2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
37 #include <linux/sysdev.h>
38 #include <linux/cpu.h>
40 #include "x86_emulate.h"
41 #include "segment_descriptor.h"
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
46 static DEFINE_SPINLOCK(kvm_lock);
47 static LIST_HEAD(vm_list);
49 struct kvm_arch_ops *kvm_arch_ops;
50 struct kvm_stat kvm_stat;
51 EXPORT_SYMBOL_GPL(kvm_stat);
53 static struct kvm_stats_debugfs_item {
56 struct dentry *dentry;
57 } debugfs_entries[] = {
58 { "pf_fixed", &kvm_stat.pf_fixed },
59 { "pf_guest", &kvm_stat.pf_guest },
60 { "tlb_flush", &kvm_stat.tlb_flush },
61 { "invlpg", &kvm_stat.invlpg },
62 { "exits", &kvm_stat.exits },
63 { "io_exits", &kvm_stat.io_exits },
64 { "mmio_exits", &kvm_stat.mmio_exits },
65 { "signal_exits", &kvm_stat.signal_exits },
66 { "irq_window", &kvm_stat.irq_window_exits },
67 { "halt_exits", &kvm_stat.halt_exits },
68 { "request_irq", &kvm_stat.request_irq_exits },
69 { "irq_exits", &kvm_stat.irq_exits },
73 static struct dentry *debugfs_dir;
75 #define MAX_IO_MSRS 256
77 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
78 #define LMSW_GUEST_MASK 0x0eULL
79 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
80 #define CR8_RESEVED_BITS (~0x0fULL)
81 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
84 // LDT or TSS descriptor in the GDT. 16 bytes.
85 struct segment_descriptor_64 {
86 struct segment_descriptor s;
93 unsigned long segment_base(u16 selector)
95 struct descriptor_table gdt;
96 struct segment_descriptor *d;
97 unsigned long table_base;
98 typedef unsigned long ul;
104 asm ("sgdt %0" : "=m"(gdt));
105 table_base = gdt.base;
107 if (selector & 4) { /* from ldt */
110 asm ("sldt %0" : "=g"(ldt_selector));
111 table_base = segment_base(ldt_selector);
113 d = (struct segment_descriptor *)(table_base + (selector & ~7));
114 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
117 && (d->type == 2 || d->type == 9 || d->type == 11))
118 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
122 EXPORT_SYMBOL_GPL(segment_base);
124 static inline int valid_vcpu(int n)
126 return likely(n >= 0 && n < KVM_MAX_VCPUS);
129 int kvm_read_guest(struct kvm_vcpu *vcpu,
134 unsigned char *host_buf = dest;
135 unsigned long req_size = size;
143 paddr = gva_to_hpa(vcpu, addr);
145 if (is_error_hpa(paddr))
148 guest_buf = (hva_t)kmap_atomic(
149 pfn_to_page(paddr >> PAGE_SHIFT),
151 offset = addr & ~PAGE_MASK;
153 now = min(size, PAGE_SIZE - offset);
154 memcpy(host_buf, (void*)guest_buf, now);
158 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
160 return req_size - size;
162 EXPORT_SYMBOL_GPL(kvm_read_guest);
164 int kvm_write_guest(struct kvm_vcpu *vcpu,
169 unsigned char *host_buf = data;
170 unsigned long req_size = size;
178 paddr = gva_to_hpa(vcpu, addr);
180 if (is_error_hpa(paddr))
183 guest_buf = (hva_t)kmap_atomic(
184 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
185 offset = addr & ~PAGE_MASK;
187 now = min(size, PAGE_SIZE - offset);
188 memcpy((void*)guest_buf, host_buf, now);
192 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
194 return req_size - size;
196 EXPORT_SYMBOL_GPL(kvm_write_guest);
198 static int vcpu_slot(struct kvm_vcpu *vcpu)
200 return vcpu - vcpu->kvm->vcpus;
204 * Switches to specified vcpu, until a matching vcpu_put()
206 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
208 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
210 mutex_lock(&vcpu->mutex);
211 if (unlikely(!vcpu->vmcs)) {
212 mutex_unlock(&vcpu->mutex);
215 return kvm_arch_ops->vcpu_load(vcpu);
218 static void vcpu_put(struct kvm_vcpu *vcpu)
220 kvm_arch_ops->vcpu_put(vcpu);
221 mutex_unlock(&vcpu->mutex);
224 static int kvm_dev_open(struct inode *inode, struct file *filp)
226 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
232 spin_lock_init(&kvm->lock);
233 INIT_LIST_HEAD(&kvm->active_mmu_pages);
234 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
235 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
237 mutex_init(&vcpu->mutex);
240 vcpu->mmu.root_hpa = INVALID_PAGE;
241 INIT_LIST_HEAD(&vcpu->free_pages);
242 spin_lock(&kvm_lock);
243 list_add(&kvm->vm_list, &vm_list);
244 spin_unlock(&kvm_lock);
246 filp->private_data = kvm;
251 * Free any memory in @free but not in @dont.
253 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
254 struct kvm_memory_slot *dont)
258 if (!dont || free->phys_mem != dont->phys_mem)
259 if (free->phys_mem) {
260 for (i = 0; i < free->npages; ++i)
261 if (free->phys_mem[i])
262 __free_page(free->phys_mem[i]);
263 vfree(free->phys_mem);
266 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
267 vfree(free->dirty_bitmap);
269 free->phys_mem = NULL;
271 free->dirty_bitmap = NULL;
274 static void kvm_free_physmem(struct kvm *kvm)
278 for (i = 0; i < kvm->nmemslots; ++i)
279 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
282 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
284 if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
287 kvm_mmu_destroy(vcpu);
289 kvm_arch_ops->vcpu_free(vcpu);
292 static void kvm_free_vcpus(struct kvm *kvm)
296 for (i = 0; i < KVM_MAX_VCPUS; ++i)
297 kvm_free_vcpu(&kvm->vcpus[i]);
300 static int kvm_dev_release(struct inode *inode, struct file *filp)
302 struct kvm *kvm = filp->private_data;
304 spin_lock(&kvm_lock);
305 list_del(&kvm->vm_list);
306 spin_unlock(&kvm_lock);
308 kvm_free_physmem(kvm);
313 static void inject_gp(struct kvm_vcpu *vcpu)
315 kvm_arch_ops->inject_gp(vcpu, 0);
319 * Load the pae pdptrs. Return true is they are all valid.
321 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
323 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
324 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
329 struct kvm_memory_slot *memslot;
331 spin_lock(&vcpu->kvm->lock);
332 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
333 /* FIXME: !memslot - emulate? 0xff? */
334 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
337 for (i = 0; i < 4; ++i) {
338 pdpte = pdpt[offset + i];
339 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
345 for (i = 0; i < 4; ++i)
346 vcpu->pdptrs[i] = pdpt[offset + i];
349 kunmap_atomic(pdpt, KM_USER0);
350 spin_unlock(&vcpu->kvm->lock);
355 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
357 if (cr0 & CR0_RESEVED_BITS) {
358 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
364 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
365 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
370 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
371 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
372 "and a clear PE flag\n");
377 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
379 if ((vcpu->shadow_efer & EFER_LME)) {
383 printk(KERN_DEBUG "set_cr0: #GP, start paging "
384 "in long mode while PAE is disabled\n");
388 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
390 printk(KERN_DEBUG "set_cr0: #GP, start paging "
391 "in long mode while CS.L == 1\n");
398 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
399 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
407 kvm_arch_ops->set_cr0(vcpu, cr0);
410 spin_lock(&vcpu->kvm->lock);
411 kvm_mmu_reset_context(vcpu);
412 spin_unlock(&vcpu->kvm->lock);
415 EXPORT_SYMBOL_GPL(set_cr0);
417 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
419 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
420 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
422 EXPORT_SYMBOL_GPL(lmsw);
424 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
426 if (cr4 & CR4_RESEVED_BITS) {
427 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
432 if (is_long_mode(vcpu)) {
433 if (!(cr4 & CR4_PAE_MASK)) {
434 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
439 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
440 && !load_pdptrs(vcpu, vcpu->cr3)) {
441 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
445 if (cr4 & CR4_VMXE_MASK) {
446 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
450 kvm_arch_ops->set_cr4(vcpu, cr4);
451 spin_lock(&vcpu->kvm->lock);
452 kvm_mmu_reset_context(vcpu);
453 spin_unlock(&vcpu->kvm->lock);
455 EXPORT_SYMBOL_GPL(set_cr4);
457 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
459 if (is_long_mode(vcpu)) {
460 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
461 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
466 if (cr3 & CR3_RESEVED_BITS) {
467 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
471 if (is_paging(vcpu) && is_pae(vcpu) &&
472 !load_pdptrs(vcpu, cr3)) {
473 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
481 spin_lock(&vcpu->kvm->lock);
483 * Does the new cr3 value map to physical memory? (Note, we
484 * catch an invalid cr3 even in real-mode, because it would
485 * cause trouble later on when we turn on paging anyway.)
487 * A real CPU would silently accept an invalid cr3 and would
488 * attempt to use it - with largely undefined (and often hard
489 * to debug) behavior on the guest side.
491 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
494 vcpu->mmu.new_cr3(vcpu);
495 spin_unlock(&vcpu->kvm->lock);
497 EXPORT_SYMBOL_GPL(set_cr3);
499 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
501 if ( cr8 & CR8_RESEVED_BITS) {
502 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
508 EXPORT_SYMBOL_GPL(set_cr8);
510 void fx_init(struct kvm_vcpu *vcpu)
512 struct __attribute__ ((__packed__)) fx_image_s {
518 u64 operand;// fpu dp
524 fx_save(vcpu->host_fx_image);
526 fx_save(vcpu->guest_fx_image);
527 fx_restore(vcpu->host_fx_image);
529 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
530 fx_image->mxcsr = 0x1f80;
531 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
532 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
534 EXPORT_SYMBOL_GPL(fx_init);
537 * Creates some virtual cpus. Good luck creating more than one.
539 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
542 struct kvm_vcpu *vcpu;
548 vcpu = &kvm->vcpus[n];
550 mutex_lock(&vcpu->mutex);
553 mutex_unlock(&vcpu->mutex);
557 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
559 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
561 r = kvm_arch_ops->vcpu_create(vcpu);
565 r = kvm_mmu_create(vcpu);
569 kvm_arch_ops->vcpu_load(vcpu);
570 r = kvm_mmu_setup(vcpu);
572 r = kvm_arch_ops->vcpu_setup(vcpu);
582 mutex_unlock(&vcpu->mutex);
588 * Allocate some memory and give it an address in the guest physical address
591 * Discontiguous memory is allowed, mostly for framebuffers.
593 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
594 struct kvm_memory_region *mem)
598 unsigned long npages;
600 struct kvm_memory_slot *memslot;
601 struct kvm_memory_slot old, new;
602 int memory_config_version;
605 /* General sanity checks */
606 if (mem->memory_size & (PAGE_SIZE - 1))
608 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
610 if (mem->slot >= KVM_MEMORY_SLOTS)
612 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
615 memslot = &kvm->memslots[mem->slot];
616 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
617 npages = mem->memory_size >> PAGE_SHIFT;
620 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
623 spin_lock(&kvm->lock);
625 memory_config_version = kvm->memory_config_version;
626 new = old = *memslot;
628 new.base_gfn = base_gfn;
630 new.flags = mem->flags;
632 /* Disallow changing a memory slot's size. */
634 if (npages && old.npages && npages != old.npages)
637 /* Check for overlaps */
639 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
640 struct kvm_memory_slot *s = &kvm->memslots[i];
644 if (!((base_gfn + npages <= s->base_gfn) ||
645 (base_gfn >= s->base_gfn + s->npages)))
649 * Do memory allocations outside lock. memory_config_version will
652 spin_unlock(&kvm->lock);
654 /* Deallocate if slot is being removed */
658 /* Free page dirty bitmap if unneeded */
659 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
660 new.dirty_bitmap = NULL;
664 /* Allocate if a slot is being created */
665 if (npages && !new.phys_mem) {
666 new.phys_mem = vmalloc(npages * sizeof(struct page *));
671 memset(new.phys_mem, 0, npages * sizeof(struct page *));
672 for (i = 0; i < npages; ++i) {
673 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
675 if (!new.phys_mem[i])
677 new.phys_mem[i]->private = 0;
681 /* Allocate page dirty bitmap if needed */
682 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
683 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
685 new.dirty_bitmap = vmalloc(dirty_bytes);
686 if (!new.dirty_bitmap)
688 memset(new.dirty_bitmap, 0, dirty_bytes);
691 spin_lock(&kvm->lock);
693 if (memory_config_version != kvm->memory_config_version) {
694 spin_unlock(&kvm->lock);
695 kvm_free_physmem_slot(&new, &old);
703 if (mem->slot >= kvm->nmemslots)
704 kvm->nmemslots = mem->slot + 1;
707 ++kvm->memory_config_version;
709 spin_unlock(&kvm->lock);
711 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
712 struct kvm_vcpu *vcpu;
714 vcpu = vcpu_load(kvm, i);
717 kvm_mmu_reset_context(vcpu);
721 kvm_free_physmem_slot(&old, &new);
725 spin_unlock(&kvm->lock);
727 kvm_free_physmem_slot(&new, &old);
732 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
734 spin_lock(&vcpu->kvm->lock);
735 kvm_mmu_slot_remove_write_access(vcpu, slot);
736 spin_unlock(&vcpu->kvm->lock);
740 * Get (and clear) the dirty memory log for a memory slot.
742 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
743 struct kvm_dirty_log *log)
745 struct kvm_memory_slot *memslot;
749 unsigned long any = 0;
751 spin_lock(&kvm->lock);
754 * Prevent changes to guest memory configuration even while the lock
758 spin_unlock(&kvm->lock);
760 if (log->slot >= KVM_MEMORY_SLOTS)
763 memslot = &kvm->memslots[log->slot];
765 if (!memslot->dirty_bitmap)
768 n = ALIGN(memslot->npages, 8) / 8;
770 for (i = 0; !any && i < n; ++i)
771 any = memslot->dirty_bitmap[i];
774 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
780 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
781 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
786 do_remove_write_access(vcpu, log->slot);
787 memset(memslot->dirty_bitmap, 0, n);
790 kvm_arch_ops->tlb_flush(vcpu);
798 spin_lock(&kvm->lock);
800 spin_unlock(&kvm->lock);
804 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
808 for (i = 0; i < kvm->nmemslots; ++i) {
809 struct kvm_memory_slot *memslot = &kvm->memslots[i];
811 if (gfn >= memslot->base_gfn
812 && gfn < memslot->base_gfn + memslot->npages)
817 EXPORT_SYMBOL_GPL(gfn_to_memslot);
819 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
822 struct kvm_memory_slot *memslot = NULL;
823 unsigned long rel_gfn;
825 for (i = 0; i < kvm->nmemslots; ++i) {
826 memslot = &kvm->memslots[i];
828 if (gfn >= memslot->base_gfn
829 && gfn < memslot->base_gfn + memslot->npages) {
831 if (!memslot || !memslot->dirty_bitmap)
834 rel_gfn = gfn - memslot->base_gfn;
837 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
838 set_bit(rel_gfn, memslot->dirty_bitmap);
844 static int emulator_read_std(unsigned long addr,
847 struct x86_emulate_ctxt *ctxt)
849 struct kvm_vcpu *vcpu = ctxt->vcpu;
853 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
854 unsigned offset = addr & (PAGE_SIZE-1);
855 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
857 struct kvm_memory_slot *memslot;
860 if (gpa == UNMAPPED_GVA)
861 return X86EMUL_PROPAGATE_FAULT;
862 pfn = gpa >> PAGE_SHIFT;
863 memslot = gfn_to_memslot(vcpu->kvm, pfn);
865 return X86EMUL_UNHANDLEABLE;
866 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
868 memcpy(data, page + offset, tocopy);
870 kunmap_atomic(page, KM_USER0);
877 return X86EMUL_CONTINUE;
880 static int emulator_write_std(unsigned long addr,
883 struct x86_emulate_ctxt *ctxt)
885 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
887 return X86EMUL_UNHANDLEABLE;
890 static int emulator_read_emulated(unsigned long addr,
893 struct x86_emulate_ctxt *ctxt)
895 struct kvm_vcpu *vcpu = ctxt->vcpu;
897 if (vcpu->mmio_read_completed) {
898 memcpy(val, vcpu->mmio_data, bytes);
899 vcpu->mmio_read_completed = 0;
900 return X86EMUL_CONTINUE;
901 } else if (emulator_read_std(addr, val, bytes, ctxt)
903 return X86EMUL_CONTINUE;
905 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
906 if (gpa == UNMAPPED_GVA)
907 return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
908 vcpu->mmio_needed = 1;
909 vcpu->mmio_phys_addr = gpa;
910 vcpu->mmio_size = bytes;
911 vcpu->mmio_is_write = 0;
913 return X86EMUL_UNHANDLEABLE;
917 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
918 unsigned long val, int bytes)
920 struct kvm_memory_slot *m;
924 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
926 m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
929 page = gfn_to_page(m, gpa >> PAGE_SHIFT);
930 kvm_mmu_pre_write(vcpu, gpa, bytes);
931 virt = kmap_atomic(page, KM_USER0);
932 memcpy(virt + offset_in_page(gpa), &val, bytes);
933 kunmap_atomic(virt, KM_USER0);
934 kvm_mmu_post_write(vcpu, gpa, bytes);
938 static int emulator_write_emulated(unsigned long addr,
941 struct x86_emulate_ctxt *ctxt)
943 struct kvm_vcpu *vcpu = ctxt->vcpu;
944 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
946 if (gpa == UNMAPPED_GVA)
947 return X86EMUL_PROPAGATE_FAULT;
949 if (emulator_write_phys(vcpu, gpa, val, bytes))
950 return X86EMUL_CONTINUE;
952 vcpu->mmio_needed = 1;
953 vcpu->mmio_phys_addr = gpa;
954 vcpu->mmio_size = bytes;
955 vcpu->mmio_is_write = 1;
956 memcpy(vcpu->mmio_data, &val, bytes);
958 return X86EMUL_CONTINUE;
961 static int emulator_cmpxchg_emulated(unsigned long addr,
965 struct x86_emulate_ctxt *ctxt)
971 printk(KERN_WARNING "kvm: emulating exchange as write\n");
973 return emulator_write_emulated(addr, new, bytes, ctxt);
978 static int emulator_cmpxchg8b_emulated(unsigned long addr,
979 unsigned long old_lo,
980 unsigned long old_hi,
981 unsigned long new_lo,
982 unsigned long new_hi,
983 struct x86_emulate_ctxt *ctxt)
990 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
992 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
993 if (r != X86EMUL_CONTINUE)
995 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
1000 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1002 return kvm_arch_ops->get_segment_base(vcpu, seg);
1005 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1007 return X86EMUL_CONTINUE;
1010 int emulate_clts(struct kvm_vcpu *vcpu)
1014 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1015 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1016 kvm_arch_ops->set_cr0(vcpu, cr0);
1017 return X86EMUL_CONTINUE;
1020 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1022 struct kvm_vcpu *vcpu = ctxt->vcpu;
1026 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1027 return X86EMUL_CONTINUE;
1029 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1031 return X86EMUL_UNHANDLEABLE;
1035 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1037 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1040 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1042 /* FIXME: better handling */
1043 return X86EMUL_UNHANDLEABLE;
1045 return X86EMUL_CONTINUE;
1048 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1050 static int reported;
1052 unsigned long rip = ctxt->vcpu->rip;
1053 unsigned long rip_linear;
1055 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1060 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1062 printk(KERN_ERR "emulation failed but !mmio_needed?"
1063 " rip %lx %02x %02x %02x %02x\n",
1064 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1068 struct x86_emulate_ops emulate_ops = {
1069 .read_std = emulator_read_std,
1070 .write_std = emulator_write_std,
1071 .read_emulated = emulator_read_emulated,
1072 .write_emulated = emulator_write_emulated,
1073 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1074 #ifdef CONFIG_X86_32
1075 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1079 int emulate_instruction(struct kvm_vcpu *vcpu,
1080 struct kvm_run *run,
1084 struct x86_emulate_ctxt emulate_ctxt;
1088 kvm_arch_ops->cache_regs(vcpu);
1090 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1092 emulate_ctxt.vcpu = vcpu;
1093 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1094 emulate_ctxt.cr2 = cr2;
1095 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1096 ? X86EMUL_MODE_REAL : cs_l
1097 ? X86EMUL_MODE_PROT64 : cs_db
1098 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1100 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1101 emulate_ctxt.cs_base = 0;
1102 emulate_ctxt.ds_base = 0;
1103 emulate_ctxt.es_base = 0;
1104 emulate_ctxt.ss_base = 0;
1106 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1107 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1108 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1109 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1112 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1113 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1115 vcpu->mmio_is_write = 0;
1116 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1118 if ((r || vcpu->mmio_is_write) && run) {
1119 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1120 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1121 run->mmio.len = vcpu->mmio_size;
1122 run->mmio.is_write = vcpu->mmio_is_write;
1126 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1127 return EMULATE_DONE;
1128 if (!vcpu->mmio_needed) {
1129 report_emulation_failure(&emulate_ctxt);
1130 return EMULATE_FAIL;
1132 return EMULATE_DO_MMIO;
1135 kvm_arch_ops->decache_regs(vcpu);
1136 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1138 if (vcpu->mmio_is_write)
1139 return EMULATE_DO_MMIO;
1141 return EMULATE_DONE;
1143 EXPORT_SYMBOL_GPL(emulate_instruction);
1145 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1147 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1150 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1152 struct descriptor_table dt = { limit, base };
1154 kvm_arch_ops->set_gdt(vcpu, &dt);
1157 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1159 struct descriptor_table dt = { limit, base };
1161 kvm_arch_ops->set_idt(vcpu, &dt);
1164 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1165 unsigned long *rflags)
1168 *rflags = kvm_arch_ops->get_rflags(vcpu);
1171 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1173 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1184 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1189 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1190 unsigned long *rflags)
1194 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1195 *rflags = kvm_arch_ops->get_rflags(vcpu);
1204 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1207 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1211 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1216 case 0xc0010010: /* SYSCFG */
1217 case 0xc0010015: /* HWCR */
1218 case MSR_IA32_PLATFORM_ID:
1219 case MSR_IA32_P5_MC_ADDR:
1220 case MSR_IA32_P5_MC_TYPE:
1221 case MSR_IA32_MC0_CTL:
1222 case MSR_IA32_MCG_STATUS:
1223 case MSR_IA32_MCG_CAP:
1224 case MSR_IA32_MC0_MISC:
1225 case MSR_IA32_MC0_MISC+4:
1226 case MSR_IA32_MC0_MISC+8:
1227 case MSR_IA32_MC0_MISC+12:
1228 case MSR_IA32_MC0_MISC+16:
1229 case MSR_IA32_UCODE_REV:
1230 case MSR_IA32_PERF_STATUS:
1231 /* MTRR registers */
1233 case 0x200 ... 0x2ff:
1236 case 0xcd: /* fsb frequency */
1239 case MSR_IA32_APICBASE:
1240 data = vcpu->apic_base;
1242 case MSR_IA32_MISC_ENABLE:
1243 data = vcpu->ia32_misc_enable_msr;
1245 #ifdef CONFIG_X86_64
1247 data = vcpu->shadow_efer;
1251 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1257 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1260 * Reads an msr value (of 'msr_index') into 'pdata'.
1261 * Returns 0 on success, non-0 otherwise.
1262 * Assumes vcpu_load() was already called.
1264 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1266 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1269 #ifdef CONFIG_X86_64
1271 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1273 if (efer & EFER_RESERVED_BITS) {
1274 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1281 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1282 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1287 kvm_arch_ops->set_efer(vcpu, efer);
1290 efer |= vcpu->shadow_efer & EFER_LMA;
1292 vcpu->shadow_efer = efer;
1297 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1300 #ifdef CONFIG_X86_64
1302 set_efer(vcpu, data);
1305 case MSR_IA32_MC0_STATUS:
1306 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1307 __FUNCTION__, data);
1309 case MSR_IA32_UCODE_REV:
1310 case MSR_IA32_UCODE_WRITE:
1311 case 0x200 ... 0x2ff: /* MTRRs */
1313 case MSR_IA32_APICBASE:
1314 vcpu->apic_base = data;
1316 case MSR_IA32_MISC_ENABLE:
1317 vcpu->ia32_misc_enable_msr = data;
1320 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1325 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1328 * Writes msr value into into the appropriate "register".
1329 * Returns 0 on success, non-0 otherwise.
1330 * Assumes vcpu_load() was already called.
1332 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1334 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1337 void kvm_resched(struct kvm_vcpu *vcpu)
1341 /* Cannot fail - no vcpu unplug yet. */
1342 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1344 EXPORT_SYMBOL_GPL(kvm_resched);
1346 void load_msrs(struct vmx_msr_entry *e, int n)
1350 for (i = 0; i < n; ++i)
1351 wrmsrl(e[i].index, e[i].data);
1353 EXPORT_SYMBOL_GPL(load_msrs);
1355 void save_msrs(struct vmx_msr_entry *e, int n)
1359 for (i = 0; i < n; ++i)
1360 rdmsrl(e[i].index, e[i].data);
1362 EXPORT_SYMBOL_GPL(save_msrs);
1364 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1366 struct kvm_vcpu *vcpu;
1369 if (!valid_vcpu(kvm_run->vcpu))
1372 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1376 /* re-sync apic's tpr */
1377 vcpu->cr8 = kvm_run->cr8;
1379 if (kvm_run->emulated) {
1380 kvm_arch_ops->skip_emulated_instruction(vcpu);
1381 kvm_run->emulated = 0;
1384 if (kvm_run->mmio_completed) {
1385 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1386 vcpu->mmio_read_completed = 1;
1389 vcpu->mmio_needed = 0;
1391 r = kvm_arch_ops->run(vcpu, kvm_run);
1397 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1399 struct kvm_vcpu *vcpu;
1401 if (!valid_vcpu(regs->vcpu))
1404 vcpu = vcpu_load(kvm, regs->vcpu);
1408 kvm_arch_ops->cache_regs(vcpu);
1410 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1411 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1412 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1413 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1414 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1415 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1416 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1417 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1418 #ifdef CONFIG_X86_64
1419 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1420 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1421 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1422 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1423 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1424 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1425 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1426 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1429 regs->rip = vcpu->rip;
1430 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1433 * Don't leak debug flags in case they were set for guest debugging
1435 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1436 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1443 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1445 struct kvm_vcpu *vcpu;
1447 if (!valid_vcpu(regs->vcpu))
1450 vcpu = vcpu_load(kvm, regs->vcpu);
1454 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1455 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1456 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1457 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1458 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1459 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1460 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1461 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1462 #ifdef CONFIG_X86_64
1463 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1464 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1465 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1466 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1467 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1468 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1469 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1470 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1473 vcpu->rip = regs->rip;
1474 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1476 kvm_arch_ops->decache_regs(vcpu);
1483 static void get_segment(struct kvm_vcpu *vcpu,
1484 struct kvm_segment *var, int seg)
1486 return kvm_arch_ops->get_segment(vcpu, var, seg);
1489 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1491 struct kvm_vcpu *vcpu;
1492 struct descriptor_table dt;
1494 if (!valid_vcpu(sregs->vcpu))
1496 vcpu = vcpu_load(kvm, sregs->vcpu);
1500 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1501 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1502 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1503 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1504 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1505 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1507 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1508 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1510 kvm_arch_ops->get_idt(vcpu, &dt);
1511 sregs->idt.limit = dt.limit;
1512 sregs->idt.base = dt.base;
1513 kvm_arch_ops->get_gdt(vcpu, &dt);
1514 sregs->gdt.limit = dt.limit;
1515 sregs->gdt.base = dt.base;
1517 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1518 sregs->cr0 = vcpu->cr0;
1519 sregs->cr2 = vcpu->cr2;
1520 sregs->cr3 = vcpu->cr3;
1521 sregs->cr4 = vcpu->cr4;
1522 sregs->cr8 = vcpu->cr8;
1523 sregs->efer = vcpu->shadow_efer;
1524 sregs->apic_base = vcpu->apic_base;
1526 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1527 sizeof sregs->interrupt_bitmap);
1534 static void set_segment(struct kvm_vcpu *vcpu,
1535 struct kvm_segment *var, int seg)
1537 return kvm_arch_ops->set_segment(vcpu, var, seg);
1540 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1542 struct kvm_vcpu *vcpu;
1543 int mmu_reset_needed = 0;
1545 struct descriptor_table dt;
1547 if (!valid_vcpu(sregs->vcpu))
1549 vcpu = vcpu_load(kvm, sregs->vcpu);
1553 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1554 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1555 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1556 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1557 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1558 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1560 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1561 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1563 dt.limit = sregs->idt.limit;
1564 dt.base = sregs->idt.base;
1565 kvm_arch_ops->set_idt(vcpu, &dt);
1566 dt.limit = sregs->gdt.limit;
1567 dt.base = sregs->gdt.base;
1568 kvm_arch_ops->set_gdt(vcpu, &dt);
1570 vcpu->cr2 = sregs->cr2;
1571 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1572 vcpu->cr3 = sregs->cr3;
1574 vcpu->cr8 = sregs->cr8;
1576 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1577 #ifdef CONFIG_X86_64
1578 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1580 vcpu->apic_base = sregs->apic_base;
1582 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1584 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1585 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1587 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1588 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1589 if (!is_long_mode(vcpu) && is_pae(vcpu))
1590 load_pdptrs(vcpu, vcpu->cr3);
1592 if (mmu_reset_needed)
1593 kvm_mmu_reset_context(vcpu);
1595 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1596 sizeof vcpu->irq_pending);
1597 vcpu->irq_summary = 0;
1598 for (i = 0; i < NR_IRQ_WORDS; ++i)
1599 if (vcpu->irq_pending[i])
1600 __set_bit(i, &vcpu->irq_summary);
1608 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1609 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1611 * This list is modified at module load time to reflect the
1612 * capabilities of the host cpu.
1614 static u32 msrs_to_save[] = {
1615 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1617 #ifdef CONFIG_X86_64
1618 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1620 MSR_IA32_TIME_STAMP_COUNTER,
1623 static unsigned num_msrs_to_save;
1625 static u32 emulated_msrs[] = {
1626 MSR_IA32_MISC_ENABLE,
1629 static __init void kvm_init_msr_list(void)
1634 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1635 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1638 msrs_to_save[j] = msrs_to_save[i];
1641 num_msrs_to_save = j;
1645 * Adapt set_msr() to msr_io()'s calling convention
1647 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1649 return set_msr(vcpu, index, *data);
1653 * Read or write a bunch of msrs. All parameters are kernel addresses.
1655 * @return number of msrs set successfully.
1657 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1658 struct kvm_msr_entry *entries,
1659 int (*do_msr)(struct kvm_vcpu *vcpu,
1660 unsigned index, u64 *data))
1662 struct kvm_vcpu *vcpu;
1665 if (!valid_vcpu(msrs->vcpu))
1668 vcpu = vcpu_load(kvm, msrs->vcpu);
1672 for (i = 0; i < msrs->nmsrs; ++i)
1673 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1682 * Read or write a bunch of msrs. Parameters are user addresses.
1684 * @return number of msrs set successfully.
1686 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1687 int (*do_msr)(struct kvm_vcpu *vcpu,
1688 unsigned index, u64 *data),
1691 struct kvm_msrs msrs;
1692 struct kvm_msr_entry *entries;
1697 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1701 if (msrs.nmsrs >= MAX_IO_MSRS)
1705 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1706 entries = vmalloc(size);
1711 if (copy_from_user(entries, user_msrs->entries, size))
1714 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1719 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1731 * Translate a guest virtual address to a guest physical address.
1733 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1735 unsigned long vaddr = tr->linear_address;
1736 struct kvm_vcpu *vcpu;
1739 vcpu = vcpu_load(kvm, tr->vcpu);
1742 spin_lock(&kvm->lock);
1743 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1744 tr->physical_address = gpa;
1745 tr->valid = gpa != UNMAPPED_GVA;
1748 spin_unlock(&kvm->lock);
1754 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1756 struct kvm_vcpu *vcpu;
1758 if (!valid_vcpu(irq->vcpu))
1760 if (irq->irq < 0 || irq->irq >= 256)
1762 vcpu = vcpu_load(kvm, irq->vcpu);
1766 set_bit(irq->irq, vcpu->irq_pending);
1767 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1774 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1775 struct kvm_debug_guest *dbg)
1777 struct kvm_vcpu *vcpu;
1780 if (!valid_vcpu(dbg->vcpu))
1782 vcpu = vcpu_load(kvm, dbg->vcpu);
1786 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1793 static long kvm_dev_ioctl(struct file *filp,
1794 unsigned int ioctl, unsigned long arg)
1796 struct kvm *kvm = filp->private_data;
1797 void __user *argp = (void __user *)arg;
1801 case KVM_GET_API_VERSION:
1802 r = KVM_API_VERSION;
1804 case KVM_CREATE_VCPU: {
1805 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1811 struct kvm_run kvm_run;
1814 if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
1816 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1817 if (r < 0 && r != -EINTR)
1819 if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
1825 case KVM_GET_REGS: {
1826 struct kvm_regs kvm_regs;
1829 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1831 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1835 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1840 case KVM_SET_REGS: {
1841 struct kvm_regs kvm_regs;
1844 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1846 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1852 case KVM_GET_SREGS: {
1853 struct kvm_sregs kvm_sregs;
1856 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1858 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1862 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1867 case KVM_SET_SREGS: {
1868 struct kvm_sregs kvm_sregs;
1871 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1873 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1879 case KVM_TRANSLATE: {
1880 struct kvm_translation tr;
1883 if (copy_from_user(&tr, argp, sizeof tr))
1885 r = kvm_dev_ioctl_translate(kvm, &tr);
1889 if (copy_to_user(argp, &tr, sizeof tr))
1894 case KVM_INTERRUPT: {
1895 struct kvm_interrupt irq;
1898 if (copy_from_user(&irq, argp, sizeof irq))
1900 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1906 case KVM_DEBUG_GUEST: {
1907 struct kvm_debug_guest dbg;
1910 if (copy_from_user(&dbg, argp, sizeof dbg))
1912 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1918 case KVM_SET_MEMORY_REGION: {
1919 struct kvm_memory_region kvm_mem;
1922 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1924 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1929 case KVM_GET_DIRTY_LOG: {
1930 struct kvm_dirty_log log;
1933 if (copy_from_user(&log, argp, sizeof log))
1935 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1941 r = msr_io(kvm, argp, get_msr, 1);
1944 r = msr_io(kvm, argp, do_set_msr, 0);
1946 case KVM_GET_MSR_INDEX_LIST: {
1947 struct kvm_msr_list __user *user_msr_list = argp;
1948 struct kvm_msr_list msr_list;
1952 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1955 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1956 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1959 if (n < num_msrs_to_save)
1962 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1963 num_msrs_to_save * sizeof(u32)))
1965 if (copy_to_user(user_msr_list->indices
1966 + num_msrs_to_save * sizeof(u32),
1968 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1980 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1981 unsigned long address,
1984 struct kvm *kvm = vma->vm_file->private_data;
1985 unsigned long pgoff;
1986 struct kvm_memory_slot *slot;
1989 *type = VM_FAULT_MINOR;
1990 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1991 slot = gfn_to_memslot(kvm, pgoff);
1993 return NOPAGE_SIGBUS;
1994 page = gfn_to_page(slot, pgoff);
1996 return NOPAGE_SIGBUS;
2001 static struct vm_operations_struct kvm_dev_vm_ops = {
2002 .nopage = kvm_dev_nopage,
2005 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
2007 vma->vm_ops = &kvm_dev_vm_ops;
2011 static struct file_operations kvm_chardev_ops = {
2012 .open = kvm_dev_open,
2013 .release = kvm_dev_release,
2014 .unlocked_ioctl = kvm_dev_ioctl,
2015 .compat_ioctl = kvm_dev_ioctl,
2016 .mmap = kvm_dev_mmap,
2019 static struct miscdevice kvm_dev = {
2025 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2028 if (val == SYS_RESTART) {
2030 * Some (well, at least mine) BIOSes hang on reboot if
2033 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2034 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2039 static struct notifier_block kvm_reboot_notifier = {
2040 .notifier_call = kvm_reboot,
2045 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2048 static void decache_vcpus_on_cpu(int cpu)
2051 struct kvm_vcpu *vcpu;
2054 spin_lock(&kvm_lock);
2055 list_for_each_entry(vm, &vm_list, vm_list)
2056 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2057 vcpu = &vm->vcpus[i];
2059 * If the vcpu is locked, then it is running on some
2060 * other cpu and therefore it is not cached on the
2063 * If it's not locked, check the last cpu it executed
2066 if (mutex_trylock(&vcpu->mutex)) {
2067 if (vcpu->cpu == cpu) {
2068 kvm_arch_ops->vcpu_decache(vcpu);
2071 mutex_unlock(&vcpu->mutex);
2074 spin_unlock(&kvm_lock);
2077 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2084 case CPU_UP_CANCELED:
2085 decache_vcpus_on_cpu(cpu);
2086 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2089 case CPU_UP_PREPARE:
2090 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2097 static struct notifier_block kvm_cpu_notifier = {
2098 .notifier_call = kvm_cpu_hotplug,
2099 .priority = 20, /* must be > scheduler priority */
2102 static __init void kvm_init_debug(void)
2104 struct kvm_stats_debugfs_item *p;
2106 debugfs_dir = debugfs_create_dir("kvm", NULL);
2107 for (p = debugfs_entries; p->name; ++p)
2108 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2112 static void kvm_exit_debug(void)
2114 struct kvm_stats_debugfs_item *p;
2116 for (p = debugfs_entries; p->name; ++p)
2117 debugfs_remove(p->dentry);
2118 debugfs_remove(debugfs_dir);
2121 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2123 decache_vcpus_on_cpu(raw_smp_processor_id());
2124 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
2128 static int kvm_resume(struct sys_device *dev)
2130 on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
2134 static struct sysdev_class kvm_sysdev_class = {
2135 set_kset_name("kvm"),
2136 .suspend = kvm_suspend,
2137 .resume = kvm_resume,
2140 static struct sys_device kvm_sysdev = {
2142 .cls = &kvm_sysdev_class,
2145 hpa_t bad_page_address;
2147 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2152 printk(KERN_ERR "kvm: already loaded the other module\n");
2156 if (!ops->cpu_has_kvm_support()) {
2157 printk(KERN_ERR "kvm: no hardware support\n");
2160 if (ops->disabled_by_bios()) {
2161 printk(KERN_ERR "kvm: disabled by bios\n");
2167 r = kvm_arch_ops->hardware_setup();
2171 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2172 r = register_cpu_notifier(&kvm_cpu_notifier);
2175 register_reboot_notifier(&kvm_reboot_notifier);
2177 r = sysdev_class_register(&kvm_sysdev_class);
2181 r = sysdev_register(&kvm_sysdev);
2185 kvm_chardev_ops.owner = module;
2187 r = misc_register(&kvm_dev);
2189 printk (KERN_ERR "kvm: misc device register failed\n");
2196 sysdev_unregister(&kvm_sysdev);
2198 sysdev_class_unregister(&kvm_sysdev_class);
2200 unregister_reboot_notifier(&kvm_reboot_notifier);
2201 unregister_cpu_notifier(&kvm_cpu_notifier);
2203 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2204 kvm_arch_ops->hardware_unsetup();
2208 void kvm_exit_arch(void)
2210 misc_deregister(&kvm_dev);
2211 sysdev_unregister(&kvm_sysdev);
2212 sysdev_class_unregister(&kvm_sysdev_class);
2213 unregister_reboot_notifier(&kvm_reboot_notifier);
2214 unregister_cpu_notifier(&kvm_cpu_notifier);
2215 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2216 kvm_arch_ops->hardware_unsetup();
2217 kvm_arch_ops = NULL;
2220 static __init int kvm_init(void)
2222 static struct page *bad_page;
2227 kvm_init_msr_list();
2229 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2234 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2235 memset(__va(bad_page_address), 0, PAGE_SIZE);
2244 static __exit void kvm_exit(void)
2247 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2250 module_init(kvm_init)
2251 module_exit(kvm_exit)
2253 EXPORT_SYMBOL_GPL(kvm_init_arch);
2254 EXPORT_SYMBOL_GPL(kvm_exit_arch);