Merge branch 'for-linus' of git://www.atmel.no/~hskinnemoen/linux/kernel/avr32
[linux-2.6] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31
32 #include <asm/irq.h>
33 #include <asm/irq_regs.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42 #include <asm/prom.h>
43 #include <asm/mdesc.h>
44
45 extern void calibrate_delay(void);
46
47 int sparc64_multi_core __read_mostly;
48
49 /* Please don't make this stuff initdata!!!  --DaveM */
50 unsigned char boot_cpu_id;
51
52 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
53 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
54 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
55         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
56 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
57         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
58 static cpumask_t smp_commenced_mask;
59 static cpumask_t cpu_callout_map;
60
61 void smp_info(struct seq_file *m)
62 {
63         int i;
64         
65         seq_printf(m, "State:\n");
66         for_each_online_cpu(i)
67                 seq_printf(m, "CPU%d:\t\tonline\n", i);
68 }
69
70 void smp_bogo(struct seq_file *m)
71 {
72         int i;
73         
74         for_each_online_cpu(i)
75                 seq_printf(m,
76                            "Cpu%dBogo\t: %lu.%02lu\n"
77                            "Cpu%dClkTck\t: %016lx\n",
78                            i, cpu_data(i).udelay_val / (500000/HZ),
79                            (cpu_data(i).udelay_val / (5000/HZ)) % 100,
80                            i, cpu_data(i).clock_tick);
81 }
82
83 extern void setup_sparc64_timer(void);
84
85 static volatile unsigned long callin_flag = 0;
86
87 void __init smp_callin(void)
88 {
89         int cpuid = hard_smp_processor_id();
90
91         __local_per_cpu_offset = __per_cpu_offset(cpuid);
92
93         if (tlb_type == hypervisor)
94                 sun4v_ktsb_register();
95
96         __flush_tlb_all();
97
98         setup_sparc64_timer();
99
100         if (cheetah_pcache_forced_on)
101                 cheetah_enable_pcache();
102
103         local_irq_enable();
104
105         calibrate_delay();
106         cpu_data(cpuid).udelay_val = loops_per_jiffy;
107         callin_flag = 1;
108         __asm__ __volatile__("membar #Sync\n\t"
109                              "flush  %%g6" : : : "memory");
110
111         /* Clear this or we will die instantly when we
112          * schedule back to this idler...
113          */
114         current_thread_info()->new_child = 0;
115
116         /* Attach to the address space of init_task. */
117         atomic_inc(&init_mm.mm_count);
118         current->active_mm = &init_mm;
119
120         while (!cpu_isset(cpuid, smp_commenced_mask))
121                 rmb();
122
123         cpu_set(cpuid, cpu_online_map);
124
125         /* idle thread is expected to have preempt disabled */
126         preempt_disable();
127 }
128
129 void cpu_panic(void)
130 {
131         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
132         panic("SMP bolixed\n");
133 }
134
135 /* This tick register synchronization scheme is taken entirely from
136  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
137  *
138  * The only change I've made is to rework it so that the master
139  * initiates the synchonization instead of the slave. -DaveM
140  */
141
142 #define MASTER  0
143 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
144
145 #define NUM_ROUNDS      64      /* magic value */
146 #define NUM_ITERS       5       /* likewise */
147
148 static DEFINE_SPINLOCK(itc_sync_lock);
149 static unsigned long go[SLAVE + 1];
150
151 #define DEBUG_TICK_SYNC 0
152
153 static inline long get_delta (long *rt, long *master)
154 {
155         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
156         unsigned long tcenter, t0, t1, tm;
157         unsigned long i;
158
159         for (i = 0; i < NUM_ITERS; i++) {
160                 t0 = tick_ops->get_tick();
161                 go[MASTER] = 1;
162                 membar_storeload();
163                 while (!(tm = go[SLAVE]))
164                         rmb();
165                 go[SLAVE] = 0;
166                 wmb();
167                 t1 = tick_ops->get_tick();
168
169                 if (t1 - t0 < best_t1 - best_t0)
170                         best_t0 = t0, best_t1 = t1, best_tm = tm;
171         }
172
173         *rt = best_t1 - best_t0;
174         *master = best_tm - best_t0;
175
176         /* average best_t0 and best_t1 without overflow: */
177         tcenter = (best_t0/2 + best_t1/2);
178         if (best_t0 % 2 + best_t1 % 2 == 2)
179                 tcenter++;
180         return tcenter - best_tm;
181 }
182
183 void smp_synchronize_tick_client(void)
184 {
185         long i, delta, adj, adjust_latency = 0, done = 0;
186         unsigned long flags, rt, master_time_stamp, bound;
187 #if DEBUG_TICK_SYNC
188         struct {
189                 long rt;        /* roundtrip time */
190                 long master;    /* master's timestamp */
191                 long diff;      /* difference between midpoint and master's timestamp */
