabling all of them. This
105 * way we can use a per core register and avoid any out of
106 * core locking requirements. This has the side affect that
107 * CIU interrupts can't be processed recursively.
109 * We don't need to disable IRQs to make these atomic since
110 * they are already disabled earlier in the low level
113 clear_c0_status(0x100 << 2);
116 static void octeon_irq_ciu0_eoi(unsigned int irq)
119 * Enable all CIU interrupts again. We don't need to disable
120 * IRQs to make these atomic since they are already disabled
121 * earlier in the low level interrupt code.
123 set_c0_status(0x100 << 2);
126 static void octeon_irq_ciu0_enable(unsigned int irq)
128 int coreid = cvmx_get_core_num();
131 int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
134 * A read lock is used here to make sure only one core is ever
135 * updating the CIU enable bits at a time. During an enable
136 * the cores don't interfere with each other. During a disable
137 * the write lock stops any enables that might cause a
140 read_lock_irqsave(&octeon_irq_ciu0_rwlock, flags);
141 en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
143 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
144 cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
145 read_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags);
148 static void octeon_irq_ciu0_disable(unsigned int irq)
150 int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
155 write_lock_irqsave(&octeon_irq_ciu0_rwlock, flags);
156 for_each_online_cpu(cpu) {
157 int coreid = cpu_logical_map(cpu);
158 en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
159 en0 &= ~(1ull << bit);
160 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
163 * We need to do a read after the last update to make sure all
166 cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
167 write_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags);
169 int coreid = cvmx_get_core_num();
170 local_irq_save(flags);
171 en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
172 en0 &= ~(1ull << bit);
173 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
174 cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
175 local_irq_restore(flags);
180 static void octeon_irq_ciu0_set_affinity(unsigned int irq, const struct cpumask *dest)
183 int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
185 write_lock(&octeon_irq_ciu0_rwlock);
186 for_each_online_cpu(cpu) {
187 int coreid = cpu_logical_map(cpu);
189 cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
190 if (cpumask_test_cpu(cpu, dest))
193 en0 &= ~(1ull << bit);
194 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
197 * We need to do a read after the last update to make sure all
200 cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
201 write_unlock(&octeon_irq_ciu0_rwlock);
205 static struct irq_chip octeon_irq_chip_ciu0 = {
207 .enable = octeon_irq_ciu0_enable,
208 .disable = octeon_irq_ciu0_disable,
209 .ack = octeon_irq_ciu0_ack,
210 .eoi = octeon_irq_ciu0_eoi,
212 .set_affinity = octeon_irq_ciu0_set_affinity,
217 static void octeon_irq_ciu1_ack(unsigned int irq)
220 * In order to avoid any locking accessing the CIU, we
221 * acknowledge CIU interrupts by disabling all of them. This
222 * way we can use a per core register and avoid any out of
223 * core locking requirements. This has the side affect that
224 * CIU interrupts can't be processed recursively. We don't
225 * need to disable IRQs to make these atomic since they are
226 * already disabled earlier in the low level interrupt code.
228 clear_c0_status(0x100 << 3);
231 static void octeon_irq_ciu1_eoi(unsigned int irq)
234 * Enable all CIU interrupts again. We don't need to disable
235 * IRQs to make these atomic since they are already disabled
236 * earlier in the low level interrupt code.
238 set_c0_status(0x100 << 3);
241 static void octeon_irq_ciu1_enable(unsigned int irq)
243 int coreid = cvmx_get_core_num();
246 int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
249 * A read lock is used here to make sure only one core is ever
250 * updating the CIU enable bits at a time. During an enable
251 * the cores don't interfere with each other. During a disable
252 * the write lock stops any enables that might cause a
255 read_lock_irqsave(&octeon_irq_ciu1_rwlock, flags);
256 en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
258 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
259 cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
260 read_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags);
263 static void octeon_irq_ciu1_disable(unsigned int irq)
265 int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
270 write_lock_irqsave(&octeon_irq_ciu1_rwlock, flags);
271 for_each_online_cpu(cpu) {
272 int coreid = cpu_logical_map(cpu);
273 en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
274 en1 &= ~(1ull << bit);
275 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
278 * We need to do a read after the last update to make sure all
281 cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
282 write_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags);
284 int coreid = cvmx_get_core_num();
285 local_irq_save(flags);
286 en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
287 en1 &= ~(1ull << bit);
288 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
289 cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
290 local_irq_restore(flags);
295 static void octeon_irq_ciu1_set_affinity(unsigned int irq, const struct cpumask *dest)
298 int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
300 write_lock(&octeon_irq_ciu1_rwlock);
301 for_each_online_cpu(cpu) {
302 int coreid = cpu_logical_map(cpu);
304 cvmx_read_csr(CVMX_CIU_INTX_EN1
306 if (cpumask_test_cpu(cpu, dest))
309 en1 &= ~(1ull << bit);
310 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
313 * We need to do a read after the last update to make sure all
316 cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
317 write_unlock(&octeon_irq_ciu1_rwlock);
321 static struct irq_chip octeon_irq_chip_ciu1 = {
323 .enable = octeon_irq_ciu1_enable,
324 .disable = octeon_irq_ciu1_disable,
325 .ack = octeon_irq_ciu1_ack,
326 .eoi = octeon_irq_ciu1_eoi,
328 .set_affinity = octeon_irq_ciu1_set_affinity,
332 #ifdef CONFIG_PCI_MSI
334 static void octeon_irq_msi_ack(unsigned int irq)
336 if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
337 /* These chips have PCI */
338 cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV,
339 1ull << (irq - OCTEON_IRQ_MSI_BIT0));
342 * These chips have PCIe. Thankfully the ACK doesn't
345 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0,
346 1ull << (irq - OCTEON_IRQ_MSI_BIT0));
350 static void octeon_irq_msi_eoi(unsigned int irq)
355 static void octeon_irq_msi_enable(unsigned int irq)
357 if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
359 * Octeon PCI doesn't have the ability to mask/unmask
360 * MSI interrupts individually. Instead of
361 * masking/unmasking them in groups of 16, we simple
362 * assume MSI devices are well behaved. MSI
363 * interrupts are always enable and the ACK is assumed
367 /* These chips have PCIe. Note that we only support
368 * the first 64 MSI interrupts. Unfortunately all the
369 * MSI enables are in the same register. We use
370 * MSI0's lock to control access to them all.
