ieee1394: eth1394: reduce excessive function inlining
[linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /* This driver intends to support RFC 2734, which describes a method for
26  * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27  * will ultimately support that method, but currently falls short in
28  * several areas.
29  *
30  * TODO:
31  * RFC 2734 related:
32  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33  *
34  * Non-RFC 2734 related:
35  * - Handle fragmented skb's coming from the networking layer.
36  * - Move generic GASP reception to core 1394 code
37  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38  * - Stability improvements
39  * - Performance enhancements
40  * - Consider garbage collecting old partial datagrams after X amount of time
41  */
42
43
44 #include <linux/module.h>
45
46 #include <linux/kernel.h>
47 #include <linux/slab.h>
48 #include <linux/errno.h>
49 #include <linux/types.h>
50 #include <linux/delay.h>
51 #include <linux/init.h>
52
53 #include <linux/netdevice.h>
54 #include <linux/inetdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/if_arp.h>
57 #include <linux/if_ether.h>
58 #include <linux/ip.h>
59 #include <linux/in.h>
60 #include <linux/tcp.h>
61 #include <linux/skbuff.h>
62 #include <linux/bitops.h>
63 #include <linux/ethtool.h>
64 #include <asm/uaccess.h>
65 #include <asm/delay.h>
66 #include <asm/unaligned.h>
67 #include <net/arp.h>
68
69 #include "config_roms.h"
70 #include "csr1212.h"
71 #include "eth1394.h"
72 #include "highlevel.h"
73 #include "ieee1394.h"
74 #include "ieee1394_core.h"
75 #include "ieee1394_hotplug.h"
76 #include "ieee1394_transactions.h"
77 #include "ieee1394_types.h"
78 #include "iso.h"
79 #include "nodemgr.h"
80
81 #define ETH1394_PRINT_G(level, fmt, args...) \
82         printk(level "%s: " fmt, driver_name, ## args)
83
84 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
85         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87 #define DEBUG(fmt, args...) \
88         printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91 struct fragment_info {
92         struct list_head list;
93         int offset;
94         int len;
95 };
96
97 struct partial_datagram {
98         struct list_head list;
99         u16 dgl;
100         u16 dg_size;
101         u16 ether_type;
102         struct sk_buff *skb;
103         char *pbuf;
104         struct list_head frag_info;
105 };
106
107 struct pdg_list {
108         struct list_head list;          /* partial datagram list per node       */
109         unsigned int sz;                /* partial datagram list size per node  */
110         spinlock_t lock;                /* partial datagram lock                */
111 };
112
113 struct eth1394_host_info {
114         struct hpsb_host *host;
115         struct net_device *dev;
116 };
117
118 struct eth1394_node_ref {
119         struct unit_directory *ud;
120         struct list_head list;
121 };
122
123 struct eth1394_node_info {
124         u16 maxpayload;                 /* Max payload                  */
125         u8 sspd;                        /* Max speed                    */
126         u64 fifo;                       /* FIFO address                 */
127         struct pdg_list pdg;            /* partial RX datagram lists    */
128         int dgl;                        /* Outgoing datagram label      */
129 };
130
131 /* Our ieee1394 highlevel driver */
132 #define ETH1394_DRIVER_NAME "eth1394"
133 static const char driver_name[] = ETH1394_DRIVER_NAME;
134
135 static struct kmem_cache *packet_task_cache;
136
137 static struct hpsb_highlevel eth1394_highlevel;
138
139 /* Use common.lf to determine header len */
140 static const int hdr_type_len[] = {
141         sizeof (struct eth1394_uf_hdr),
142         sizeof (struct eth1394_ff_hdr),
143         sizeof (struct eth1394_sf_hdr),
144         sizeof (struct eth1394_sf_hdr)
145 };
146
147 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
148 #define ETH1394_SPEED_DEF       IEEE1394_SPEED_MAX
149
150 /* For now, this needs to be 1500, so that XP works with us */
151 #define ETH1394_DATA_LEN        ETH_DATA_LEN
152
153 static const u16 eth1394_speedto_maxpayload[] = {
154 /*     S100, S200, S400, S800, S1600, S3200 */
155         512, 1024, 2048, 4096,  4096,  4096
156 };
157
158 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
159 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
160 MODULE_LICENSE("GPL");
161
162 /* The max_partial_datagrams parameter is the maximum number of fragmented
163  * datagrams per node that eth1394 will keep in memory.  Providing an upper
164  * bound allows us to limit the amount of memory that partial datagrams
165  * consume in the event that some partial datagrams are never completed.
166  */
167 static int max_partial_datagrams = 25;
168 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
169 MODULE_PARM_DESC(max_partial_datagrams,
170                  "Maximum number of partially received fragmented datagrams "
171                  "(default = 25).");
172
173
174 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
175                             unsigned short type, void *daddr, void *saddr,
176                             unsigned len);
177 static int ether1394_rebuild_header(struct sk_buff *skb);
178 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
179 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
180 static void ether1394_header_cache_update(struct hh_cache *hh,
181                                           struct net_device *dev,
182                                           unsigned char * haddr);
183 static int ether1394_mac_addr(struct net_device *dev, void *p);
184
185 static void purge_partial_datagram(struct list_head *old);
186 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
187 static void ether1394_iso(struct hpsb_iso *iso);
188
189 static struct ethtool_ops ethtool_ops;
190
191 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
192                            quadlet_t *data, u64 addr, size_t len, u16 flags);
193 static void ether1394_add_host (struct hpsb_host *host);
194 static void ether1394_remove_host (struct hpsb_host *host);
195 static void ether1394_host_reset (struct hpsb_host *host);
196
197 /* Function for incoming 1394 packets */
198 static struct hpsb_address_ops addr_ops = {
199         .write =        ether1394_write,
200 };
201
202 /* Ieee1394 highlevel driver functions */
203 static struct hpsb_highlevel eth1394_highlevel = {
204         .name =         driver_name,
205         .add_host =     ether1394_add_host,
206         .remove_host =  ether1394_remove_host,
207         .host_reset =   ether1394_host_reset,
208 };
209
210
211 /* This is called after an "ifup" */
212 static int ether1394_open (struct net_device *dev)
213 {
214         struct eth1394_priv *priv = netdev_priv(dev);
215         int ret = 0;
216
217         /* Something bad happened, don't even try */
218         if (priv->bc_state == ETHER1394_BC_ERROR) {
219                 /* we'll try again */
220                 priv->iso = hpsb_iso_recv_init(priv->host,
221                                                ETHER1394_ISO_BUF_SIZE,
222                                                ETHER1394_GASP_BUFFERS,
223                                                priv->broadcast_channel,
224                                                HPSB_ISO_DMA_PACKET_PER_BUFFER,
225                                                1, ether1394_iso);
226                 if (priv->iso == NULL) {
227                         ETH1394_PRINT(KERN_ERR, dev->name,
228                                       "Could not allocate isochronous receive "
229                                       "context for the broadcast channel\n");
230                         priv->bc_state = ETHER1394_BC_ERROR;
231                         ret = -EAGAIN;
232                 } else {
233                         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
234                                 priv->bc_state = ETHER1394_BC_STOPPED;
235                         else
236                                 priv->bc_state = ETHER1394_BC_RUNNING;
237                 }
238         }
239
240         if (ret)
241                 return ret;
242
243         netif_start_queue (dev);
244         return 0;
245 }
246
247 /* This is called after an "ifdown" */
248 static int ether1394_stop (struct net_device *dev)
249 {
250         netif_stop_queue (dev);
251         return 0;
252 }
253
254 /* Return statistics to the caller */
255 static struct net_device_stats *ether1394_stats (struct net_device *dev)
256 {
257         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
258 }
259
260 /* What to do if we timeout. I think a host reset is probably in order, so
261  * that's what we do. Should we increment the stat counters too?  */
262 static void ether1394_tx_timeout (struct net_device *dev)
263 {
264         ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
265                        ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
266
267         highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
268
269         netif_wake_queue (dev);
270 }
271
272 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
273 {
274         struct eth1394_priv *priv = netdev_priv(dev);
275
276         if ((new_mtu < 68) ||
277             (new_mtu > min(ETH1394_DATA_LEN,
278                            (int)((1 << (priv->host->csr.max_rec + 1)) -
279                                  (sizeof(union eth1394_hdr) +
280                                   ETHER1394_GASP_OVERHEAD)))))
281                 return -EINVAL;
282         dev->mtu = new_mtu;
283         return 0;
284 }
285
286 static void purge_partial_datagram(struct list_head *old)
287 {
288         struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
289         struct list_head *lh, *n;
290
291         list_for_each_safe(lh, n, &pd->frag_info) {
292                 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
293                 list_del(lh);
294                 kfree(fi);
295         }
296         list_del(old);
297         kfree_skb(pd->skb);
298         kfree(pd);
299 }
300
301 /******************************************
302  * 1394 bus activity functions
303  ******************************************/
304
305 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
306                                                   struct unit_directory *ud)
307 {
308         struct eth1394_node_ref *node;
309
310         list_for_each_entry(node, inl, list)
311                 if (node->ud == ud)
312                         return node;
313
314         return NULL;
315 }
316
317 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
318                                                        u64 guid)
319 {
320         struct eth1394_node_ref *node;
321
322         list_for_each_entry(node, inl, list)
323                 if (node->ud->ne->guid == guid)
324                         return node;
325
326         return NULL;
327 }
328
329 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
330                                                          nodeid_t nodeid)
331 {
332         struct eth1394_node_ref *node;
333         list_for_each_entry(node, inl, list) {
334                 if (node->ud->ne->nodeid == nodeid)
335                         return node;
336         }
337
338         return NULL;
339 }
340
341 static int eth1394_probe(struct device *dev)
342 {
343         struct unit_directory *ud;
344         struct eth1394_host_info *hi;
345         struct eth1394_priv *priv;
346         struct eth1394_node_ref *new_node;
347         struct eth1394_node_info *node_info;
348
349         ud = container_of(dev, struct unit_directory, device);
350
351         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
352         if (!hi)
353                 return -ENOENT;
354
355         new_node = kmalloc(sizeof(*new_node),
356                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
357         if (!new_node)
358                 return -ENOMEM;
359
360         node_info = kmalloc(sizeof(*node_info),
361                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
362         if (!node_info) {
363                 kfree(new_node);
364                 return -ENOMEM;
365         }
366
367         spin_lock_init(&node_info->pdg.lock);
368         INIT_LIST_HEAD(&node_info->pdg.list);
369         node_info->pdg.sz = 0;
370         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
371
372         ud->device.driver_data = node_info;
373         new_node->ud = ud;
374
375         priv = netdev_priv(hi->dev);
376         list_add_tail(&new_node->list, &priv->ip_node_list);
377
378         return 0;
379 }
380
381 static int eth1394_remove(struct device *dev)
382 {
383         struct unit_directory *ud;
384         struct eth1394_host_info *hi;
385         struct eth1394_priv *priv;
386         struct eth1394_node_ref *old_node;
387         struct eth1394_node_info *node_info;
388         struct list_head *lh, *n;
389         unsigned long flags;
390
391         ud = container_of(dev, struct unit_directory, device);
392         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
393         if (!hi)
394                 return -ENOENT;
395
396         priv = netdev_priv(hi->dev);
397
398         old_node = eth1394_find_node(&priv->ip_node_list, ud);
399
400         if (old_node) {
401                 list_del(&old_node->list);
402                 kfree(old_node);
403
404                 node_info = (struct eth1394_node_info*)ud->device.driver_data;
405
406                 spin_lock_irqsave(&node_info->pdg.lock, flags);
407                 /* The partial datagram list should be empty, but we'll just
408                  * make sure anyway... */
409                 list_for_each_safe(lh, n, &node_info->pdg.list) {
410                         purge_partial_datagram(lh);
411                 }
412                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
413
414                 kfree(node_info);
415                 ud->device.driver_data = NULL;
416         }
417         return 0;
418 }
419
420 static int eth1394_update(struct unit_directory *ud)
421 {
422         struct eth1394_host_info *hi;
423         struct eth1394_priv *priv;
424         struct eth1394_node_ref *node;
425         struct eth1394_node_info *node_info;
426
427         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
428         if (!hi)
429                 return -ENOENT;
430
431         priv = netdev_priv(hi->dev);
432
433         node = eth1394_find_node(&priv->ip_node_list, ud);
434
435         if (!node) {
436                 node = kmalloc(sizeof(*node),
437                                in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
438                 if (!node)
439                         return -ENOMEM;
440
441                 node_info = kmalloc(sizeof(*node_info),
442                                     in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
443                 if (!node_info) {
444                         kfree(node);
445                         return -ENOMEM;
446                 }
447
448                 spin_lock_init(&node_info->pdg.lock);
449                 INIT_LIST_HEAD(&node_info->pdg.list);
450                 node_info->pdg.sz = 0;
451
452                 ud->device.driver_data = node_info;
453                 node->ud = ud;
454
455                 priv = netdev_priv(hi->dev);
456                 list_add_tail(&node->list, &priv->ip_node_list);
457         }
458
459         return 0;
460 }
461
462
463 static struct ieee1394_device_id eth1394_id_table[] = {
464         {
465                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
466                                 IEEE1394_MATCH_VERSION),
467                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
468                 .version = ETHER1394_GASP_VERSION,
469         },
470         {}
471 };
472
473 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
474
475 static struct hpsb_protocol_driver eth1394_proto_driver = {
476         .name           = ETH1394_DRIVER_NAME,
477         .id_table       = eth1394_id_table,
478         .update         = eth1394_update,
479         .driver         = {
480                 .probe          = eth1394_probe,
481                 .remove         = eth1394_remove,
482         },
483 };
484
485
486 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
487 {
488         unsigned long flags;
489         int i;
490         struct eth1394_priv *priv = netdev_priv(dev);
491         struct hpsb_host *host = priv->host;
492         u64 guid = get_unaligned((u64*)&(host->csr.rom->bus_info_data[3]));
493         u16 maxpayload = 1 << (host->csr.max_rec + 1);
494         int max_speed = IEEE1394_SPEED_MAX;
495
496         spin_lock_irqsave (&priv->lock, flags);
497
498         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
499         priv->bc_maxpayload = 512;
500
501         /* Determine speed limit */
502         for (i = 0; i < host->node_count; i++)
503                 if (max_speed > host->speed[i])
504                         max_speed = host->speed[i];
505         priv->bc_sspd = max_speed;
506
507         /* We'll use our maxpayload as the default mtu */
508         if (set_mtu) {
509                 dev->mtu = min(ETH1394_DATA_LEN,
510                                (int)(maxpayload -
511                                      (sizeof(union eth1394_hdr) +
512                                       ETHER1394_GASP_OVERHEAD)));
513
514                 /* Set our hardware address while we're at it */
515                 memcpy(dev->dev_addr, &guid, sizeof(u64));
516                 memset(dev->broadcast, 0xff, sizeof(u64));
517         }
518
519         spin_unlock_irqrestore (&priv->lock, flags);
520 }
521
522 /* This function is called right before register_netdev */
523 static void ether1394_init_dev (struct net_device *dev)
524 {
525         /* Our functions */
526         dev->open               = ether1394_open;
527         dev->stop               = ether1394_stop;
528         dev->hard_start_xmit    = ether1394_tx;
529         dev->get_stats          = ether1394_stats;
530         dev->tx_timeout         = ether1394_tx_timeout;
531         dev->change_mtu         = ether1394_change_mtu;
532
533         dev->hard_header        = ether1394_header;
534         dev->rebuild_header     = ether1394_rebuild_header;
535         dev->hard_header_cache  = ether1394_header_cache;
536         dev->header_cache_update= ether1394_header_cache_update;
537         dev->hard_header_parse  = ether1394_header_parse;
538         dev->set_mac_address    = ether1394_mac_addr;
539         SET_ETHTOOL_OPS(dev, &ethtool_ops);
540
541         /* Some constants */
542         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
543         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
544         dev->features           = NETIF_F_HIGHDMA;
545         dev->addr_len           = ETH1394_ALEN;
546         dev->hard_header_len    = ETH1394_HLEN;
547         dev->type               = ARPHRD_IEEE1394;
548
549         ether1394_reset_priv (dev, 1);
550 }
551
552 /*
553  * This function is called every time a card is found. It is generally called
554  * when the module is installed. This is where we add all of our ethernet
555  * devices. One for each host.
556  */
557 static void ether1394_add_host (struct hpsb_host *host)
558 {
559         struct eth1394_host_info *hi = NULL;
560         struct net_device *dev = NULL;
561         struct eth1394_priv *priv;
562         u64 fifo_addr;
563
564         if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
565                 return;
566
567         fifo_addr = hpsb_allocate_and_register_addrspace(
568                         &eth1394_highlevel, host, &addr_ops,
569                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
570                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
571         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
572                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
573                 return;
574         }
575
576         /* We should really have our own alloc_hpsbdev() function in
577          * net_init.c instead of calling the one for ethernet then hijacking
578          * it for ourselves.  That way we'd be a real networking device. */
579         dev = alloc_etherdev(sizeof (struct eth1394_priv));
580
581         if (dev == NULL) {
582                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
583                                  "etherdevice for IEEE 1394 device %s-%d\n",
584                                  host->driver->name, host->id);
585                 goto out;
586         }
587
588         SET_MODULE_OWNER(dev);
589 #if 0
590         /* FIXME - Is this the correct parent device anyway? */
591         SET_NETDEV_DEV(dev, &host->device);
592 #endif
593
594         priv = netdev_priv(dev);
595
596         INIT_LIST_HEAD(&priv->ip_node_list);
597
598         spin_lock_init(&priv->lock);
599         priv->host = host;
600         priv->local_fifo = fifo_addr;
601
602         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
603
604         if (hi == NULL) {
605                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
606                                  "hostinfo for IEEE 1394 device %s-%d\n",
607                                  host->driver->name, host->id);
608                 goto out;
609         }
610
611         ether1394_init_dev(dev);
612
613         if (register_netdev (dev)) {
614                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
615                 goto out;
616         }
617
618         ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
619                        host->id);
620
621         hi->host = host;
622         hi->dev = dev;
623
624         /* Ignore validity in hopes that it will be set in the future.  It'll
625          * be checked when the eth device is opened. */
626         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
627
628         priv->iso = hpsb_iso_recv_init(host,
629                                        ETHER1394_ISO_BUF_SIZE,
630                                        ETHER1394_GASP_BUFFERS,
631                                        priv->broadcast_channel,
632                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
633                                        1, ether1394_iso);
634         if (priv->iso == NULL) {
635                 ETH1394_PRINT(KERN_ERR, dev->name,
636                               "Could not allocate isochronous receive context "
637                               "for the broadcast channel\n");
638                 priv->bc_state = ETHER1394_BC_ERROR;
639         } else {
640                 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
641                         priv->bc_state = ETHER1394_BC_STOPPED;
642                 else
643                         priv->bc_state = ETHER1394_BC_RUNNING;
644         }
645         return;
646 out:
647         if (dev)
648                 free_netdev(dev);
649         if (hi)
650                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
651         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
652 }
653
654 /* Remove a card from our list */
655 static void ether1394_remove_host (struct hpsb_host *host)
656 {
657         struct eth1394_host_info *hi;
658         struct eth1394_priv *priv;
659
660         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
661         if (!hi)
662                 return;
663         priv = netdev_priv(hi->dev);
664         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
665         if (priv->iso)
666                 hpsb_iso_shutdown(priv->iso);
667         unregister_netdev(hi->dev);
668         free_netdev(hi->dev);
669 }
670
671 /* A reset has just arisen */
672 static void ether1394_host_reset (struct hpsb_host *host)
673 {
674         struct eth1394_host_info *hi;
675         struct eth1394_priv *priv;
676         struct net_device *dev;
677         struct list_head *lh, *n;
678         struct eth1394_node_ref *node;
679         struct eth1394_node_info *node_info;
680         unsigned long flags;
681
682         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
683
684         /* This can happen for hosts that we don't use */
685         if (!hi)
686                 return;
687
688         dev = hi->dev;
689         priv = (struct eth1394_priv *)netdev_priv(dev);
690
691         /* Reset our private host data, but not our mtu */
692         netif_stop_queue (dev);
693         ether1394_reset_priv (dev, 0);
694
695         list_for_each_entry(node, &priv->ip_node_list, list) {
696                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
697
698                 spin_lock_irqsave(&node_info->pdg.lock, flags);
699
700                 list_for_each_safe(lh, n, &node_info->pdg.list) {
701                         purge_partial_datagram(lh);
702                 }
703
704                 INIT_LIST_HEAD(&(node_info->pdg.list));
705                 node_info->pdg.sz = 0;
706
707                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
708         }
709
710         netif_wake_queue (dev);
711 }
712
713 /******************************************
714  * HW Header net device functions
715  ******************************************/
716 /* These functions have been adapted from net/ethernet/eth.c */
717
718
719 /* Create a fake MAC header for an arbitrary protocol layer.
720  * saddr=NULL means use device source address
721  * daddr=NULL means leave destination address (eg unresolved arp). */
722 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
723                             unsigned short type, void *daddr, void *saddr,
724                             unsigned len)
725 {
726         struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
727
728         eth->h_proto = htons(type);
729
730         if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
731                 memset(eth->h_dest, 0, dev->addr_len);
732                 return(dev->hard_header_len);
733         }
734
735         if (daddr) {
736                 memcpy(eth->h_dest,daddr,dev->addr_len);
737                 return dev->hard_header_len;
738         }
739
740         return -dev->hard_header_len;
741
742 }
743
744
745 /* Rebuild the faked MAC header. This is called after an ARP
746  * (or in future other address resolution) has completed on this
747  * sk_buff. We now let ARP fill in the other fields.
748  *
749  * This routine CANNOT use cached dst->neigh!
750  * Really, it is used only when dst->neigh is wrong.
751  */
752 static int ether1394_rebuild_header(struct sk_buff *skb)
753 {
754         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
755         struct net_device *dev = skb->dev;
756
757         switch (eth->h_proto) {
758
759 #ifdef CONFIG_INET
760         case __constant_htons(ETH_P_IP):
761                 return arp_find((unsigned char*)&eth->h_dest, skb);
762 #endif
763         default:
764                 ETH1394_PRINT(KERN_DEBUG, dev->name,
765                               "unable to resolve type %04x addresses.\n",
766                               ntohs(eth->h_proto));
767                 break;
768         }
769
770         return 0;
771 }
772
773 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
774 {
775         struct net_device *dev = skb->dev;
776         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
777         return ETH1394_ALEN;
778 }
779
780
781 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
782 {
783         unsigned short type = hh->hh_type;
784         struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
785                                                       (16 - ETH1394_HLEN));
786         struct net_device *dev = neigh->dev;
787
788         if (type == htons(ETH_P_802_3))
789                 return -1;
790
791         eth->h_proto = type;
792         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
793
794         hh->hh_len = ETH1394_HLEN;
795         return 0;
796 }
797
798 /* Called by Address Resolution module to notify changes in address. */
799 static void ether1394_header_cache_update(struct hh_cache *hh,
800                                           struct net_device *dev,
801                                           unsigned char * haddr)
802 {
803         memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
804 }
805
806 static int ether1394_mac_addr(struct net_device *dev, void *p)
807 {
808         if (netif_running(dev))
809                 return -EBUSY;
810
811         /* Not going to allow setting the MAC address, we really need to use
812          * the real one supplied by the hardware */
813          return -EINVAL;
814  }
815
816
817
818 /******************************************
819  * Datagram reception code
820  ******************************************/
821
822 /* Copied from net/ethernet/eth.c */
823 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
824 {
825         struct eth1394hdr *eth;
826         unsigned char *rawp;
827
828         skb_reset_mac_header(skb);
829         skb_pull (skb, ETH1394_HLEN);
830         eth = eth1394_hdr(skb);
831
832         if (*eth->h_dest & 1) {
833                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
834                         skb->pkt_type = PACKET_BROADCAST;
835 #if 0
836                 else
837                         skb->pkt_type = PACKET_MULTICAST;
838 #endif
839         } else {
840                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
841                         skb->pkt_type = PACKET_OTHERHOST;
842         }
843
844         if (ntohs (eth->h_proto) >= 1536)
845                 return eth->h_proto;
846
847         rawp = skb->data;
848
849         if (*(unsigned short *)rawp == 0xFFFF)
850                 return htons (ETH_P_802_3);
851
852         return htons (ETH_P_802_2);
853 }
854
855 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
856  * We also perform ARP translation here, if need be.  */
857 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
858                                  nodeid_t srcid, nodeid_t destid,
859                                  u16 ether_type)
860 {
861         struct eth1394_priv *priv = netdev_priv(dev);
862         u64 dest_hw;
863         unsigned short ret = 0;
864
865         /* Setup our hw addresses. We use these to build the
866          * ethernet header.  */
867         if (destid == (LOCAL_BUS | ALL_NODES))
868                 dest_hw = ~0ULL;  /* broadcast */
869         else
870                 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
871                                       priv->host->csr.guid_lo);
872
873         /* If this is an ARP packet, convert it. First, we want to make
874          * use of some of the fields, since they tell us a little bit
875          * about the sending machine.  */
876         if (ether_type == htons(ETH_P_ARP)) {
877                 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
878                 struct arphdr *arp = (struct arphdr *)skb->data;
879                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
880                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
881                         ntohl(arp1394->fifo_lo);
882                 u8 max_rec = min(priv->host->csr.max_rec,
883                                  (u8)(arp1394->max_rec));
884                 int sspd = arp1394->sspd;
885                 u16 maxpayload;
886                 struct eth1394_node_ref *node;
887                 struct eth1394_node_info *node_info;
888                 __be64 guid;
889
890                 /* Sanity check. MacOSX seems to be sending us 131 in this
891                  * field (atleast on my Panther G5). Not sure why. */
892                 if (sspd > 5 || sspd < 0)
893                         sspd = 0;
894
895                 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
896
897                 guid = get_unaligned(&arp1394->s_uniq_id);
898                 node = eth1394_find_node_guid(&priv->ip_node_list,
899                                               be64_to_cpu(guid));
900                 if (!node) {
901                         return 0;
902                 }
903
904                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
905
906                 /* Update our speed/payload/fifo_offset table */
907                 node_info->maxpayload = maxpayload;
908                 node_info->sspd =       sspd;
909                 node_info->fifo =       fifo_addr;
910
911                 /* Now that we're done with the 1394 specific stuff, we'll
912                  * need to alter some of the data.  Believe it or not, all
913                  * that needs to be done is sender_IP_address needs to be
914                  * moved, the destination hardware address get stuffed
915                  * in and the hardware address length set to 8.
916                  *
917                  * IMPORTANT: The code below overwrites 1394 specific data
918                  * needed above so keep the munging of the data for the
919                  * higher level IP stack last. */
920
921                 arp->ar_hln = 8;
922                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
923                 *(u32*)arp_ptr = arp1394->sip;  /* move sender IP addr */
924                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
925
926                 if (arp->ar_op == htons(ARPOP_REQUEST))
927                         memset(arp_ptr, 0, sizeof(u64));
928                 else
929                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
930         }
931
932         /* Now add the ethernet header. */
933         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
934                              skb->len) >= 0)
935                 ret = ether1394_type_trans(skb, dev);
936
937         return ret;
938 }
939
940 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
941 {
942         struct fragment_info *fi;
943
944         list_for_each_entry(fi, frag_list, list) {
945                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
946                        ((offset + len - 1) < fi->offset)))
947                         return 1;
948         }
949         return 0;
950 }
951
952 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
953 {
954         struct partial_datagram *pd;
955
956         list_for_each_entry(pd, pdgl, list) {
957                 if (pd->dgl == dgl)
958                         return &pd->list;
959         }
960         return NULL;
961 }
962
963 /* Assumes that new fragment does not overlap any existing fragments */
964 static int new_fragment(struct list_head *frag_info, int offset, int len)
965 {
966         struct list_head *lh;
967         struct fragment_info *fi, *fi2, *new;
968
969         list_for_each(lh, frag_info) {
970                 fi = list_entry(lh, struct fragment_info, list);
971                 if ((fi->offset + fi->len) == offset) {
972                         /* The new fragment can be tacked on to the end */
973                         fi->len += len;
974                         /* Did the new fragment plug a hole? */
975                         fi2 = list_entry(lh->next, struct fragment_info, list);
976                         if ((fi->offset + fi->len) == fi2->offset) {
977                                 /* glue fragments together */
978                                 fi->len += fi2->len;
979                                 list_del(lh->next);
980                                 kfree(fi2);
981                         }
982                         return 0;
983                 } else if ((offset + len) == fi->offset) {
984                         /* The new fragment can be tacked on to the beginning */
985                         fi->offset = offset;
986                         fi->len += len;
987                         /* Did the new fragment plug a hole? */
988                         fi2 = list_entry(lh->prev, struct fragment_info, list);
989                         if ((fi2->offset + fi2->len) == fi->offset) {
990                                 /* glue fragments together */
991                                 fi2->len += fi->len;
992                                 list_del(lh);
993                                 kfree(fi);
994                         }
995                         return 0;
996                 } else if (offset > (fi->offset + fi->len)) {
997                         break;
998                 } else if ((offset + len) < fi->offset) {
999                         lh = lh->prev;
1000                         break;
1001                 }
1002         }
1003
1004         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1005         if (!new)
1006                 return -ENOMEM;
1007
1008         new->offset = offset;
1009         new->len = len;
1010
1011         list_add(&new->list, lh);
1012
1013         return 0;
1014 }
1015
1016 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
1017                                 int dgl, int dg_size, char *frag_buf,
1018                                 int frag_off, int frag_len)
1019 {
1020         struct partial_datagram *new;
1021
1022         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1023         if (!new)
1024                 return -ENOMEM;
1025
1026         INIT_LIST_HEAD(&new->frag_info);
1027
1028         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1029                 kfree(new);
1030                 return -ENOMEM;
1031         }
1032
1033         new->dgl = dgl;
1034         new->dg_size = dg_size;
1035
1036         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1037         if (!new->skb) {
1038                 struct fragment_info *fi = list_entry(new->frag_info.next,
1039                                                       struct fragment_info,
1040                                                       list);
1041                 kfree(fi);
1042                 kfree(new);
1043                 return -ENOMEM;
1044         }
1045
1046         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1047         new->pbuf = skb_put(new->skb, dg_size);
1048         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1049
1050         list_add(&new->list, pdgl);
1051
1052         return 0;
1053 }
1054
1055 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1056                                    char *frag_buf, int frag_off, int frag_len)
1057 {
1058         struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1059
1060         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1061                 return -ENOMEM;
1062         }
1063
1064         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1065
1066         /* Move list entry to beginnig of list so that oldest partial
1067          * datagrams percolate to the end of the list */
1068         list_move(lh, pdgl);
1069
1070         return 0;
1071 }
1072
1073 static int is_datagram_complete(struct list_head *lh, int dg_size)
1074 {
1075         struct partial_datagram *pd;
1076         struct fragment_info *fi;
1077
1078         pd = list_entry(lh, struct partial_datagram, list);
1079         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1080
1081         return (fi->len == dg_size);
1082 }
1083
1084 /* Packet reception. We convert the IP1394 encapsulation header to an
1085  * ethernet header, and fill it with some of our other fields. This is
1086  * an incoming packet from the 1394 bus.  */
1087 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1088                                   char *buf, int len)
1089 {
1090         struct sk_buff *skb;
1091         unsigned long flags;
1092         struct eth1394_priv *priv = netdev_priv(dev);
1093         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1094         u16 ether_type = 0;  /* initialized to clear warning */
1095         int hdr_len;
1096         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1097         struct eth1394_node_info *node_info;
1098
1099         if (!ud) {
1100                 struct eth1394_node_ref *node;
1101                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1102                 if (!node) {
1103                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1104                                    "lookup failure: " NODE_BUS_FMT,
1105                                    NODE_BUS_ARGS(priv->host, srcid));
1106                         priv->stats.rx_dropped++;
1107                         return -1;
1108                 }
1109                 ud = node->ud;
1110
1111                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1112         }
1113
1114         node_info = (struct eth1394_node_info*)ud->device.driver_data;
1115
1116         /* First, did we receive a fragmented or unfragmented datagram? */
1117         hdr->words.word1 = ntohs(hdr->words.word1);
1118
1119         hdr_len = hdr_type_len[hdr->common.lf];
1120
1121         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1122                 /* An unfragmented datagram has been received by the ieee1394
1123                  * bus. Build an skbuff around it so we can pass it to the
1124                  * high level network layer. */
1125
1126                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1127                 if (!skb) {
1128                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1129                         priv->stats.rx_dropped++;
1130                         return -1;
1131                 }
1132                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1133                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1134                 ether_type = hdr->uf.ether_type;
1135         } else {
1136                 /* A datagram fragment has been received, now the fun begins. */
1137
1138                 struct list_head *pdgl, *lh;
1139                 struct partial_datagram *pd;
1140                 int fg_off;
1141                 int fg_len = len - hdr_len;
1142                 int dg_size;
1143                 int dgl;
1144                 int retval;
1145                 struct pdg_list *pdg = &(node_info->pdg);
1146
1147                 hdr->words.word3 = ntohs(hdr->words.word3);
1148                 /* The 4th header word is reserved so no need to do ntohs() */
1149
1150                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1151                         ether_type = hdr->ff.ether_type;
1152                         dgl = hdr->ff.dgl;
1153                         dg_size = hdr->ff.dg_size + 1;
1154                         fg_off = 0;
1155                 } else {
1156                         hdr->words.word2 = ntohs(hdr->words.word2);
1157                         dgl = hdr->sf.dgl;
1158                         dg_size = hdr->sf.dg_size + 1;
1159                         fg_off = hdr->sf.fg_off;
1160                 }
1161                 spin_lock_irqsave(&pdg->lock, flags);
1162
1163                 pdgl = &(pdg->list);
1164                 lh = find_partial_datagram(pdgl, dgl);
1165
1166                 if (lh == NULL) {
1167                         while (pdg->sz >= max_partial_datagrams) {
1168                                 /* remove the oldest */
1169                                 purge_partial_datagram(pdgl->prev);
1170                                 pdg->sz--;
1171                         }
1172
1173                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1174                                                       buf + hdr_len, fg_off,
1175                                                       fg_len);
1176                         if (retval < 0) {
1177                                 spin_unlock_irqrestore(&pdg->lock, flags);
1178                                 goto bad_proto;
1179                         }
1180                         pdg->sz++;
1181                         lh = find_partial_datagram(pdgl, dgl);
1182                 } else {
1183                         struct partial_datagram *pd;
1184
1185                         pd = list_entry(lh, struct partial_datagram, list);
1186
1187                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1188                                 /* Overlapping fragments, obliterate old
1189                                  * datagram and start new one. */
1190                                 purge_partial_datagram(lh);
1191                                 retval = new_partial_datagram(dev, pdgl, dgl,
1192                                                               dg_size,
1193                                                               buf + hdr_len,
1194                                                               fg_off, fg_len);
1195                                 if (retval < 0) {
1196                                         pdg->sz--;
1197                                         spin_unlock_irqrestore(&pdg->lock, flags);
1198                                         goto bad_proto;
1199                                 }
1200                         } else {
1201                                 retval = update_partial_datagram(pdgl, lh,
1202                                                                  buf + hdr_len,
1203                                                                  fg_off, fg_len);
1204                                 if (retval < 0) {
1205                                         /* Couldn't save off fragment anyway
1206                                          * so might as well obliterate the
1207                                          * datagram now. */
1208                                         purge_partial_datagram(lh);
1209                                         pdg->sz--;
1210                                         spin_unlock_irqrestore(&pdg->lock, flags);
1211                                         goto bad_proto;
1212                                 }
1213                         } /* fragment overlap */
1214                 } /* new datagram or add to existing one */
1215
1216                 pd = list_entry(lh, struct partial_datagram, list);
1217
1218                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1219                         pd->ether_type = ether_type;
1220                 }
1221
1222                 if (is_datagram_complete(lh, dg_size)) {
1223                         ether_type = pd->ether_type;
1224                         pdg->sz--;
1225                         skb = skb_get(pd->skb);
1226                         purge_partial_datagram(lh);
1227                         spin_unlock_irqrestore(&pdg->lock, flags);
1228                 } else {
1229                         /* Datagram is not complete, we're done for the
1230                          * moment. */
1231                         spin_unlock_irqrestore(&pdg->lock, flags);
1232                         return 0;
1233                 }
1234         } /* unframgented datagram or fragmented one */
1235
1236         /* Write metadata, and then pass to the receive level */
1237         skb->dev = dev;
1238         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1239
1240         /* Parse the encapsulation header. This actually does the job of
1241          * converting to an ethernet frame header, aswell as arp
1242          * conversion if needed. ARP conversion is easier in this
1243          * direction, since we are using ethernet as our backend.  */
1244         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1245                                               ether_type);
1246
1247
1248         spin_lock_irqsave(&priv->lock, flags);
1249         if (!skb->protocol) {
1250                 priv->stats.rx_errors++;
1251                 priv->stats.rx_dropped++;
1252                 dev_kfree_skb_any(skb);
1253                 goto bad_proto;
1254         }
1255
1256         if (netif_rx(skb) == NET_RX_DROP) {
1257                 priv->stats.rx_errors++;
1258                 priv->stats.rx_dropped++;
1259                 goto bad_proto;
1260         }
1261
1262         /* Statistics */
1263         priv->stats.rx_packets++;
1264         priv->stats.rx_bytes += skb->len;
1265
1266 bad_proto:
1267         if (netif_queue_stopped(dev))
1268                 netif_wake_queue(dev);
1269         spin_unlock_irqrestore(&priv->lock, flags);
1270
1271         dev->last_rx = jiffies;
1272
1273         return 0;
1274 }
1275
1276 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1277                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1278 {
1279         struct eth1394_host_info *hi;
1280
1281         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1282         if (hi == NULL) {
1283                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1284                                 host->driver->name);
1285                 return RCODE_ADDRESS_ERROR;
1286         }
1287
1288         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1289                 return RCODE_ADDRESS_ERROR;
1290         else
1291                 return RCODE_COMPLETE;
1292 }
1293
1294 static void ether1394_iso(struct hpsb_iso *iso)
1295 {
1296         quadlet_t *data;
1297         char *buf;
1298         struct eth1394_host_info *hi;
1299         struct net_device *dev;
1300         struct eth1394_priv *priv;
1301         unsigned int len;
1302         u32 specifier_id;
1303         u16 source_id;
1304         int i;
1305         int nready;
1306
1307         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1308         if (hi == NULL) {
1309                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1310                                 iso->host->driver->name);
1311                 return;
1312         }
1313
1314         dev = hi->dev;
1315
1316         nready = hpsb_iso_n_ready(iso);
1317         for (i = 0; i < nready; i++) {
1318                 struct hpsb_iso_packet_info *info =
1319                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1320                 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1321
1322                 /* skip over GASP header */
1323                 buf = (char *)data + 8;
1324                 len = info->len - 8;
1325
1326                 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1327                                 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1328                 source_id = be32_to_cpu(data[0]) >> 16;
1329
1330                 priv = netdev_priv(dev);
1331
1332                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1333                    specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1334                         /* This packet is not for us */
1335                         continue;
1336                 }
1337                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1338                                        buf, len);
1339         }
1340
1341         hpsb_iso_recv_release_packets(iso, i);
1342
1343         dev->last_rx = jiffies;
1344 }
1345
1346 /******************************************
1347  * Datagram transmission code
1348  ******************************************/
1349
1350 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1351  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1352  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1353  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1354  * judge.
1355  *
1356  * Now that the EUI is used for the hardware address all we need to do to make
1357  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1358  * speed, and unicast FIFO address information between the sender_unique_id
1359  * and the IP addresses.
1360  */
1361 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1362                                      struct net_device *dev)
1363 {
1364         struct eth1394_priv *priv = netdev_priv(dev);
1365
1366         struct arphdr *arp = (struct arphdr *)skb->data;
1367         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1368         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1369
1370         /* Believe it or not, all that need to happen is sender IP get moved
1371          * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo.  */
1372         arp1394->hw_addr_len    = 16;
1373         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1374         arp1394->max_rec        = priv->host->csr.max_rec;
1375         arp1394->sspd           = priv->host->csr.lnk_spd;
1376         arp1394->fifo_hi        = htons (priv->local_fifo >> 32);
1377         arp1394->fifo_lo        = htonl (priv->local_fifo & ~0x0);
1378
1379         return;
1380 }
1381
1382 /* We need to encapsulate the standard header with our own. We use the
1383  * ethernet header's proto for our own. */
1384 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1385                                                __be16 proto,
1386                                                union eth1394_hdr *hdr,
1387                                                u16 dg_size, u16 dgl)
1388 {
1389         unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1390
1391         /* Does it all fit in one packet? */
1392         if (dg_size <= adj_max_payload) {
1393                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1394                 hdr->uf.ether_type = proto;
1395         } else {
1396                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1397                 hdr->ff.ether_type = proto;
1398                 hdr->ff.dg_size = dg_size - 1;
1399                 hdr->ff.dgl = dgl;
1400                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1401         }
1402         return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1403 }
1404
1405 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1406                                           unsigned int max_payload,
1407                                           union eth1394_hdr *hdr)
1408 {
1409         union eth1394_hdr *bufhdr;
1410         int ftype = hdr->common.lf;
1411         int hdrsz = hdr_type_len[ftype];
1412         unsigned int adj_max_payload = max_payload - hdrsz;
1413
1414         switch(ftype) {
1415         case ETH1394_HDR_LF_UF:
1416                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1417                 bufhdr->words.word1 = htons(hdr->words.word1);
1418                 bufhdr->words.word2 = hdr->words.word2;
1419                 break;
1420
1421         case ETH1394_HDR_LF_FF:
1422                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1423                 bufhdr->words.word1 = htons(hdr->words.word1);
1424                 bufhdr->words.word2 = hdr->words.word2;
1425                 bufhdr->words.word3 = htons(hdr->words.word3);
1426                 bufhdr->words.word4 = 0;
1427
1428                 /* Set frag type here for future interior fragments */
1429                 hdr->common.lf = ETH1394_HDR_LF_IF;
1430                 hdr->sf.fg_off = 0;
1431                 break;
1432
1433         default:
1434                 hdr->sf.fg_off += adj_max_payload;
1435                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1436                 if (max_payload >= skb->len)
1437                         hdr->common.lf = ETH1394_HDR_LF_LF;
1438                 bufhdr->words.word1 = htons(hdr->words.word1);
1439                 bufhdr->words.word2 = htons(hdr->words.word2);
1440                 bufhdr->words.word3 = htons(hdr->words.word3);
1441                 bufhdr->words.word4 = 0;
1442         }
1443
1444         return min(max_payload, skb->len);
1445 }
1446
1447 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1448 {
1449         struct hpsb_packet *p;
1450
1451         p = hpsb_alloc_packet(0);
1452         if (p) {
1453                 p->host = host;
1454                 p->generation = get_hpsb_generation(host);
1455                 p->type = hpsb_async;
1456         }
1457         return p;
1458 }
1459
1460 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1461                                        struct hpsb_host *host, nodeid_t node,
1462                                        u64 addr, void * data, int tx_len)
1463 {
1464         p->node_id = node;
1465         p->data = NULL;
1466
1467         p->tcode = TCODE_WRITEB;
1468         p->header[1] = (host->node_id << 16) | (addr >> 32);
1469         p->header[2] = addr & 0xffffffff;
1470
1471         p->header_size = 16;
1472         p->expect_response = 1;
1473
1474         if (hpsb_get_tlabel(p)) {
1475                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1476                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1477                 return -1;
1478         }
1479         p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1480                 | (1 << 8) | (TCODE_WRITEB << 4);
1481
1482         p->header[3] = tx_len << 16;
1483         p->data_size = (tx_len + 3) & ~3;
1484         p->data = (quadlet_t*)data;
1485
1486         return 0;
1487 }
1488
1489 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1490                                        struct eth1394_priv *priv,
1491                                        struct sk_buff *skb, int length)
1492 {
1493         p->header_size = 4;
1494         p->tcode = TCODE_STREAM_DATA;
1495
1496         p->header[0] = (length << 16) | (3 << 14)
1497                 | ((priv->broadcast_channel) << 8)
1498                 | (TCODE_STREAM_DATA << 4);
1499         p->data_size = length;
1500         p->data = ((quadlet_t*)skb->data) - 2;
1501         p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1502                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1503         p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1504                                  ETHER1394_GASP_VERSION);
1505
1506         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1507          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1508          * value based on packet->node_id if packet->node_id is not set. */
1509         p->node_id = ALL_NODES;
1510         p->speed_code = priv->bc_sspd;
1511 }
1512
1513 static void ether1394_free_packet(struct hpsb_packet *packet)
1514 {
1515         if (packet->tcode != TCODE_STREAM_DATA)
1516                 hpsb_free_tlabel(packet);
1517         hpsb_free_packet(packet);
1518 }
1519
1520 static void ether1394_complete_cb(void *__ptask);
1521
1522 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1523 {
1524         struct eth1394_priv *priv = ptask->priv;
1525         struct hpsb_packet *packet = NULL;
1526
1527         packet = ether1394_alloc_common_packet(priv->host);
1528         if (!packet)
1529                 return -1;
1530
1531         if (ptask->tx_type == ETH1394_GASP) {
1532                 int length = tx_len + (2 * sizeof(quadlet_t));
1533
1534                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1535         } else if (ether1394_prep_write_packet(packet, priv->host,
1536                                                ptask->dest_node,
1537                                                ptask->addr, ptask->skb->data,
1538                                                tx_len)) {
1539                 hpsb_free_packet(packet);
1540                 return -1;
1541         }
1542
1543         ptask->packet = packet;
1544         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1545                                       ptask);
1546
1547         if (hpsb_send_packet(packet) < 0) {
1548                 ether1394_free_packet(packet);
1549                 return -1;
1550         }
1551
1552         return 0;
1553 }
1554
1555
1556 /* Task function to be run when a datagram transmission is completed */
1557 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1558 {
1559         struct sk_buff *skb = ptask->skb;
1560         struct net_device *dev = skb->dev;
1561         struct eth1394_priv *priv = netdev_priv(dev);
1562         unsigned long flags;
1563
1564         /* Statistics */
1565         spin_lock_irqsave(&priv->lock, flags);
1566         if (fail) {
1567                 priv->stats.tx_dropped++;
1568                 priv->stats.tx_errors++;
1569         } else {
1570                 priv->stats.tx_bytes += skb->len;
1571                 priv->stats.tx_packets++;
1572         }
1573         spin_unlock_irqrestore(&priv->lock, flags);
1574
1575         dev_kfree_skb_any(skb);
1576         kmem_cache_free(packet_task_cache, ptask);
1577 }
1578
1579
1580 /* Callback for when a packet has been sent and the status of that packet is
1581  * known */
1582 static void ether1394_complete_cb(void *__ptask)
1583 {
1584         struct packet_task *ptask = (struct packet_task *)__ptask;
1585         struct hpsb_packet *packet = ptask->packet;
1586         int fail = 0;
1587
1588         if (packet->tcode != TCODE_STREAM_DATA)
1589                 fail = hpsb_packet_success(packet);
1590
1591         ether1394_free_packet(packet);
1592
1593         ptask->outstanding_pkts--;
1594         if (ptask->outstanding_pkts > 0 && !fail) {
1595                 int tx_len;
1596
1597                 /* Add the encapsulation header to the fragment */
1598                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1599                                                &ptask->hdr);
1600                 if (ether1394_send_packet(ptask, tx_len))
1601                         ether1394_dg_complete(ptask, 1);
1602         } else {
1603                 ether1394_dg_complete(ptask, fail);
1604         }
1605 }
1606
1607
1608
1609 /* Transmit a packet (called by kernel) */
1610 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1611 {
1612         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1613         struct eth1394hdr *eth;
1614         struct eth1394_priv *priv = netdev_priv(dev);
1615         __be16 proto;
1616         unsigned long flags;
1617         nodeid_t dest_node;
1618         eth1394_tx_type tx_type;
1619         int ret = 0;
1620         unsigned int tx_len;
1621         unsigned int max_payload;
1622         u16 dg_size;
1623         u16 dgl;
1624         struct packet_task *ptask;
1625         struct eth1394_node_ref *node;
1626         struct eth1394_node_info *node_info = NULL;
1627
1628         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1629         if (ptask == NULL) {
1630                 ret = -ENOMEM;
1631                 goto fail;
1632         }
1633
1634         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1635          * it does not set our validity bit. We need to compensate for
1636          * that somewhere else, but not in eth1394. */
1637 #if 0
1638         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1639                 ret = -EAGAIN;
1640                 goto fail;
1641         }
1642 #endif
1643
1644         if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1645                 ret = -ENOMEM;
1646                 goto fail;
1647         }
1648
1649         /* Get rid of the fake eth1394 header, but save a pointer */
1650         eth = (struct eth1394hdr*)skb->data;
1651         skb_pull(skb, ETH1394_HLEN);
1652
1653         proto = eth->h_proto;
1654         dg_size = skb->len;
1655
1656         /* Set the transmission type for the packet.  ARP packets and IP
1657          * broadcast packets are sent via GASP. */
1658         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1659             proto == htons(ETH_P_ARP) ||
1660             (proto == htons(ETH_P_IP) &&
1661              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1662                 tx_type = ETH1394_GASP;
1663                 dest_node = LOCAL_BUS | ALL_NODES;
1664                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1665                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1666                 dgl = priv->bc_dgl;
1667                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1668                         priv->bc_dgl++;
1669         } else {
1670                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1671
1672                 node = eth1394_find_node_guid(&priv->ip_node_list,
1673                                               be64_to_cpu(guid));
1674                 if (!node) {
1675                         ret = -EAGAIN;
1676                         goto fail;
1677                 }
1678                 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1679                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1680                         ret = -EAGAIN;
1681                         goto fail;
1682                 }
1683
1684                 dest_node = node->ud->ne->nodeid;
1685                 max_payload = node_info->maxpayload;
1686                 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1687
1688                 dgl = node_info->dgl;
1689                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1690                         node_info->dgl++;
1691                 tx_type = ETH1394_WRREQ;
1692         }
1693
1694         /* If this is an ARP packet, convert it */
1695         if (proto == htons(ETH_P_ARP))
1696                 ether1394_arp_to_1394arp (skb, dev);
1697
1698         ptask->hdr.words.word1 = 0;
1699         ptask->hdr.words.word2 = 0;
1700         ptask->hdr.words.word3 = 0;
1701         ptask->hdr.words.word4 = 0;
1702         ptask->skb = skb;
1703         ptask->priv = priv;
1704         ptask->tx_type = tx_type;
1705
1706         if (tx_type != ETH1394_GASP) {
1707                 u64 addr;
1708
1709                 spin_lock_irqsave(&priv->lock, flags);
1710                 addr = node_info->fifo;
1711                 spin_unlock_irqrestore(&priv->lock, flags);
1712
1713                 ptask->addr = addr;
1714                 ptask->dest_node = dest_node;
1715         }
1716
1717         ptask->tx_type = tx_type;
1718         ptask->max_payload = max_payload;
1719         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1720                                                              &ptask->hdr, dg_size,
1721                                                              dgl);
1722
1723         /* Add the encapsulation header to the fragment */
1724         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1725         dev->trans_start = jiffies;
1726         if (ether1394_send_packet(ptask, tx_len))
1727                 goto fail;
1728
1729         netif_wake_queue(dev);
1730         return 0;
1731 fail:
1732         if (ptask)
1733                 kmem_cache_free(packet_task_cache, ptask);
1734
1735         if (skb != NULL)
1736                 dev_kfree_skb(skb);
1737
1738         spin_lock_irqsave (&priv->lock, flags);
1739         priv->stats.tx_dropped++;
1740         priv->stats.tx_errors++;
1741         spin_unlock_irqrestore (&priv->lock, flags);
1742
1743         if (netif_queue_stopped(dev))
1744                 netif_wake_queue(dev);
1745
1746         return 0;  /* returning non-zero causes serious problems */
1747 }
1748
1749 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1750 {
1751         strcpy (info->driver, driver_name);
1752         /* FIXME XXX provide sane businfo */
1753         strcpy (info->bus_info, "ieee1394");
1754 }
1755
1756 static struct ethtool_ops ethtool_ops = {
1757         .get_drvinfo = ether1394_get_drvinfo
1758 };
1759
1760 static int __init ether1394_init_module (void)
1761 {
1762         packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1763                                               0, 0, NULL, NULL);
1764
1765         /* Register ourselves as a highlevel driver */
1766         hpsb_register_highlevel(&eth1394_highlevel);
1767
1768         return hpsb_register_protocol(&eth1394_proto_driver);
1769 }
1770
1771 static void __exit ether1394_exit_module (void)
1772 {
1773         hpsb_unregister_protocol(&eth1394_proto_driver);
1774         hpsb_unregister_highlevel(&eth1394_highlevel);
1775         kmem_cache_destroy(packet_task_cache);
1776 }
1777
1778 module_init(ether1394_init_module);
1779 module_exit(ether1394_exit_module);