192                 long lat;       /* estimate of itc adjustment latency */
193         } t[NUM_ROUNDS];
194 #endif
195
196         go[MASTER] = 1;
197
198         while (go[MASTER])
199                 rmb();
200
201         local_irq_save(flags);
202         {
203                 for (i = 0; i < NUM_ROUNDS; i++) {
204                         delta = get_delta(&rt, &master_time_stamp);
205                         if (delta == 0) {
206                                 done = 1;       /* let's lock on to this... */
207                                 bound = rt;
208                         }
209
210                         if (!done) {
211                                 if (i > 0) {
212                                         adjust_latency += -delta;
213                                         adj = -delta + adjust_latency/4;
214                                 } else
215                                         adj = -delta;
216
217                                 tick_ops->add_tick(adj);
218                         }
219 #if DEBUG_TICK_SYNC
220                         t[i].rt = rt;
221                         t[i].master = master_time_stamp;
222                         t[i].diff = delta;
223                         t[i].lat = adjust_latency/4;
224 #endif
225                 }
226         }
227         local_irq_restore(flags);
228
229 #if DEBUG_TICK_SYNC
230         for (i = 0; i < NUM_ROUNDS; i++)
231                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
232                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
233 #endif
234
235         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
236                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
237 }
238
239 static void smp_start_sync_tick_client(int cpu);
240
241 static void smp_synchronize_one_tick(int cpu)
242 {
243         unsigned long flags, i;
244
245         go[MASTER] = 0;
246
247         smp_start_sync_tick_client(cpu);
248
249         /* wait for client to be ready */
250         while (!go[MASTER])
251                 rmb();
252
253         /* now let the client proceed into his loop */
254         go[MASTER] = 0;
255         membar_storeload();
256
257         spin_lock_irqsave(&itc_sync_lock, flags);
258         {
259                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
260                         while (!go[MASTER])
261                                 rmb();
262                         go[MASTER] = 0;
263                         wmb();
264                         go[SLAVE] = tick_ops->get_tick();
265                         membar_storeload();
266                 }
267         }
268         spin_unlock_irqrestore(&itc_sync_lock, flags);
269 }
270
271 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
272
273 extern unsigned long sparc64_cpu_startup;
274
275 /* The OBP cpu startup callback truncates the 3rd arg cookie to
276  * 32-bits (I think) so to be safe we have it read the pointer
277  * contained here so we work on >4GB machines. -DaveM
278  */
279 static struct thread_info *cpu_new_thread = NULL;
280
281 static int __devinit smp_boot_one_cpu(unsigned int cpu)
282 {
283         unsigned long entry =
284                 (unsigned long)(&sparc64_cpu_startup);
285         unsigned long cookie =
286                 (unsigned long)(&cpu_new_thread);
287         struct task_struct *p;
288         int timeout, ret;
289
290         p = fork_idle(cpu);
291         callin_flag = 0;
292         cpu_new_thread = task_thread_info(p);
293         cpu_set(cpu, cpu_callout_map);
294
295         if (tlb_type == hypervisor) {
296                 /* Alloc the mondo queues, cpu will load them.  */
297                 sun4v_init_mondo_queues(0, cpu, 1, 0);
298
299                 prom_startcpu_cpuid(cpu, entry, cookie);
300         } else {
301                 struct device_node *dp = of_find_node_by_cpuid(cpu);
302
303                 prom_startcpu(dp->node, entry, cookie);
304         }
305
306         for (timeout = 0; timeout < 5000000; timeout++) {
307                 if (callin_flag)
308                         break;
309                 udelay(100);
310         }
311
312         if (callin_flag) {
313                 ret = 0;
314         } else {
315                 printk("Processor %d is stuck.\n", cpu);
316                 cpu_clear(cpu, cpu_callout_map);
317                 ret = -ENODEV;
318         }
319         cpu_new_thread = NULL;
320
321         return ret;
322 }
323
324 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
325 {
326         u64 result, target;
327         int stuck, tmp;
328
329         if (this_is_starfire) {
330                 /* map to real upaid */
331                 cpu = (((cpu & 0x3c) << 1) |
332                         ((cpu & 0x40) >> 4) |
333                         (cpu & 0x3));
334         }
335
336         target = (cpu << 14) | 0x70;
337 again:
338         /* Ok, this is the real Spitfire Errata #54.
339          * One must read back from a UDB internal register
340          * after writes to the UDB interrupt dispatch, but
341          * before the membar Sync for that write.
342          * So we use the high UDB control register (ASI 0x7f,
343          * ADDR 0x20) for the dummy read. -DaveM
344          */
345         tmp = 0x40;
346         __asm__ __volatile__(
347         "wrpr   %1, %2, %%pstate\n\t"
348         "stxa   %4, [%0] %3\n\t"
349         "stxa   %5, [%0+%8] %3\n\t"
350         "add    %0, %8, %0\n\t"
351         "stxa   %6, [%0+%8] %3\n\t"
352         "membar #Sync\n\t"
353         "stxa   %%g0, [%7] %3\n\t"
354         "membar #Sync\n\t"
355         "mov    0x20, %%g1\n\t"
356         "ldxa   [%%g1] 0x7f, %%g0\n\t"
357         "membar #Sync"
358         : "=r" (tmp)
359         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
360           "r" (data0), "r" (data1), "r" (data2), "r" (target),
361           "r" (0x10), "0" (tmp)
362         : "g1");
363
364         /* NOTE: PSTATE_IE is still clear. */
365         stuck = 100000;
366         do {
367                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
368                         : "=r" (result)
369                         : "i" (ASI_INTR_DISPATCH_STAT));
370                 if (result == 0) {
371                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
372                                              : : "r" (pstate));
373                         return;
374                 }
375                 stuck -= 1;
376                 if (stuck == 0)
377                         break;
378         } while (result & 0x1);
379         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
380                              : : "r" (pstate));
381         if (stuck == 0) {
382                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
383                        smp_processor_id(), result);
384         } else {
385                 udelay(2);
386                 goto again;
387         }
388 }
389
390 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
391 {
392         u64 pstate;
393         int i;
394
395         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
396         for_each_cpu_mask(i, mask)
397                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
398 }
399
400 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
401  * packet, but we have no use for that.  However we do take advantage of
402  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
403  */
404 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
405 {
406         u64 pstate, ver;
407         int nack_busy_id, is_jbus, need_more;
408
409         if (cpus_empty(mask))
410                 return;
411
412         /* Unfortunately, someone at Sun had the brilliant idea to make the
413          * busy/nack fields hard-coded by ITID number for this Ultra-III
414          * derivative processor.
415          */
416         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
417         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
418                    (ver >> 32) == __SERRANO_ID);
419
420         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
421
422 retry:
423         need_more = 0;
424         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
425                              : : "r" (pstate), "i" (PSTATE_IE));
426
427         /* Setup the dispatch data registers. */
428         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
429                              "stxa      %1, [%4] %6\n\t"
430                              "stxa      %2, [%5] %6\n\t"
431                              "membar    #Sync\n\t"
432                              : /* no outputs */
433                              : "r" (data0), "r" (data1), "r" (data2),
434                                "r" (0x40), "r" (0x50), "r" (0x60),
435                                "i" (ASI_INTR_W));
436
437         nack_busy_id = 0;
438         {
439                 int i;
440
441                 for_each_cpu_mask(i, mask) {
442                         u64 target = (i << 14) | 0x70;
443
444                         if (!is_jbus)
445                                 target |= (nack_busy_id << 24);
446                         __asm__ __volatile__(
447                                 "stxa   %%g0, [%0] %1\n\t"
448                                 "membar #Sync\n\t"
449                                 : /* no outputs */
450                                 : "r" (target), "i" (ASI_INTR_W));
451                         nack_busy_id++;
452                         if (nack_busy_id == 32) {
453                                 need_more = 1;
454                                 break;
455                         }
456                 }
457         }
458
459         /* Now, poll for completion. */
460         {
461                 u64 dispatch_stat;
462                 long stuck;
463
464                 stuck = 100000 * nack_busy_id;
465                 do {
466                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
467                                              : "=r" (dispatch_stat)
468                                              : "i" (ASI_INTR_DISPATCH_STAT));
469                         if (dispatch_stat == 0UL) {
470                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
471                                                      : : "r" (pstate));
472                                 if (unlikely(need_more)) {
473                                         int i, cnt = 0;
474                                         for_each_cpu_mask(i, mask) {
475                                                 cpu_clear(i, mask);
476                                                 cnt++;
477                                                 if (cnt == 32)
478                                                         break;
479                                         }
480                                         goto retry;
481                                 }
482                                 return;
483                         }
484                         if (!--stuck)
485                                 break;
486                 } while (dispatch_stat & 0x5555555555555555UL);
487
488                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
489                                      : : "r" (pstate));
490
491                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
492                         /* Busy bits will not clear, continue instead
493                          * of freezing up on this cpu.
494                          */
495                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
496                                smp_processor_id(), dispatch_stat);
497                 } else {
498                         int i, this_busy_nack = 0;
499
500                         /* Delay some random time with interrupts enabled
501                          * to prevent deadlock.
502                          */
503                         udelay(2 * nack_busy_id);
504
505                         /* Clear out the mask bits for cpus which did not
506                          * NACK us.
507                          */
508                         for_each_cpu_mask(i, mask) {
509                                 u64 check_mask;
510
511                                 if (is_jbus)
512                                         check_mask = (0x2UL << (2*i));
513                                 else
514                                         check_mask = (0x2UL <<
515                                                       this_busy_nack);
516                                 if ((dispatch_stat & check_mask) == 0)
517                                         cpu_clear(i, mask);
518                                 this_busy_nack += 2;
519                                 if (this_busy_nack == 64)
520                                         break;
521                         }
522
523                         goto retry;
524                 }
525         }
526 }
527
528 /* Multi-cpu list version.  */
529 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
530 {
531         struct trap_per_cpu *tb;
532         u16 *cpu_list;
533         u64 *mondo;
534         cpumask_t error_mask;
535         unsigned long flags, status;
536         int cnt, retries, this_cpu, prev_sent, i;
537
538         if (cpus_empty(mask))
539                 return;
540
541         /* We have to do this whole thing with interrupts fully disabled.
542          * Otherwise if we send an xcall from interrupt context it will
543          * corrupt both our mondo block and cpu list state.
544          *
545          * One consequence of this is that we cannot use timeout mechanisms
546          * that depend upon interrupts being delivered locally.  So, for
547          * example, we cannot sample jiffies and expect it to advance.
548          *
549          * Fortunately, udelay() uses %stick/%tick so we can use that.
550          */
551         local_irq_save(flags);
552
553         this_cpu = smp_processor_id();
554         tb = &trap_block[this_cpu];
555
556         mondo = __va(tb->cpu_mondo_block_pa);
557         mondo[0] = data0;
558         mondo[1] = data1;
559         mondo[2] = data2;
560         wmb();
561
562         cpu_list = __va(tb->cpu_list_pa);
563
564         /* Setup the initial cpu list.  */
565         cnt = 0;
566         for_each_cpu_mask(i, mask)
567                 cpu_list[cnt++] = i;
568
569         cpus_clear(error_mask);
570         retries = 0;
571         prev_sent = 0;
572         do {
573                 int forward_progress, n_sent;
574
575                 status = sun4v_cpu_mondo_send(cnt,
576                                               tb->cpu_list_pa,
577                                               tb->cpu_mondo_block_pa);
578
579                 /* HV_EOK means all cpus received the xcall, we're done.  */
580                 if (likely(status == HV_EOK))
581                         break;
582
583                 /* First, see if we made any forward progress.
584                  *
585                  * The hypervisor indicates successful sends by setting
586                  * cpu list entries to the value 0xffff.
587                  */
588                 n_sent = 0;
589                 for (i = 0; i < cnt; i++) {
590                         if (likely(cpu_list[i] == 0xffff))
591                                 n_sent++;
592                 }
593
594                 forward_progress = 0;
595                 if (n_sent > prev_sent)
596                         forward_progress = 1;
597
598                 prev_sent = n_sent;
599
600                 /* If we get a HV_ECPUERROR, then one or more of the cpus
601                  * in the list are in error state.  Use the cpu_state()
602                  * hypervisor call to find out which cpus are in error state.
603                  */
604                 if (unlikely(status == HV_ECPUERROR)) {
605                         for (i = 0; i < cnt; i++) {
606                                 long err;
607                                 u16 cpu;
608
609                                 cpu = cpu_list[i];
610                                 if (cpu == 0xffff)
611                                         continue;
612
613                                 err = sun4v_cpu_state(cpu);
614                                 if (err >= 0 &&
615                                     err == HV_CPU_STATE_ERROR) {
616                                         cpu_list[i] = 0xffff;
617                                         cpu_set(cpu, error_mask);
618                                 }
619                         }
620                 } else if (unlikely(status != HV_EWOULDBLOCK))
621                         goto fatal_mondo_error;
622
623                 /* Don't bother rewriting the CPU list, just leave the
624                  * 0xffff and non-0xffff entries in there and the
625                  * hypervisor will do the right thing.
626                  *
627                  * Only advance timeout state if we didn't make any
628                  * forward progress.
629                  */
630                 if (unlikely(!forward_progress)) {
631                         if (unlikely(++retries > 10000))
632                                 goto fatal_mondo_timeout;
633
634                         /* Delay a little bit to let other cpus catch up
635                          * on their cpu mondo queue work.
636                          */
637                         udelay(2 * cnt);
638                 }
639         } while (1);
640
641         local_irq_restore(flags);
642
643         if (unlikely(!cpus_empty(error_mask)))
644                 goto fatal_mondo_cpu_error;
645
646         return;
647
648 fatal_mondo_cpu_error:
649         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
650                "were in error state\n",
651                this_cpu);
652         printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
653         for_each_cpu_mask(i, error_mask)
654                 printk("%d ", i);
655         printk("]\n");
656         return;
657
658 fatal_mondo_timeout:
659         local_irq_restore(flags);
660         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
661                " progress after %d retries.\n",
662                this_cpu, retries);
663         goto dump_cpu_list_and_out;
664
665 fatal_mondo_error:
666         local_irq_restore(flags);
667         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
668                this_cpu, status);
669         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
670                "mondo_block_pa(%lx)\n",
671                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
672
673 dump_cpu_list_and_out:
674         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
675         for (i = 0; i < cnt; i++)
676                 printk("%u ", cpu_list[i]);
677         printk("]\n");
678 }
679
680 /* Send cross call to all processors mentioned in MASK
681  * except self.
682  */
683 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
684 {
685         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
686         int this_cpu = get_cpu();
687
688         cpus_and(mask, mask, cpu_online_map);
689         cpu_clear(this_cpu, mask);
690
691         if (tlb_type == spitfire)
692                 spitfire_xcall_deliver(data0, data1, data2, mask);
693         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
694                 cheetah_xcall_deliver(data0, data1, data2, mask);
695         else
696                 hypervisor_xcall_deliver(data0, data1, data2, mask);
697         /* NOTE: Caller runs local copy on master. */
698
699         put_cpu();
700 }
701
702 extern unsigned long xcall_sync_tick;
703
704 static void smp_start_sync_tick_client(int cpu)
705 {
706         cpumask_t mask = cpumask_of_cpu(cpu);
707
708         smp_cross_call_masked(&xcall_sync_tick,
709                               0, 0, 0, mask);
710 }
711
712 /* Send cross call to all processors except self. */
713 #define smp_cross_call(func, ctx, data1, data2) \
714         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
715
716 struct call_data_struct {
717         void (*func) (void *info);
718         void *info;
719         atomic_t finished;
720         int wait;
721 };
722
723 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
724 static struct call_data_struct *call_data;
725
726 extern unsigned long xcall_call_function;
727
728 /**
729  * smp_call_function(): Run a function on all other CPUs.
730  * @func: The function to run. This must be fast and non-blocking.
731  * @info: An arbitrary pointer to pass to the function.
732  * @nonatomic: currently unused.
733  * @wait: If true, wait (atomically) until function has completed on other CPUs.
734  *
735  * Returns 0 on success, else a negative status code. Does not return until
736  * remote CPUs are nearly ready to execute <<func>> or are or have executed.
737  *
738  * You must not call this function with disabled interrupts or from a
739  * hardware interrupt handler or from a bottom half handler.
740  */
741 static int smp_call_function_mask(void (*func)(void *info), void *info,
742                                   int nonatomic, int wait, cpumask_t mask)
743 {
744         struct call_data_struct data;
745         int cpus;
746
747         /* Can deadlock when called with interrupts disabled */
748         WARN_ON(irqs_disabled());
749
750         data.func = func;
751         data.info = info;
752         atomic_set(&data.finished, 0);
753         data.wait = wait;
754
755         spin_lock(&call_lock);
756
757         cpu_clear(smp_processor_id(), mask);
758         cpus = cpus_weight(mask);
759         if (!cpus)
760                 goto out_unlock;
761
762         call_data = &data;
763         mb();
764
765         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
766
767         /* Wait for response */
768         while (atomic_read(&data.finished) != cpus)
769                 cpu_relax();
770
771 out_unlock:
772         spin_unlock(&call_lock);
773
774         return 0;
775 }
776
777 int smp_call_function(void (*func)(void *info), void *info,
778                       int nonatomic, int wait)
779 {
780         return smp_call_function_mask(func, info, nonatomic, wait,
781                                       cpu_online_map);
782 }
783
784 void smp_call_function_client(int irq, struct pt_regs *regs)
785 {
786         void (*func) (void *info) = call_data->func;
787         void *info = call_data->info;
788
789         clear_softint(1 << irq);
790         if (call_data->wait) {
791                 /* let initiator proceed only after completion */
792                 func(info);
793                 atomic_inc(&call_data->finished);
794         } else {
795                 /* let initiator proceed after getting data */
796                 atomic_inc(&call_data->finished);
797                 func(info);
798         }
799 }
800
801 static void tsb_sync(void *info)
802 {
803         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
804         struct mm_struct *mm = info;
805
806         /* It is not valid to test "currrent->active_mm == mm" here.
807          *
808          * The value of "current" is not changed atomically with
809          * switch_mm().  But that's OK, we just need to check the
810          * current cpu's trap block PGD physical address.
811          */
812         if (tp->pgd_paddr == __pa(mm->pgd))
813                 tsb_context_switch(mm);
814 }
815
816 void smp_tsb_sync(struct mm_struct *mm)
817 {
818         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
819 }
820
821 extern unsigned long xcall_flush_tlb_mm;
822 extern unsigned long xcall_flush_tlb_pending;
823 extern unsigned long xcall_flush_tlb_kernel_range;
824 extern unsigned long xcall_report_regs;
825 extern unsigned long xcall_receive_signal;
826 extern unsigned long xcall_new_mmu_context_version;
827
828 #ifdef DCACHE_ALIASING_POSSIBLE
829 extern unsigned long xcall_flush_dcache_page_cheetah;
830 #endif
831 extern unsigned long xcall_flush_dcache_page_spitfire;
832
833 #ifdef CONFIG_DEBUG_DCFLUSH
834 extern atomic_t dcpage_flushes;
835 extern atomic_t dcpage_flushes_xcall;
836 #endif
837
838 static __inline__ void __local_flush_dcache_page(struct page *page)
839 {
840 #ifdef DCACHE_ALIASING_POSSIBLE
841         __flush_dcache_page(page_address(page),
842                             ((tlb_type == spitfire) &&
843                              page_mapping(page) != NULL));
844 #else
845         if (page_mapping(page) != NULL &&
846             tlb_type == spitfire)
847                 __flush_icache_page(__pa(page_address(page)));
848 #endif
849 }
850
851 void smp_flush_dcache_page_impl(struct page *page, int cpu)
852 {
853         cpumask_t mask = cpumask_of_cpu(cpu);
854         int this_cpu;
855
856         if (tlb_type == hypervisor)
857                 return;
858
859 #ifdef CONFIG_DEBUG_DCFLUSH
860         atomic_inc(&dcpage_flushes);
861 #endif
862
863         this_cpu = get_cpu();
864
865         if (cpu == this_cpu) {
866                 __local_flush_dcache_page(page);
867         } else if (cpu_online(cpu)) {
868                 void *pg_addr = page_address(page);
869                 u64 data0;
870
871                 if (tlb_type == spitfire) {
872                         data0 =
873                                 ((u64)&xcall_flush_dcache_page_spitfire);
874                         if (page_mapping(page) != NULL)
875                                 data0 |= ((u64)1 << 32);
876                         spitfire_xcall_deliver(data0,
877                                                __pa(pg_addr),
878                                                (u64) pg_addr,
879                                                mask);
880                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
881 #ifdef DCACHE_ALIASING_POSSIBLE
882                         data0 =
883                                 ((u64)&xcall_flush_dcache_page_cheetah);
884                         cheetah_xcall_deliver(data0,
885                                               __pa(pg_addr),
886                                               0, mask);
887 #endif
888                 }
889 #ifdef CONFIG_DEBUG_DCFLUSH
890                 atomic_inc(&dcpage_flushes_xcall);
891 #endif
892         }
893
894         put_cpu();
895 }
896
897 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
898 {
899         void *pg_addr = page_address(page);
900         cpumask_t mask = cpu_online_map;
901         u64 data0;
902         int this_cpu;
903
904         if (tlb_type == hypervisor)
905                 return;
906
907         this_cpu = get_cpu();
908
909         cpu_clear(this_cpu, mask);
910
911 #ifdef CONFIG_DEBUG_DCFLUSH
912         atomic_inc(&dcpage_flushes);
913 #endif
914         if (cpus_empty(mask))
915                 goto flush_self;
916         if (tlb_type == spitfire) {
917                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
918                 if (page_mapping(page) != NULL)
919                         data0 |= ((u64)1 << 32);
920                 spitfire_xcall_deliver(data0,
921                                        __pa(pg_addr),
922                                        (u64) pg_addr,
923                                        mask);
924         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
925 #ifdef DCACHE_ALIASING_POSSIBLE
926                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
927                 cheetah_xcall_deliver(data0,
928                                       __pa(pg_addr),
929                                       0, mask);
930 #endif
931         }
932 #ifdef CONFIG_DEBUG_DCFLUSH
933         atomic_inc(&dcpage_flushes_xcall);
934 #endif
935  flush_self:
936         __local_flush_dcache_page(page);
937
938         put_cpu();
939 }
940
941 static void __smp_receive_signal_mask(cpumask_t mask)
942 {
943         smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
944 }
945
946 void smp_receive_signal(int cpu)
947 {
948         cpumask_t mask = cpumask_of_cpu(cpu);
949
950         if (cpu_online(cpu))
951                 __smp_receive_signal_mask(mask);
952 }
953
954 void smp_receive_signal_client(int irq, struct pt_regs *regs)
955 {
956         clear_softint(1 << irq);
957 }
958
959 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
960 {
961         struct mm_struct *mm;
962         unsigned long flags;
963
964         clear_softint(1 << irq);
965
966         /* See if we need to allocate a new TLB context because
967          * the version of the one we are using is now out of date.
968          */
969         mm = current->active_mm;
970         if (unlikely(!mm || (mm == &init_mm)))
971                 return;
972
973         spin_lock_irqsave(&mm->context.lock, flags);
974
975         if (unlikely(!CTX_VALID(mm->context)))
976                 get_new_mmu_context(mm);
977
978         spin_unlock_irqrestore(&mm->context.lock, flags);
979
980         load_secondary_context(mm);
981         __flush_tlb_mm(CTX_HWBITS(mm->context),
982                        SECONDARY_CONTEXT);
983 }
984
985 void smp_new_mmu_context_version(void)
986 {
987         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
988 }
989
990 void smp_report_regs(void)
991 {
992         smp_cross_call(&xcall_report_regs, 0, 0, 0);
993 }
994
995 /* We know that the window frames of the user have been flushed
996  * to the stack before we get here because all callers of us
997  * are flush_tlb_*() routines, and these run after flush_cache_*()
998  * which performs the flushw.
999  *
1000  * The SMP TLB coherency scheme we use works as follows:
1001  *
1002  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1003  *    space has (potentially) executed on, this is the heuristic
1004  *    we use to avoid doing cross calls.
1005  *
1006  *    Also, for flushing from kswapd and also for clones, we
1007  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1008  *
1009  * 2) TLB context numbers are shared globally across all processors
1010  *    in the system, this allows us to play several games to avoid
1011  *    cross calls.
1012  *
1013  *    One invariant is that when a cpu switches to a process, and
1014  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1015  *    current cpu's bit set, that tlb context is flushed locally.
1016  *
1017  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1018  *    cross calls when we want to flush the currently running process's
1019  *    tlb state.  This is done by clearing all cpu bits except the current
1020  *    processor's in current->active_mm->cpu_vm_mask and performing the
1021  *    flush locally only.  This will force any subsequent cpus which run
1022  *    this task to flush the context from the local tlb if the process
1023  *    migrates to another cpu (again).
1024  *
1025  * 3) For shared address spaces (threads) and swapping we bite the
1026  *    bullet for most cases and perform the cross call (but only to
1027  *    the cpus listed in cpu_vm_mask).
1028  *
1029  *    The performance gain from "optimizing" away the cross call for threads is
1030  *    questionable (in theory the big win for threads is the massive sharing of
1031  *    address space state across processors).
1032  */
1033
1034 /* This currently is only used by the hugetlb arch pre-fault
1035  * hook on UltraSPARC-III+ and later when changing the pagesize
1036  * bits of the context register for an address space.
1037  */
1038 void smp_flush_tlb_mm(struct mm_struct *mm)
1039 {
1040         u32 ctx = CTX_HWBITS(mm->context);
1041         int cpu = get_cpu();
1042
1043         if (atomic_read(&mm->mm_users) == 1) {
1044                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1045                 goto local_flush_and_out;
1046         }
1047
1048         smp_cross_call_masked(&xcall_flush_tlb_mm,
1049                               ctx, 0, 0,
1050                               mm->cpu_vm_mask);
1051
1052 local_flush_and_out:
1053         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1054
1055         put_cpu();
1056 }
1057
1058 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1059 {
1060         u32 ctx = CTX_HWBITS(mm->context);
1061         int cpu = get_cpu();
1062
1063         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1064                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1065         else
1066                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1067                                       ctx, nr, (unsigned long) vaddrs,
1068                                       mm->cpu_vm_mask);
1069
1070         __flush_tlb_pending(ctx, nr, vaddrs);
1071
1072         put_cpu();
1073 }
1074
1075 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1076 {
1077         start &= PAGE_MASK;
1078         end    = PAGE_ALIGN(end);
1079         if (start != end) {
1080                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1081                                0, start, end);
1082
1083                 __flush_tlb_kernel_range(start, end);
1084         }
1085 }
1086
1087 /* CPU capture. */
1088 /* #define CAPTURE_DEBUG */
1089 extern unsigned long xcall_capture;
1090
1091 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1092 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1093 static unsigned long penguins_are_doing_time;
1094
1095 void smp_capture(void)
1096 {
1097         int result = atomic_add_ret(1, &smp_capture_depth);
1098
1099         if (result == 1) {
1100                 int ncpus = num_online_cpus();
1101
1102 #ifdef CAPTURE_DEBUG
1103                 printk("CPU[%d]: Sending penguins to jail...",
1104                        smp_processor_id());
1105 #endif
1106                 penguins_are_doing_time = 1;
1107                 membar_storestore_loadstore();
1108                 atomic_inc(&smp_capture_registry);
1109                 smp_cross_call(&xcall_capture, 0, 0, 0);
1110                 while (atomic_read(&smp_capture_registry) != ncpus)
1111                         rmb();
1112 #ifdef CAPTURE_DEBUG
1113                 printk("done\n");
1114 #endif
1115         }
1116 }
1117
1118 void smp_release(void)
1119 {
1120         if (atomic_dec_and_test(&smp_capture_depth)) {
1121 #ifdef CAPTURE_DEBUG
1122                 printk("CPU[%d]: Giving pardon to "
1123                        "imprisoned penguins\n",
1124                        smp_processor_id());
1125 #endif
1126                 penguins_are_doing_time = 0;
1127                 membar_storeload_storestore();
1128                 atomic_dec(&smp_capture_registry);
1129         }
1130 }
1131
1132 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1133  * can service tlb flush xcalls...