374 spin_lock_irqsave(&octeon_irq_msi_lock, flags);
375 en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
376 en |= 1ull << (irq - OCTEON_IRQ_MSI_BIT0);
377 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en);
378 cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
379 spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
383 static void octeon_irq_msi_disable(unsigned int irq)
385 if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
386 /* See comment in enable */
389 * These chips have PCIe. Note that we only support
390 * the first 64 MSI interrupts. Unfortunately all the
391 * MSI enables are in the same register. We use
392 * MSI0's lock to control access to them all.
396 spin_lock_irqsave(&octeon_irq_msi_lock, flags);
397 en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
398 en &= ~(1ull << (irq - OCTEON_IRQ_MSI_BIT0));
399 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en);
400 cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
401 spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
405 static struct irq_chip octeon_irq_chip_msi = {
407 .enable = octeon_irq_msi_enable,
408 .disable = octeon_irq_msi_disable,
409 .ack = octeon_irq_msi_ack,
410 .eoi = octeon_irq_msi_eoi,
414 void __init arch_init_irq(void)
419 /* Set the default affinity to the boot cpu. */
420 cpumask_clear(irq_default_affinity);
421 cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
424 if (NR_IRQS < OCTEON_IRQ_LAST)
425 pr_err("octeon_irq_init: NR_IRQS is set too low\n");
427 /* 0 - 15 reserved for i8259 master and slave controller. */
429 /* 17 - 23 Mips internal */
430 for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++) {
431 set_irq_chip_and_handler(irq, &octeon_irq_chip_core,
435 /* 24 - 87 CIU_INT_SUM0 */
436 for (irq = OCTEON_IRQ_WORKQ0; irq <= OCTEON_IRQ_BOOTDMA; irq++) {
437 set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu0,
441 /* 88 - 151 CIU_INT_SUM1 */
442 for (irq = OCTEON_IRQ_WDOG0; irq <= OCTEON_IRQ_RESERVED151; irq++) {
443 set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu1,
447 #ifdef CONFIG_PCI_MSI
448 /* 152 - 215 PCI/PCIe MSI interrupts */
449 for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_BIT63; irq++) {
450 set_irq_chip_and_handler(irq, &octeon_irq_chip_msi,
454 set_c0_status(0x300 << 2);
457 asmlinkage void plat_irq_dispatch(void)
459 const unsigned long core_id = cvmx_get_core_num();
460 const uint64_t ciu_sum0_address = CVMX_CIU_INTX_SUM0(core_id * 2);
461 const uint64_t ciu_en0_address = CVMX_CIU_INTX_EN0(core_id * 2);
462 const uint64_t ciu_sum1_address = CVMX_CIU_INT_SUM1;
463 const uint64_t ciu_en1_address = CVMX_CIU_INTX_EN1(core_id * 2 + 1);
464 unsigned long cop0_cause;
465 unsigned long cop0_status;
470 cop0_cause = read_c0_cause();
471 cop0_status = read_c0_status();
472 cop0_cause &= cop0_status;
473 cop0_cause &= ST0_IM;
475 if (unlikely(cop0_cause & STATUSF_IP2)) {
476 ciu_sum = cvmx_read_csr(ciu_sum0_address);
477 ciu_en = cvmx_read_csr(ciu_en0_address);
480 do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WORKQ0 - 1);
482 spurious_interrupt();
483 } else if (unlikely(cop0_cause & STATUSF_IP3)) {
484 ciu_sum = cvmx_read_csr(ciu_sum1_address);
485 ciu_en = cvmx_read_csr(ciu_en1_address);
488 do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WDOG0 - 1);
490 spurious_interrupt();
491 } else if (likely(cop0_cause)) {
492 do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE);