Merge branch 'ioat-md-accel-for-linus' of git://lost.foo-projects.org/~dwillia2/git/iop
[linux-2.6] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37         /* ZD1211 */
38         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
58         /* ZD1211B */
59         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
60         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
61         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
62         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
63         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
64         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
74         /* "Driverless" devices that need ejecting */
75         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
76         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
77         {}
78 };
79
80 MODULE_LICENSE("GPL");
81 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
82 MODULE_AUTHOR("Ulrich Kunitz");
83 MODULE_AUTHOR("Daniel Drake");
84 MODULE_VERSION("1.0");
85 MODULE_DEVICE_TABLE(usb, usb_ids);
86
87 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
88 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
89
90 /* USB device initialization */
91
92 static int request_fw_file(
93         const struct firmware **fw, const char *name, struct device *device)
94 {
95         int r;
96
97         dev_dbg_f(device, "fw name %s\n", name);
98
99         r = request_firmware(fw, name, device);
100         if (r)
101                 dev_err(device,
102                        "Could not load firmware file %s. Error number %d\n",
103                        name, r);
104         return r;
105 }
106
107 static inline u16 get_bcdDevice(const struct usb_device *udev)
108 {
109         return le16_to_cpu(udev->descriptor.bcdDevice);
110 }
111
112 enum upload_code_flags {
113         REBOOT = 1,
114 };
115
116 /* Ensures that MAX_TRANSFER_SIZE is even. */
117 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
118
119 static int upload_code(struct usb_device *udev,
120         const u8 *data, size_t size, u16 code_offset, int flags)
121 {
122         u8 *p;
123         int r;
124
125         /* USB request blocks need "kmalloced" buffers.
126          */
127         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
128         if (!p) {
129                 dev_err(&udev->dev, "out of memory\n");
130                 r = -ENOMEM;
131                 goto error;
132         }
133
134         size &= ~1;
135         while (size > 0) {
136                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
137                         size : MAX_TRANSFER_SIZE;
138
139                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
140
141                 memcpy(p, data, transfer_size);
142                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
143                         USB_REQ_FIRMWARE_DOWNLOAD,
144                         USB_DIR_OUT | USB_TYPE_VENDOR,
145                         code_offset, 0, p, transfer_size, 1000 /* ms */);
146                 if (r < 0) {
147                         dev_err(&udev->dev,
148                                "USB control request for firmware upload"
149                                " failed. Error number %d\n", r);
150                         goto error;
151                 }
152                 transfer_size = r & ~1;
153
154                 size -= transfer_size;
155                 data += transfer_size;
156                 code_offset += transfer_size/sizeof(u16);
157         }
158
159         if (flags & REBOOT) {
160                 u8 ret;
161
162                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
163                         USB_REQ_FIRMWARE_CONFIRM,
164                         USB_DIR_IN | USB_TYPE_VENDOR,
165                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
166                 if (r != sizeof(ret)) {
167                         dev_err(&udev->dev,
168                                 "control request firmeware confirmation failed."
169                                 " Return value %d\n", r);
170                         if (r >= 0)
171                                 r = -ENODEV;
172                         goto error;
173                 }
174                 if (ret & 0x80) {
175                         dev_err(&udev->dev,
176                                 "Internal error while downloading."
177                                 " Firmware confirm return value %#04x\n",
178                                 (unsigned int)ret);
179                         r = -ENODEV;
180                         goto error;
181                 }
182                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
183                         (unsigned int)ret);
184         }
185
186         r = 0;
187 error:
188         kfree(p);
189         return r;
190 }
191
192 static u16 get_word(const void *data, u16 offset)
193 {
194         const __le16 *p = data;
195         return le16_to_cpu(p[offset]);
196 }
197
198 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
199                        const char* postfix)
200 {
201         scnprintf(buffer, size, "%s%s",
202                 device_type == DEVICE_ZD1211B ?
203                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
204                 postfix);
205         return buffer;
206 }
207
208 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
209         const struct firmware *ub_fw)
210 {
211         const struct firmware *ur_fw = NULL;
212         int offset;
213         int r = 0;
214         char fw_name[128];
215
216         r = request_fw_file(&ur_fw,
217                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
218                 &udev->dev);
219         if (r)
220                 goto error;
221
222         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
223         if (r)
224                 goto error;
225
226         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
227         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
228                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
229
230         /* At this point, the vendor driver downloads the whole firmware
231          * image, hacks around with version IDs, and uploads it again,
232          * completely overwriting the boot code. We do not do this here as
233          * it is not required on any tested devices, and it is suspected to
234          * cause problems. */
235 error:
236         release_firmware(ur_fw);
237         return r;
238 }
239
240 static int upload_firmware(struct usb_device *udev, u8 device_type)
241 {
242         int r;
243         u16 fw_bcdDevice;
244         u16 bcdDevice;
245         const struct firmware *ub_fw = NULL;
246         const struct firmware *uph_fw = NULL;
247         char fw_name[128];
248
249         bcdDevice = get_bcdDevice(udev);
250
251         r = request_fw_file(&ub_fw,
252                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
253                 &udev->dev);
254         if (r)
255                 goto error;
256
257         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
258
259         if (fw_bcdDevice != bcdDevice) {
260                 dev_info(&udev->dev,
261                         "firmware version %#06x and device bootcode version "
262                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
263                 if (bcdDevice <= 0x4313)
264                         dev_warn(&udev->dev, "device has old bootcode, please "
265                                 "report success or failure\n");
266
267                 r = handle_version_mismatch(udev, device_type, ub_fw);
268                 if (r)
269                         goto error;
270         } else {
271                 dev_dbg_f(&udev->dev,
272                         "firmware device id %#06x is equal to the "
273                         "actual device id\n", fw_bcdDevice);
274         }
275
276
277         r = request_fw_file(&uph_fw,
278                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
279                 &udev->dev);
280         if (r)
281                 goto error;
282
283         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
284         if (r) {
285                 dev_err(&udev->dev,
286                         "Could not upload firmware code uph. Error number %d\n",
287                         r);
288         }
289
290         /* FALL-THROUGH */
291 error:
292         release_firmware(ub_fw);
293         release_firmware(uph_fw);
294         return r;
295 }
296
297 #define urb_dev(urb) (&(urb)->dev->dev)
298
299 static inline void handle_regs_int(struct urb *urb)
300 {
301         struct zd_usb *usb = urb->context;
302         struct zd_usb_interrupt *intr = &usb->intr;
303         int len;
304
305         ZD_ASSERT(in_interrupt());
306         spin_lock(&intr->lock);
307
308         if (intr->read_regs_enabled) {
309                 intr->read_regs.length = len = urb->actual_length;
310
311                 if (len > sizeof(intr->read_regs.buffer))
312                         len = sizeof(intr->read_regs.buffer);
313                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
314                 intr->read_regs_enabled = 0;
315                 complete(&intr->read_regs.completion);
316                 goto out;
317         }
318
319         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
320 out:
321         spin_unlock(&intr->lock);
322 }
323
324 static inline void handle_retry_failed_int(struct urb *urb)
325 {
326         struct zd_usb *usb = urb->context;
327         struct zd_mac *mac = zd_usb_to_mac(usb);
328         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
329
330         ieee->stats.tx_errors++;
331         ieee->ieee_stats.tx_retry_limit_exceeded++;
332         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
333 }
334
335
336 static void int_urb_complete(struct urb *urb)
337 {
338         int r;
339         struct usb_int_header *hdr;
340
341         switch (urb->status) {
342         case 0:
343                 break;
344         case -ESHUTDOWN:
345         case -EINVAL:
346         case -ENODEV:
347         case -ENOENT:
348         case -ECONNRESET:
349         case -EPIPE:
350                 goto kfree;
351         default:
352                 goto resubmit;
353         }
354
355         if (urb->actual_length < sizeof(hdr)) {
356                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
357                 goto resubmit;
358         }
359
360         hdr = urb->transfer_buffer;
361         if (hdr->type != USB_INT_TYPE) {
362                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
363                 goto resubmit;
364         }
365
366         switch (hdr->id) {
367         case USB_INT_ID_REGS:
368                 handle_regs_int(urb);
369                 break;
370         case USB_INT_ID_RETRY_FAILED:
371                 handle_retry_failed_int(urb);
372                 break;
373         default:
374                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
375                         (unsigned int)hdr->id);
376                 goto resubmit;
377         }
378
379 resubmit:
380         r = usb_submit_urb(urb, GFP_ATOMIC);
381         if (r) {
382                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
383                 goto kfree;
384         }
385         return;
386 kfree:
387         kfree(urb->transfer_buffer);
388 }
389
390 static inline int int_urb_interval(struct usb_device *udev)
391 {
392         switch (udev->speed) {
393         case USB_SPEED_HIGH:
394                 return 4;
395         case USB_SPEED_LOW:
396                 return 10;
397         case USB_SPEED_FULL:
398         default:
399                 return 1;
400         }
401 }
402
403 static inline int usb_int_enabled(struct zd_usb *usb)
404 {
405         unsigned long flags;
406         struct zd_usb_interrupt *intr = &usb->intr;
407         struct urb *urb;
408
409         spin_lock_irqsave(&intr->lock, flags);
410         urb = intr->urb;
411         spin_unlock_irqrestore(&intr->lock, flags);
412         return urb != NULL;
413 }
414
415 int zd_usb_enable_int(struct zd_usb *usb)
416 {
417         int r;
418         struct usb_device *udev;
419         struct zd_usb_interrupt *intr = &usb->intr;
420         void *transfer_buffer = NULL;
421         struct urb *urb;
422
423         dev_dbg_f(zd_usb_dev(usb), "\n");
424
425         urb = usb_alloc_urb(0, GFP_KERNEL);
426         if (!urb) {
427                 r = -ENOMEM;
428                 goto out;
429         }
430
431         ZD_ASSERT(!irqs_disabled());
432         spin_lock_irq(&intr->lock);
433         if (intr->urb) {
434                 spin_unlock_irq(&intr->lock);
435                 r = 0;
436                 goto error_free_urb;
437         }
438         intr->urb = urb;
439         spin_unlock_irq(&intr->lock);
440
441         /* TODO: make it a DMA buffer */
442         r = -ENOMEM;
443         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
444         if (!transfer_buffer) {
445                 dev_dbg_f(zd_usb_dev(usb),
446                         "couldn't allocate transfer_buffer\n");
447                 goto error_set_urb_null;
448         }
449
450         udev = zd_usb_to_usbdev(usb);
451         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
452                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
453                          int_urb_complete, usb,
454                          intr->interval);
455
456         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
457         r = usb_submit_urb(urb, GFP_KERNEL);
458         if (r) {
459                 dev_dbg_f(zd_usb_dev(usb),
460                          "Couldn't submit urb. Error number %d\n", r);
461                 goto error;
462         }
463
464         return 0;
465 error:
466         kfree(transfer_buffer);
467 error_set_urb_null:
468         spin_lock_irq(&intr->lock);
469         intr->urb = NULL;
470         spin_unlock_irq(&intr->lock);
471 error_free_urb:
472         usb_free_urb(urb);
473 out:
474         return r;
475 }
476
477 void zd_usb_disable_int(struct zd_usb *usb)
478 {
479         unsigned long flags;
480         struct zd_usb_interrupt *intr = &usb->intr;
481         struct urb *urb;
482
483         spin_lock_irqsave(&intr->lock, flags);
484         urb = intr->urb;
485         if (!urb) {
486                 spin_unlock_irqrestore(&intr->lock, flags);
487                 return;
488         }
489         intr->urb = NULL;
490         spin_unlock_irqrestore(&intr->lock, flags);
491
492         usb_kill_urb(urb);
493         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
494         usb_free_urb(urb);
495 }
496
497 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
498                              unsigned int length)
499 {
500         int i;
501         struct zd_mac *mac = zd_usb_to_mac(usb);
502         const struct rx_length_info *length_info;
503
504         if (length < sizeof(struct rx_length_info)) {
505                 /* It's not a complete packet anyhow. */
506                 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
507                 ieee->stats.rx_errors++;
508                 ieee->stats.rx_length_errors++;
509                 return;
510         }
511         length_info = (struct rx_length_info *)
512                 (buffer + length - sizeof(struct rx_length_info));
513
514         /* It might be that three frames are merged into a single URB
515          * transaction. We have to check for the length info tag.
516          *
517          * While testing we discovered that length_info might be unaligned,
518          * because if USB transactions are merged, the last packet will not
519          * be padded. Unaligned access might also happen if the length_info
520          * structure is not present.
521          */
522         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
523         {
524                 unsigned int l, k, n;
525                 for (i = 0, l = 0;; i++) {
526                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
527                         if (k == 0)
528                                 return;
529                         n = l+k;
530                         if (n > length)
531                                 return;
532                         zd_mac_rx_irq(mac, buffer+l, k);
533                         if (i >= 2)
534                                 return;
535                         l = (n+3) & ~3;
536                 }
537         } else {
538                 zd_mac_rx_irq(mac, buffer, length);
539         }
540 }
541
542 static void rx_urb_complete(struct urb *urb)
543 {
544         struct zd_usb *usb;
545         struct zd_usb_rx *rx;
546         const u8 *buffer;
547         unsigned int length;
548
549         switch (urb->status) {
550         case 0:
551                 break;
552         case -ESHUTDOWN:
553         case -EINVAL:
554         case -ENODEV:
555         case -ENOENT:
556         case -ECONNRESET:
557         case -EPIPE:
558                 return;
559         default:
560                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
561                 goto resubmit;
562         }
563
564         buffer = urb->transfer_buffer;
565         length = urb->actual_length;
566         usb = urb->context;
567         rx = &usb->rx;
568
569         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
570                 /* If there is an old first fragment, we don't care. */
571                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
572                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
573                 spin_lock(&rx->lock);
574                 memcpy(rx->fragment, buffer, length);
575                 rx->fragment_length = length;
576                 spin_unlock(&rx->lock);
577                 goto resubmit;
578         }
579
580         spin_lock(&rx->lock);
581         if (rx->fragment_length > 0) {
582                 /* We are on a second fragment, we believe */
583                 ZD_ASSERT(length + rx->fragment_length <=
584                           ARRAY_SIZE(rx->fragment));
585                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
586                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
587                 handle_rx_packet(usb, rx->fragment,
588                                  rx->fragment_length + length);
589                 rx->fragment_length = 0;
590                 spin_unlock(&rx->lock);
591         } else {
592                 spin_unlock(&rx->lock);
593                 handle_rx_packet(usb, buffer, length);
594         }
595
596 resubmit:
597         usb_submit_urb(urb, GFP_ATOMIC);
598 }
599
600 static struct urb *alloc_urb(struct zd_usb *usb)
601 {
602         struct usb_device *udev = zd_usb_to_usbdev(usb);
603         struct urb *urb;
604         void *buffer;
605
606         urb = usb_alloc_urb(0, GFP_KERNEL);
607         if (!urb)
608                 return NULL;
609         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
610                                   &urb->transfer_dma);
611         if (!buffer) {
612                 usb_free_urb(urb);
613                 return NULL;
614         }
615
616         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
617                           buffer, USB_MAX_RX_SIZE,
618                           rx_urb_complete, usb);
619         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
620
621         return urb;
622 }
623
624 static void free_urb(struct urb *urb)
625 {
626         if (!urb)
627                 return;
628         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
629                         urb->transfer_buffer, urb->transfer_dma);
630         usb_free_urb(urb);
631 }
632
633 int zd_usb_enable_rx(struct zd_usb *usb)
634 {
635         int i, r;
636         struct zd_usb_rx *rx = &usb->rx;
637         struct urb **urbs;
638
639         dev_dbg_f(zd_usb_dev(usb), "\n");
640
641         r = -ENOMEM;
642         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
643         if (!urbs)
644                 goto error;
645         for (i = 0; i < URBS_COUNT; i++) {
646                 urbs[i] = alloc_urb(usb);
647                 if (!urbs[i])
648                         goto error;
649         }
650
651         ZD_ASSERT(!irqs_disabled());
652         spin_lock_irq(&rx->lock);
653         if (rx->urbs) {
654                 spin_unlock_irq(&rx->lock);
655                 r = 0;
656                 goto error;
657         }
658         rx->urbs = urbs;
659         rx->urbs_count = URBS_COUNT;
660         spin_unlock_irq(&rx->lock);
661
662         for (i = 0; i < URBS_COUNT; i++) {
663                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
664                 if (r)
665                         goto error_submit;
666         }
667
668         return 0;
669 error_submit:
670         for (i = 0; i < URBS_COUNT; i++) {
671                 usb_kill_urb(urbs[i]);
672         }
673         spin_lock_irq(&rx->lock);
674         rx->urbs = NULL;
675         rx->urbs_count = 0;
676         spin_unlock_irq(&rx->lock);
677 error:
678         if (urbs) {
679                 for (i = 0; i < URBS_COUNT; i++)
680                         free_urb(urbs[i]);
681         }
682         return r;
683 }
684
685 void zd_usb_disable_rx(struct zd_usb *usb)
686 {
687         int i;
688         unsigned long flags;
689         struct urb **urbs;
690         unsigned int count;
691         struct zd_usb_rx *rx = &usb->rx;
692
693         spin_lock_irqsave(&rx->lock, flags);
694         urbs = rx->urbs;
695         count = rx->urbs_count;
696         spin_unlock_irqrestore(&rx->lock, flags);
697         if (!urbs)
698                 return;
699
700         for (i = 0; i < count; i++) {
701                 usb_kill_urb(urbs[i]);
702                 free_urb(urbs[i]);
703         }
704         kfree(urbs);
705
706         spin_lock_irqsave(&rx->lock, flags);
707         rx->urbs = NULL;
708         rx->urbs_count = 0;
709         spin_unlock_irqrestore(&rx->lock, flags);
710 }
711
712 static void tx_urb_complete(struct urb *urb)
713 {
714         int r;
715
716         switch (urb->status) {
717         case 0:
718                 break;
719         case -ESHUTDOWN:
720         case -EINVAL:
721         case -ENODEV:
722         case -ENOENT:
723         case -ECONNRESET:
724         case -EPIPE:
725                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
726                 break;
727         default:
728                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
729                 goto resubmit;
730         }
731 free_urb:
732         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
733                         urb->transfer_buffer, urb->transfer_dma);
734         usb_free_urb(urb);
735         return;
736 resubmit:
737         r = usb_submit_urb(urb, GFP_ATOMIC);
738         if (r) {
739                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
740                 goto free_urb;
741         }
742 }
743
744 /* Puts the frame on the USB endpoint. It doesn't wait for
745  * completion. The frame must contain the control set.
746  */
747 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
748 {
749         int r;
750         struct usb_device *udev = zd_usb_to_usbdev(usb);
751         struct urb *urb;
752         void *buffer;
753
754         urb = usb_alloc_urb(0, GFP_ATOMIC);
755         if (!urb) {
756                 r = -ENOMEM;
757                 goto out;
758         }
759
760         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
761                                   &urb->transfer_dma);
762         if (!buffer) {
763                 r = -ENOMEM;
764                 goto error_free_urb;
765         }
766         memcpy(buffer, frame, length);
767
768         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
769                           buffer, length, tx_urb_complete, NULL);
770         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
771
772         r = usb_submit_urb(urb, GFP_ATOMIC);
773         if (r)
774                 goto error;
775         return 0;
776 error:
777         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
778                         urb->transfer_dma);
779 error_free_urb:
780         usb_free_urb(urb);
781 out:
782         return r;
783 }
784
785 static inline void init_usb_interrupt(struct zd_usb *usb)
786 {
787         struct zd_usb_interrupt *intr = &usb->intr;
788
789         spin_lock_init(&intr->lock);
790         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
791         init_completion(&intr->read_regs.completion);
792         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
793 }
794
795 static inline void init_usb_rx(struct zd_usb *usb)
796 {
797         struct zd_usb_rx *rx = &usb->rx;
798         spin_lock_init(&rx->lock);
799         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
800                 rx->usb_packet_size = 512;
801         } else {
802                 rx->usb_packet_size = 64;
803         }
804         ZD_ASSERT(rx->fragment_length == 0);
805 }
806
807 static inline void init_usb_tx(struct zd_usb *usb)
808 {
809         /* FIXME: at this point we will allocate a fixed number of urb's for
810          * use in a cyclic scheme */
811 }
812
813 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
814                  struct usb_interface *intf)
815 {
816         memset(usb, 0, sizeof(*usb));
817         usb->intf = usb_get_intf(intf);
818         usb_set_intfdata(usb->intf, netdev);
819         init_usb_interrupt(usb);
820         init_usb_tx(usb);
821         init_usb_rx(usb);
822 }
823
824 void zd_usb_clear(struct zd_usb *usb)
825 {
826         usb_set_intfdata(usb->intf, NULL);
827         usb_put_intf(usb->intf);
828         ZD_MEMCLEAR(usb, sizeof(*usb));
829         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
830 }
831
832 static const char *speed(enum usb_device_speed speed)
833 {
834         switch (speed) {
835         case USB_SPEED_LOW:
836                 return "low";
837         case USB_SPEED_FULL:
838                 return "full";
839         case USB_SPEED_HIGH:
840                 return "high";
841         default:
842                 return "unknown speed";
843         }
844 }
845
846 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
847 {
848         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
849                 le16_to_cpu(udev->descriptor.idVendor),
850                 le16_to_cpu(udev->descriptor.idProduct),
851                 get_bcdDevice(udev),
852                 speed(udev->speed));
853 }
854
855 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
856 {
857         struct usb_device *udev = interface_to_usbdev(usb->intf);
858         return scnprint_id(udev, buffer, size);
859 }
860
861 #ifdef DEBUG
862 static void print_id(struct usb_device *udev)
863 {
864         char buffer[40];
865
866         scnprint_id(udev, buffer, sizeof(buffer));
867         buffer[sizeof(buffer)-1] = 0;
868         dev_dbg_f(&udev->dev, "%s\n", buffer);
869 }
870 #else
871 #define print_id(udev) do { } while (0)
872 #endif
873
874 static int eject_installer(struct usb_interface *intf)
875 {
876         struct usb_device *udev = interface_to_usbdev(intf);
877         struct usb_host_interface *iface_desc = &intf->altsetting[0];
878         struct usb_endpoint_descriptor *endpoint;
879         unsigned char *cmd;
880         u8 bulk_out_ep;
881         int r;
882
883         /* Find bulk out endpoint */
884         endpoint = &iface_desc->endpoint[1].desc;
885         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
886             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
887             USB_ENDPOINT_XFER_BULK) {
888                 bulk_out_ep = endpoint->bEndpointAddress;
889         } else {
890                 dev_err(&udev->dev,
891                         "zd1211rw: Could not find bulk out endpoint\n");
892                 return -ENODEV;
893         }
894
895         cmd = kzalloc(31, GFP_KERNEL);
896         if (cmd == NULL)
897                 return -ENODEV;
898
899         /* USB bulk command block */
900         cmd[0] = 0x55;  /* bulk command signature */
901         cmd[1] = 0x53;  /* bulk command signature */
902         cmd[2] = 0x42;  /* bulk command signature */
903         cmd[3] = 0x43;  /* bulk command signature */
904         cmd[14] = 6;    /* command length */
905
906         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
907         cmd[19] = 0x2;  /* eject disc */
908
909         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
910         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
911                 cmd, 31, NULL, 2000);
912         kfree(cmd);
913         if (r)
914                 return r;
915
916         /* At this point, the device disconnects and reconnects with the real
917          * ID numbers. */
918
919         usb_set_intfdata(intf, NULL);
920         return 0;
921 }
922
923 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
924 {
925         int r;
926         struct usb_device *udev = interface_to_usbdev(intf);
927         struct net_device *netdev = NULL;
928
929         print_id(udev);
930
931         if (id->driver_info & DEVICE_INSTALLER)
932                 return eject_installer(intf);
933
934         switch (udev->speed) {
935         case USB_SPEED_LOW:
936         case USB_SPEED_FULL:
937         case USB_SPEED_HIGH:
938                 break;
939         default:
940                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
941                 r = -ENODEV;
942                 goto error;
943         }
944
945         usb_reset_device(interface_to_usbdev(intf));
946
947         netdev = zd_netdev_alloc(intf);
948         if (netdev == NULL) {
949                 r = -ENOMEM;
950                 goto error;
951         }
952
953         r = upload_firmware(udev, id->driver_info);
954         if (r) {
955                 dev_err(&intf->dev,
956                        "couldn't load firmware. Error number %d\n", r);
957                 goto error;
958         }
959
960         r = usb_reset_configuration(udev);
961         if (r) {
962                 dev_dbg_f(&intf->dev,
963                         "couldn't reset configuration. Error number %d\n", r);
964                 goto error;
965         }
966
967         /* At this point the interrupt endpoint is not generally enabled. We
968          * save the USB bandwidth until the network device is opened. But
969          * notify that the initialization of the MAC will require the
970          * interrupts to be temporary enabled.
971          */
972         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
973         if (r) {
974                 dev_dbg_f(&intf->dev,
975                          "couldn't initialize mac. Error number %d\n", r);
976                 goto error;
977         }
978
979         r = register_netdev(netdev);
980         if (r) {
981                 dev_dbg_f(&intf->dev,
982                          "couldn't register netdev. Error number %d\n", r);
983                 goto error;
984         }
985
986         dev_dbg_f(&intf->dev, "successful\n");
987         dev_info(&intf->dev,"%s\n", netdev->name);
988         return 0;
989 error:
990         usb_reset_device(interface_to_usbdev(intf));
991         zd_netdev_free(netdev);
992         return r;
993 }
994
995 static void disconnect(struct usb_interface *intf)
996 {
997         struct net_device *netdev = zd_intf_to_netdev(intf);
998         struct zd_mac *mac = zd_netdev_mac(netdev);
999         struct zd_usb *usb = &mac->chip.usb;
1000
1001         /* Either something really bad happened, or we're just dealing with
1002          * a DEVICE_INSTALLER. */
1003         if (netdev == NULL)
1004                 return;
1005
1006         dev_dbg_f(zd_usb_dev(usb), "\n");
1007
1008         zd_netdev_disconnect(netdev);
1009
1010         /* Just in case something has gone wrong! */
1011         zd_usb_disable_rx(usb);
1012         zd_usb_disable_int(usb);
1013
1014         /* If the disconnect has been caused by a removal of the
1015          * driver module, the reset allows reloading of the driver. If the
1016          * reset will not be executed here, the upload of the firmware in the
1017          * probe function caused by the reloading of the driver will fail.
1018          */
1019         usb_reset_device(interface_to_usbdev(intf));
1020
1021         zd_netdev_free(netdev);
1022         dev_dbg(&intf->dev, "disconnected\n");
1023 }
1024
1025 static struct usb_driver driver = {
1026         .name           = "zd1211rw",
1027         .id_table       = usb_ids,
1028         .probe          = probe,
1029         .disconnect     = disconnect,
1030 };
1031
1032 struct workqueue_struct *zd_workqueue;
1033
1034 static int __init usb_init(void)
1035 {
1036         int r;
1037
1038         pr_debug("%s usb_init()\n", driver.name);
1039
1040         zd_workqueue = create_singlethread_workqueue(driver.name);
1041         if (zd_workqueue == NULL) {
1042                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1043                 return -ENOMEM;
1044         }
1045
1046         r = usb_register(&driver);
1047         if (r) {
1048                 destroy_workqueue(zd_workqueue);
1049                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1050                        driver.name, r);
1051                 return r;
1052         }
1053
1054         pr_debug("%s initialized\n", driver.name);
1055         return 0;
1056 }
1057
1058 static void __exit usb_exit(void)
1059 {
1060         pr_debug("%s usb_exit()\n", driver.name);
1061         usb_deregister(&driver);
1062         destroy_workqueue(zd_workqueue);
1063 }
1064
1065 module_init(usb_init);
1066 module_exit(usb_exit);
1067
1068 static int usb_int_regs_length(unsigned int count)
1069 {
1070         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1071 }
1072
1073 static void prepare_read_regs_int(struct zd_usb *usb)
1074 {
1075         struct zd_usb_interrupt *intr = &usb->intr;
1076
1077         spin_lock_irq(&intr->lock);
1078         intr->read_regs_enabled = 1;
1079         INIT_COMPLETION(intr->read_regs.completion);
1080         spin_unlock_irq(&intr->lock);
1081 }
1082
1083 static void disable_read_regs_int(struct zd_usb *usb)
1084 {
1085         struct zd_usb_interrupt *intr = &usb->intr;
1086
1087         spin_lock_irq(&intr->lock);
1088         intr->read_regs_enabled = 0;
1089         spin_unlock_irq(&intr->lock);
1090 }
1091
1092 static int get_results(struct zd_usb *usb, u16 *values,
1093                        struct usb_req_read_regs *req, unsigned int count)
1094 {
1095         int r;
1096         int i;
1097         struct zd_usb_interrupt *intr = &usb->intr;
1098         struct read_regs_int *rr = &intr->read_regs;
1099         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1100
1101         spin_lock_irq(&intr->lock);
1102
1103         r = -EIO;
1104         /* The created block size seems to be larger than expected.
1105          * However results appear to be correct.
1106          */
1107         if (rr->length < usb_int_regs_length(count)) {
1108                 dev_dbg_f(zd_usb_dev(usb),
1109                          "error: actual length %d less than expected %d\n",
1110                          rr->length, usb_int_regs_length(count));
1111                 goto error_unlock;
1112         }
1113         if (rr->length > sizeof(rr->buffer)) {
1114                 dev_dbg_f(zd_usb_dev(usb),
1115                          "error: actual length %d exceeds buffer size %zu\n",
1116                          rr->length, sizeof(rr->buffer));
1117                 goto error_unlock;
1118         }
1119
1120         for (i = 0; i < count; i++) {
1121                 struct reg_data *rd = &regs->regs[i];
1122                 if (rd->addr != req->addr[i]) {
1123                         dev_dbg_f(zd_usb_dev(usb),
1124                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1125                                  le16_to_cpu(rd->addr),
1126                                  le16_to_cpu(req->addr[i]));
1127                         goto error_unlock;
1128                 }
1129                 values[i] = le16_to_cpu(rd->value);
1130         }
1131
1132         r = 0;
1133 error_unlock:
1134         spin_unlock_irq(&intr->lock);
1135         return r;
1136 }
1137
1138 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1139                      const zd_addr_t *addresses, unsigned int count)
1140 {
1141         int r;
1142         int i, req_len, actual_req_len;
1143         struct usb_device *udev;
1144         struct usb_req_read_regs *req = NULL;
1145         unsigned long timeout;
1146
1147         if (count < 1) {
1148                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1149                 return -EINVAL;
1150         }
1151         if (count > USB_MAX_IOREAD16_COUNT) {
1152                 dev_dbg_f(zd_usb_dev(usb),
1153                          "error: count %u exceeds possible max %u\n",
1154                          count, USB_MAX_IOREAD16_COUNT);
1155                 return -EINVAL;
1156         }
1157         if (in_atomic()) {
1158                 dev_dbg_f(zd_usb_dev(usb),
1159                          "error: io in atomic context not supported\n");
1160                 return -EWOULDBLOCK;
1161         }
1162         if (!usb_int_enabled(usb)) {
1163                  dev_dbg_f(zd_usb_dev(usb),
1164                           "error: usb interrupt not enabled\n");
1165                 return -EWOULDBLOCK;
1166         }
1167
1168         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1169         req = kmalloc(req_len, GFP_KERNEL);
1170         if (!req)
1171                 return -ENOMEM;
1172         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1173         for (i = 0; i < count; i++)
1174                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1175
1176         udev = zd_usb_to_usbdev(usb);
1177         prepare_read_regs_int(usb);
1178         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1179                          req, req_len, &actual_req_len, 1000 /* ms */);
1180         if (r) {
1181                 dev_dbg_f(zd_usb_dev(usb),
1182                         "error in usb_bulk_msg(). Error number %d\n", r);
1183                 goto error;
1184         }
1185         if (req_len != actual_req_len) {
1186                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1187                         " req_len %d != actual_req_len %d\n",
1188                         req_len, actual_req_len);
1189                 r = -EIO;
1190                 goto error;
1191         }
1192
1193         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1194                                               msecs_to_jiffies(1000));
1195         if (!timeout) {
1196                 disable_read_regs_int(usb);
1197                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1198                 r = -ETIMEDOUT;
1199                 goto error;
1200         }
1201
1202         r = get_results(usb, values, req, count);
1203 error:
1204         kfree(req);
1205         return r;
1206 }
1207
1208 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1209                       unsigned int count)
1210 {
1211         int r;
1212         struct usb_device *udev;
1213         struct usb_req_write_regs *req = NULL;
1214         int i, req_len, actual_req_len;
1215
1216         if (count == 0)
1217                 return 0;
1218         if (count > USB_MAX_IOWRITE16_COUNT) {
1219                 dev_dbg_f(zd_usb_dev(usb),
1220                         "error: count %u exceeds possible max %u\n",
1221                         count, USB_MAX_IOWRITE16_COUNT);
1222                 return -EINVAL;
1223         }
1224         if (in_atomic()) {
1225                 dev_dbg_f(zd_usb_dev(usb),
1226                         "error: io in atomic context not supported\n");
1227                 return -EWOULDBLOCK;
1228         }
1229
1230         req_len = sizeof(struct usb_req_write_regs) +
1231                   count * sizeof(struct reg_data);
1232         req = kmalloc(req_len, GFP_KERNEL);
1233         if (!req)
1234                 return -ENOMEM;
1235
1236         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1237         for (i = 0; i < count; i++) {
1238                 struct reg_data *rw  = &req->reg_writes[i];
1239                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1240                 rw->value = cpu_to_le16(ioreqs[i].value);
1241         }
1242
1243         udev = zd_usb_to_usbdev(usb);
1244         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1245                          req, req_len, &actual_req_len, 1000 /* ms */);
1246         if (r) {
1247                 dev_dbg_f(zd_usb_dev(usb),
1248                         "error in usb_bulk_msg(). Error number %d\n", r);
1249                 goto error;
1250         }
1251         if (req_len != actual_req_len) {
1252                 dev_dbg_f(zd_usb_dev(usb),
1253                         "error in usb_bulk_msg()"
1254                         " req_len %d != actual_req_len %d\n",
1255                         req_len, actual_req_len);
1256                 r = -EIO;
1257                 goto error;
1258         }
1259
1260         /* FALL-THROUGH with r == 0 */
1261 error:
1262         kfree(req);
1263         return r;
1264 }
1265
1266 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1267 {
1268         int r;
1269         struct usb_device *udev;
1270         struct usb_req_rfwrite *req = NULL;
1271         int i, req_len, actual_req_len;
1272         u16 bit_value_template;
1273
1274         if (in_atomic()) {
1275                 dev_dbg_f(zd_usb_dev(usb),
1276                         "error: io in atomic context not supported\n");
1277                 return -EWOULDBLOCK;
1278         }
1279         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1280                 dev_dbg_f(zd_usb_dev(usb),
1281                         "error: bits %d are smaller than"
1282                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1283                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1284                 return -EINVAL;
1285         }
1286         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1287                 dev_dbg_f(zd_usb_dev(usb),
1288                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1289                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1290                 return -EINVAL;
1291         }
1292 #ifdef DEBUG
1293         if (value & (~0UL << bits)) {
1294                 dev_dbg_f(zd_usb_dev(usb),
1295                         "error: value %#09x has bits >= %d set\n",
1296                         value, bits);
1297                 return -EINVAL;
1298         }
1299 #endif /* DEBUG */
1300
1301         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1302
1303         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1304         if (r) {
1305                 dev_dbg_f(zd_usb_dev(usb),
1306                         "error %d: Couldn't read CR203\n", r);
1307                 goto out;
1308         }
1309         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1310
1311         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1312         req = kmalloc(req_len, GFP_KERNEL);
1313         if (!req)
1314                 return -ENOMEM;
1315
1316         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1317         /* 1: 3683a, but not used in ZYDAS driver */
1318         req->value = cpu_to_le16(2);
1319         req->bits = cpu_to_le16(bits);
1320
1321         for (i = 0; i < bits; i++) {
1322                 u16 bv = bit_value_template;
1323                 if (value & (1 << (bits-1-i)))
1324                         bv |= RF_DATA;
1325                 req->bit_values[i] = cpu_to_le16(bv);
1326         }
1327
1328         udev = zd_usb_to_usbdev(usb);
1329         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1330                          req, req_len, &actual_req_len, 1000 /* ms */);
1331         if (r) {
1332                 dev_dbg_f(zd_usb_dev(usb),
1333                         "error in usb_bulk_msg(). Error number %d\n", r);
1334                 goto out;
1335         }
1336         if (req_len != actual_req_len) {
1337                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1338                         " req_len %d != actual_req_len %d\n",
1339                         req_len, actual_req_len);
1340                 r = -EIO;
1341                 goto out;
1342         }
1343
1344         /* FALL-THROUGH with r == 0 */
1345 out:
1346         kfree(req);
1347         return r;
1348 }