1134  */
1135 extern void prom_world(int);
1136
1137 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1138 {
1139         clear_softint(1 << irq);
1140
1141         preempt_disable();
1142
1143         __asm__ __volatile__("flushw");
1144         prom_world(1);
1145         atomic_inc(&smp_capture_registry);
1146         membar_storeload_storestore();
1147         while (penguins_are_doing_time)
1148                 rmb();
1149         atomic_dec(&smp_capture_registry);
1150         prom_world(0);
1151
1152         preempt_enable();
1153 }
1154
1155 void __init smp_tick_init(void)
1156 {
1157         boot_cpu_id = hard_smp_processor_id();
1158 }
1159
1160 /* /proc/profile writes can call this, don't __init it please. */
1161 int setup_profiling_timer(unsigned int multiplier)
1162 {
1163         return -EINVAL;
1164 }
1165
1166 static void __init smp_tune_scheduling(void)
1167 {
1168         unsigned int smallest = ~0U;
1169         int i;
1170
1171         for (i = 0; i < NR_CPUS; i++) {
1172                 unsigned int val = cpu_data(i).ecache_size;
1173
1174                 if (val && val < smallest)
1175                         smallest = val;
1176         }
1177
1178         /* Any value less than 256K is nonsense.  */
1179         if (smallest < (256U * 1024U))
1180                 smallest = 256 * 1024;
1181
1182         max_cache_size = smallest;
1183
1184         if (smallest < 1U * 1024U * 1024U)
1185                 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1186                        smallest / 1024U);
1187         else
1188                 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1189                        smallest / 1024U / 1024U);
1190 }
1191
1192 /* Constrain the number of cpus to max_cpus.  */
1193 void __init smp_prepare_cpus(unsigned int max_cpus)
1194 {
1195         int i;
1196
1197         if (num_possible_cpus() > max_cpus) {
1198                 for_each_possible_cpu(i) {
1199                         if (i != boot_cpu_id) {
1200                                 cpu_clear(i, phys_cpu_present_map);
1201                                 cpu_clear(i, cpu_present_map);
1202                                 if (num_possible_cpus() <= max_cpus)
1203                                         break;
1204                         }
1205                 }
1206         }
1207
1208         cpu_data(boot_cpu_id).udelay_val = loops_per_jiffy;
1209         smp_tune_scheduling();
1210 }
1211
1212 void __devinit smp_prepare_boot_cpu(void)
1213 {
1214 }
1215
1216 void __devinit smp_fill_in_sib_core_maps(void)
1217 {
1218         unsigned int i;
1219
1220         for_each_possible_cpu(i) {
1221                 unsigned int j;
1222
1223                 if (cpu_data(i).core_id == 0) {
1224                         cpu_set(i, cpu_core_map[i]);
1225                         continue;
1226                 }
1227
1228                 for_each_possible_cpu(j) {
1229                         if (cpu_data(i).core_id ==
1230                             cpu_data(j).core_id)
1231                                 cpu_set(j, cpu_core_map[i]);
1232                 }
1233         }
1234
1235         for_each_possible_cpu(i) {
1236                 unsigned int j;
1237
1238                 if (cpu_data(i).proc_id == -1) {
1239                         cpu_set(i, cpu_sibling_map[i]);
1240                         continue;
1241                 }
1242
1243                 for_each_possible_cpu(j) {
1244                         if (cpu_data(i).proc_id ==
1245                             cpu_data(j).proc_id)
1246                                 cpu_set(j, cpu_sibling_map[i]);
1247                 }
1248         }
1249 }
1250
1251 int __cpuinit __cpu_up(unsigned int cpu)
1252 {
1253         int ret = smp_boot_one_cpu(cpu);
1254
1255         if (!ret) {
1256                 cpu_set(cpu, smp_commenced_mask);
1257                 while (!cpu_isset(cpu, cpu_online_map))
1258                         mb();
1259                 if (!cpu_isset(cpu, cpu_online_map)) {
1260                         ret = -ENODEV;
1261                 } else {
1262                         /* On SUN4V, writes to %tick and %stick are
1263                          * not allowed.
1264                          */
1265                         if (tlb_type != hypervisor)
1266                                 smp_synchronize_one_tick(cpu);
1267                 }
1268         }
1269         return ret;
1270 }
1271
1272 void __init smp_cpus_done(unsigned int max_cpus)
1273 {
1274         unsigned long bogosum = 0;
1275         int i;
1276
1277         for_each_online_cpu(i)
1278                 bogosum += cpu_data(i).udelay_val;
1279         printk("Total of %ld processors activated "
1280                "(%lu.%02lu BogoMIPS).\n",
1281                (long) num_online_cpus(),
1282                bogosum/(500000/HZ),
1283                (bogosum/(5000/HZ))%100);
1284 }
1285
1286 void smp_send_reschedule(int cpu)
1287 {
1288         smp_receive_signal(cpu);
1289 }
1290
1291 /* This is a nop because we capture all other cpus
1292  * anyways when making the PROM active.
1293  */
1294 void smp_send_stop(void)
1295 {
1296 }
1297
1298 unsigned long __per_cpu_base __read_mostly;
1299 unsigned long __per_cpu_shift __read_mostly;
1300
1301 EXPORT_SYMBOL(__per_cpu_base);
1302 EXPORT_SYMBOL(__per_cpu_shift);
1303
1304 void __init real_setup_per_cpu_areas(void)
1305 {
1306         unsigned long goal, size, i;
1307         char *ptr;
1308
1309         /* Copy section for each CPU (we discard the original) */
1310         goal = PERCPU_ENOUGH_ROOM;
1311
1312         __per_cpu_shift = PAGE_SHIFT;
1313         for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1314                 __per_cpu_shift++;
1315
1316         ptr = alloc_bootmem_pages(size * NR_CPUS);
1317
1318         __per_cpu_base = ptr - __per_cpu_start;
1319
1320         for (i = 0; i < NR_CPUS; i++, ptr += size)
1321                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1322
1323         /* Setup %g5 for the boot cpu.  */
1324         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1325 }