[ALSA] hda-codec - support for Agere's HDA soft modem
[linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = (ofs + frames) - runtime->buffer_size;
83                         } else {
84                                 runtime->silence_start = ofs - runtime->silence_filled;
85                         }
86                         if ((snd_pcm_sframes_t)runtime->silence_start < 0)
87                                 runtime->silence_start += runtime->boundary;
88                 }
89                 frames = runtime->buffer_size - runtime->silence_filled;
90         }
91         snd_assert(frames <= runtime->buffer_size, return);
92         if (frames == 0)
93                 return;
94         ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
95         while (frames > 0) {
96                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
97                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
98                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
99                         if (substream->ops->silence) {
100                                 int err;
101                                 err = substream->ops->silence(substream, -1, ofs, transfer);
102                                 snd_assert(err >= 0, );
103                         } else {
104                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
105                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
106                         }
107                 } else {
108                         unsigned int c;
109                         unsigned int channels = runtime->channels;
110                         if (substream->ops->silence) {
111                                 for (c = 0; c < channels; ++c) {
112                                         int err;
113                                         err = substream->ops->silence(substream, c, ofs, transfer);
114                                         snd_assert(err >= 0, );
115                                 }
116                         } else {
117                                 size_t dma_csize = runtime->dma_bytes / channels;
118                                 for (c = 0; c < channels; ++c) {
119                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
120                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
121                                 }
122                         }
123                 }
124                 runtime->silence_filled += transfer;
125                 frames -= transfer;
126                 ofs = 0;
127         }
128 }
129
130 static void xrun(struct snd_pcm_substream *substream)
131 {
132         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
133 #ifdef CONFIG_SND_DEBUG
134         if (substream->pstr->xrun_debug) {
135                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
136                            substream->pcm->card->number,
137                            substream->pcm->device,
138                            substream->stream ? 'c' : 'p');
139                 if (substream->pstr->xrun_debug > 1)
140                         dump_stack();
141         }
142 #endif
143 }
144
145 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
146                                                           struct snd_pcm_runtime *runtime)
147 {
148         snd_pcm_uframes_t pos;
149
150         pos = substream->ops->pointer(substream);
151         if (pos == SNDRV_PCM_POS_XRUN)
152                 return pos; /* XRUN */
153         if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
154                 getnstimeofday((struct timespec *)&runtime->status->tstamp);
155 #ifdef CONFIG_SND_DEBUG
156         if (pos >= runtime->buffer_size) {
157                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
158         }
159 #endif
160         pos -= pos % runtime->min_align;
161         return pos;
162 }
163
164 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
165                                              struct snd_pcm_runtime *runtime)
166 {
167         snd_pcm_uframes_t avail;
168
169         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
170                 avail = snd_pcm_playback_avail(runtime);
171         else
172                 avail = snd_pcm_capture_avail(runtime);
173         if (avail > runtime->avail_max)
174                 runtime->avail_max = avail;
175         if (avail >= runtime->stop_threshold) {
176                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
177                         snd_pcm_drain_done(substream);
178                 else
179                         xrun(substream);
180                 return -EPIPE;
181         }
182         if (avail >= runtime->control->avail_min)
183                 wake_up(&runtime->sleep);
184         return 0;
185 }
186
187 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
188 {
189         struct snd_pcm_runtime *runtime = substream->runtime;
190         snd_pcm_uframes_t pos;
191         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
192         snd_pcm_sframes_t delta;
193
194         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
195         if (pos == SNDRV_PCM_POS_XRUN) {
196                 xrun(substream);
197                 return -EPIPE;
198         }
199         if (runtime->period_size == runtime->buffer_size)
200                 goto __next_buf;
201         new_hw_ptr = runtime->hw_ptr_base + pos;
202         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
203
204         delta = hw_ptr_interrupt - new_hw_ptr;
205         if (delta > 0) {
206                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
207 #ifdef CONFIG_SND_DEBUG
208                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
209                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
210                                 if (substream->pstr->xrun_debug > 1)
211                                         dump_stack();
212                         }
213 #endif
214                         return 0;
215                 }
216               __next_buf:
217                 runtime->hw_ptr_base += runtime->buffer_size;
218                 if (runtime->hw_ptr_base == runtime->boundary)
219                         runtime->hw_ptr_base = 0;
220                 new_hw_ptr = runtime->hw_ptr_base + pos;
221         }
222
223         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
224             runtime->silence_size > 0)
225                 snd_pcm_playback_silence(substream, new_hw_ptr);
226
227         runtime->status->hw_ptr = new_hw_ptr;
228         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
229
230         return snd_pcm_update_hw_ptr_post(substream, runtime);
231 }
232
233 /* CAUTION: call it with irq disabled */
234 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
235 {
236         struct snd_pcm_runtime *runtime = substream->runtime;
237         snd_pcm_uframes_t pos;
238         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
239         snd_pcm_sframes_t delta;
240
241         old_hw_ptr = runtime->status->hw_ptr;
242         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
243         if (pos == SNDRV_PCM_POS_XRUN) {
244                 xrun(substream);
245                 return -EPIPE;
246         }
247         new_hw_ptr = runtime->hw_ptr_base + pos;
248
249         delta = old_hw_ptr - new_hw_ptr;
250         if (delta > 0) {
251                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
252 #ifdef CONFIG_SND_DEBUG
253                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
254                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
255                                 if (substream->pstr->xrun_debug > 1)
256                                         dump_stack();
257                         }
258 #endif
259                         return 0;
260                 }
261                 runtime->hw_ptr_base += runtime->buffer_size;
262                 if (runtime->hw_ptr_base == runtime->boundary)
263                         runtime->hw_ptr_base = 0;
264                 new_hw_ptr = runtime->hw_ptr_base + pos;
265         }
266         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
267             runtime->silence_size > 0)
268                 snd_pcm_playback_silence(substream, new_hw_ptr);
269
270         runtime->status->hw_ptr = new_hw_ptr;
271
272         return snd_pcm_update_hw_ptr_post(substream, runtime);
273 }
274
275 /**
276  * snd_pcm_set_ops - set the PCM operators
277  * @pcm: the pcm instance
278  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
279  * @ops: the operator table
280  *
281  * Sets the given PCM operators to the pcm instance.
282  */
283 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
284 {
285         struct snd_pcm_str *stream = &pcm->streams[direction];
286         struct snd_pcm_substream *substream;
287         
288         for (substream = stream->substream; substream != NULL; substream = substream->next)
289                 substream->ops = ops;
290 }
291
292
293 /**
294  * snd_pcm_sync - set the PCM sync id
295  * @substream: the pcm substream
296  *
297  * Sets the PCM sync identifier for the card.
298  */
299 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
300 {
301         struct snd_pcm_runtime *runtime = substream->runtime;
302         
303         runtime->sync.id32[0] = substream->pcm->card->number;
304         runtime->sync.id32[1] = -1;
305         runtime->sync.id32[2] = -1;
306         runtime->sync.id32[3] = -1;
307 }
308
309 /*
310  *  Standard ioctl routine
311  */
312
313 /* Code taken from alsa-lib */
314 #define assert(a) snd_assert((a), return -EINVAL)
315
316 static inline unsigned int div32(unsigned int a, unsigned int b, 
317                                  unsigned int *r)
318 {
319         if (b == 0) {
320                 *r = 0;
321                 return UINT_MAX;
322         }
323         *r = a % b;
324         return a / b;
325 }
326
327 static inline unsigned int div_down(unsigned int a, unsigned int b)
328 {
329         if (b == 0)
330                 return UINT_MAX;
331         return a / b;
332 }
333
334 static inline unsigned int div_up(unsigned int a, unsigned int b)
335 {
336         unsigned int r;
337         unsigned int q;
338         if (b == 0)
339                 return UINT_MAX;
340         q = div32(a, b, &r);
341         if (r)
342                 ++q;
343         return q;
344 }
345
346 static inline unsigned int mul(unsigned int a, unsigned int b)
347 {
348         if (a == 0)
349                 return 0;
350         if (div_down(UINT_MAX, a) < b)
351                 return UINT_MAX;
352         return a * b;
353 }
354
355 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
356                                     unsigned int c, unsigned int *r)
357 {
358         u_int64_t n = (u_int64_t) a * b;
359         if (c == 0) {
360                 snd_assert(n > 0, );
361                 *r = 0;
362                 return UINT_MAX;
363         }
364         div64_32(&n, c, r);
365         if (n >= UINT_MAX) {
366                 *r = 0;
367                 return UINT_MAX;
368         }
369         return n;
370 }
371
372 static int snd_interval_refine_min(struct snd_interval *i, unsigned int min, int openmin)
373 {
374         int changed = 0;
375         assert(!snd_interval_empty(i));
376         if (i->min < min) {
377                 i->min = min;
378                 i->openmin = openmin;
379                 changed = 1;
380         } else if (i->min == min && !i->openmin && openmin) {
381                 i->openmin = 1;
382                 changed = 1;
383         }
384         if (i->integer) {
385                 if (i->openmin) {
386                         i->min++;
387                         i->openmin = 0;
388                 }
389         }
390         if (snd_interval_checkempty(i)) {
391                 snd_interval_none(i);
392                 return -EINVAL;
393         }
394         return changed;
395 }
396
397 static int snd_interval_refine_max(struct snd_interval *i, unsigned int max, int openmax)
398 {
399         int changed = 0;
400         assert(!snd_interval_empty(i));
401         if (i->max > max) {
402                 i->max = max;
403                 i->openmax = openmax;
404                 changed = 1;
405         } else if (i->max == max && !i->openmax && openmax) {
406                 i->openmax = 1;
407                 changed = 1;
408         }
409         if (i->integer) {
410                 if (i->openmax) {
411                         i->max--;
412                         i->openmax = 0;
413                 }
414         }
415         if (snd_interval_checkempty(i)) {
416                 snd_interval_none(i);
417                 return -EINVAL;
418         }
419         return changed;
420 }
421
422 /**
423  * snd_interval_refine - refine the interval value of configurator
424  * @i: the interval value to refine
425  * @v: the interval value to refer to
426  *
427  * Refines the interval value with the reference value.
428  * The interval is changed to the range satisfying both intervals.
429  * The interval status (min, max, integer, etc.) are evaluated.
430  *
431  * Returns non-zero if the value is changed, zero if not changed.
432  */
433 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
434 {
435         int changed = 0;
436         assert(!snd_interval_empty(i));
437         if (i->min < v->min) {
438                 i->min = v->min;
439                 i->openmin = v->openmin;
440                 changed = 1;
441         } else if (i->min == v->min && !i->openmin && v->openmin) {
442                 i->openmin = 1;
443                 changed = 1;
444         }
445         if (i->max > v->max) {
446                 i->max = v->max;
447                 i->openmax = v->openmax;
448                 changed = 1;
449         } else if (i->max == v->max && !i->openmax && v->openmax) {
450                 i->openmax = 1;
451                 changed = 1;
452         }
453         if (!i->integer && v->integer) {
454                 i->integer = 1;
455                 changed = 1;
456         }
457         if (i->integer) {
458                 if (i->openmin) {
459                         i->min++;
460                         i->openmin = 0;
461                 }
462                 if (i->openmax) {
463                         i->max--;
464                         i->openmax = 0;
465                 }
466         } else if (!i->openmin && !i->openmax && i->min == i->max)
467                 i->integer = 1;
468         if (snd_interval_checkempty(i)) {
469                 snd_interval_none(i);
470                 return -EINVAL;
471         }
472         return changed;
473 }
474
475 static int snd_interval_refine_first(struct snd_interval *i)
476 {
477         assert(!snd_interval_empty(i));
478         if (snd_interval_single(i))
479                 return 0;
480         i->max = i->min;
481         i->openmax = i->openmin;
482         if (i->openmax)
483                 i->max++;
484         return 1;
485 }
486
487 static int snd_interval_refine_last(struct snd_interval *i)
488 {
489         assert(!snd_interval_empty(i));
490         if (snd_interval_single(i))
491                 return 0;
492         i->min = i->max;
493         i->openmin = i->openmax;
494         if (i->openmin)
495                 i->min--;
496         return 1;
497 }
498
499 static int snd_interval_refine_set(struct snd_interval *i, unsigned int val)
500 {
501         struct snd_interval t;
502         t.empty = 0;
503         t.min = t.max = val;
504         t.openmin = t.openmax = 0;
505         t.integer = 1;
506         return snd_interval_refine(i, &t);
507 }
508
509 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
510 {
511         if (a->empty || b->empty) {
512                 snd_interval_none(c);
513                 return;
514         }
515         c->empty = 0;
516         c->min = mul(a->min, b->min);
517         c->openmin = (a->openmin || b->openmin);
518         c->max = mul(a->max,  b->max);
519         c->openmax = (a->openmax || b->openmax);
520         c->integer = (a->integer && b->integer);
521 }
522
523 /**
524  * snd_interval_div - refine the interval value with division
525  * @a: dividend
526  * @b: divisor
527  * @c: quotient
528  *
529  * c = a / b
530  *
531  * Returns non-zero if the value is changed, zero if not changed.
532  */
533 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
534 {
535         unsigned int r;
536         if (a->empty || b->empty) {
537                 snd_interval_none(c);
538                 return;
539         }
540         c->empty = 0;
541         c->min = div32(a->min, b->max, &r);
542         c->openmin = (r || a->openmin || b->openmax);
543         if (b->min > 0) {
544                 c->max = div32(a->max, b->min, &r);
545                 if (r) {
546                         c->max++;
547                         c->openmax = 1;
548                 } else
549                         c->openmax = (a->openmax || b->openmin);
550         } else {
551                 c->max = UINT_MAX;
552                 c->openmax = 0;
553         }
554         c->integer = 0;
555 }
556
557 /**
558  * snd_interval_muldivk - refine the interval value
559  * @a: dividend 1
560  * @b: dividend 2
561  * @k: divisor (as integer)
562  * @c: result
563   *
564  * c = a * b / k
565  *
566  * Returns non-zero if the value is changed, zero if not changed.
567  */
568 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
569                       unsigned int k, struct snd_interval *c)
570 {
571         unsigned int r;
572         if (a->empty || b->empty) {
573                 snd_interval_none(c);
574                 return;
575         }
576         c->empty = 0;
577         c->min = muldiv32(a->min, b->min, k, &r);
578         c->openmin = (r || a->openmin || b->openmin);
579         c->max = muldiv32(a->max, b->max, k, &r);
580         if (r) {
581                 c->max++;
582                 c->openmax = 1;
583         } else
584                 c->openmax = (a->openmax || b->openmax);
585         c->integer = 0;
586 }
587
588 /**
589  * snd_interval_mulkdiv - refine the interval value
590  * @a: dividend 1
591  * @k: dividend 2 (as integer)
592  * @b: divisor
593  * @c: result
594  *
595  * c = a * k / b
596  *
597  * Returns non-zero if the value is changed, zero if not changed.
598  */
599 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
600                       const struct snd_interval *b, struct snd_interval *c)
601 {
602         unsigned int r;
603         if (a->empty || b->empty) {
604                 snd_interval_none(c);
605                 return;
606         }
607         c->empty = 0;
608         c->min = muldiv32(a->min, k, b->max, &r);
609         c->openmin = (r || a->openmin || b->openmax);
610         if (b->min > 0) {
611                 c->max = muldiv32(a->max, k, b->min, &r);
612                 if (r) {
613                         c->max++;
614                         c->openmax = 1;
615                 } else
616                         c->openmax = (a->openmax || b->openmin);
617         } else {
618                 c->max = UINT_MAX;
619                 c->openmax = 0;
620         }
621         c->integer = 0;
622 }
623
624 #undef assert
625 /* ---- */
626
627
628 /**
629  * snd_interval_ratnum - refine the interval value
630  * @i: interval to refine
631  * @rats_count: number of ratnum_t 
632  * @rats: ratnum_t array
633  * @nump: pointer to store the resultant numerator
634  * @denp: pointer to store the resultant denominator
635  *
636  * Returns non-zero if the value is changed, zero if not changed.
637  */
638 int snd_interval_ratnum(struct snd_interval *i,
639                         unsigned int rats_count, struct snd_ratnum *rats,
640                         unsigned int *nump, unsigned int *denp)
641 {
642         unsigned int best_num, best_diff, best_den;
643         unsigned int k;
644         struct snd_interval t;
645         int err;
646
647         best_num = best_den = best_diff = 0;
648         for (k = 0; k < rats_count; ++k) {
649                 unsigned int num = rats[k].num;
650                 unsigned int den;
651                 unsigned int q = i->min;
652                 int diff;
653                 if (q == 0)
654                         q = 1;
655                 den = div_down(num, q);
656                 if (den < rats[k].den_min)
657                         continue;
658                 if (den > rats[k].den_max)
659                         den = rats[k].den_max;
660                 else {
661                         unsigned int r;
662                         r = (den - rats[k].den_min) % rats[k].den_step;
663                         if (r != 0)
664                                 den -= r;
665                 }
666                 diff = num - q * den;
667                 if (best_num == 0 ||
668                     diff * best_den < best_diff * den) {
669                         best_diff = diff;
670                         best_den = den;
671                         best_num = num;
672                 }
673         }
674         if (best_den == 0) {
675                 i->empty = 1;
676                 return -EINVAL;
677         }
678         t.min = div_down(best_num, best_den);
679         t.openmin = !!(best_num % best_den);
680         
681         best_num = best_den = best_diff = 0;
682         for (k = 0; k < rats_count; ++k) {
683                 unsigned int num = rats[k].num;
684                 unsigned int den;
685                 unsigned int q = i->max;
686                 int diff;
687                 if (q == 0) {
688                         i->empty = 1;
689                         return -EINVAL;
690                 }
691                 den = div_up(num, q);
692                 if (den > rats[k].den_max)
693                         continue;
694                 if (den < rats[k].den_min)
695                         den = rats[k].den_min;
696                 else {
697                         unsigned int r;
698                         r = (den - rats[k].den_min) % rats[k].den_step;
699                         if (r != 0)
700                                 den += rats[k].den_step - r;
701                 }
702                 diff = q * den - num;
703                 if (best_num == 0 ||
704                     diff * best_den < best_diff * den) {
705                         best_diff = diff;
706                         best_den = den;
707                         best_num = num;
708                 }
709         }
710         if (best_den == 0) {
711                 i->empty = 1;
712                 return -EINVAL;
713         }
714         t.max = div_up(best_num, best_den);
715         t.openmax = !!(best_num % best_den);
716         t.integer = 0;
717         err = snd_interval_refine(i, &t);
718         if (err < 0)
719                 return err;
720
721         if (snd_interval_single(i)) {
722                 if (nump)
723                         *nump = best_num;
724                 if (denp)
725                         *denp = best_den;
726         }
727         return err;
728 }
729
730 /**
731  * snd_interval_ratden - refine the interval value
732  * @i: interval to refine
733  * @rats_count: number of struct ratden
734  * @rats: struct ratden array
735  * @nump: pointer to store the resultant numerator
736  * @denp: pointer to store the resultant denominator
737  *
738  * Returns non-zero if the value is changed, zero if not changed.
739  */
740 static int snd_interval_ratden(struct snd_interval *i,
741                                unsigned int rats_count, struct snd_ratden *rats,
742                                unsigned int *nump, unsigned int *denp)
743 {
744         unsigned int best_num, best_diff, best_den;
745         unsigned int k;
746         struct snd_interval t;
747         int err;
748
749         best_num = best_den = best_diff = 0;
750         for (k = 0; k < rats_count; ++k) {
751                 unsigned int num;
752                 unsigned int den = rats[k].den;
753                 unsigned int q = i->min;
754                 int diff;
755                 num = mul(q, den);
756                 if (num > rats[k].num_max)
757                         continue;
758                 if (num < rats[k].num_min)
759                         num = rats[k].num_max;
760                 else {
761                         unsigned int r;
762                         r = (num - rats[k].num_min) % rats[k].num_step;
763                         if (r != 0)
764                                 num += rats[k].num_step - r;
765                 }
766                 diff = num - q * den;
767                 if (best_num == 0 ||
768                     diff * best_den < best_diff * den) {
769                         best_diff = diff;
770                         best_den = den;
771                         best_num = num;
772                 }
773         }
774         if (best_den == 0) {
775                 i->empty = 1;
776                 return -EINVAL;
777         }
778         t.min = div_down(best_num, best_den);
779         t.openmin = !!(best_num % best_den);
780         
781         best_num = best_den = best_diff = 0;
782         for (k = 0; k < rats_count; ++k) {
783                 unsigned int num;
784                 unsigned int den = rats[k].den;
785                 unsigned int q = i->max;
786                 int diff;
787                 num = mul(q, den);
788                 if (num < rats[k].num_min)
789                         continue;
790                 if (num > rats[k].num_max)
791                         num = rats[k].num_max;
792                 else {
793                         unsigned int r;
794                         r = (num - rats[k].num_min) % rats[k].num_step;
795                         if (r != 0)
796                                 num -= r;
797                 }
798                 diff = q * den - num;
799                 if (best_num == 0 ||
800                     diff * best_den < best_diff * den) {
801                         best_diff = diff;
802                         best_den = den;
803                         best_num = num;
804                 }
805         }
806         if (best_den == 0) {
807                 i->empty = 1;
808                 return -EINVAL;
809         }
810         t.max = div_up(best_num, best_den);
811         t.openmax = !!(best_num % best_den);
812         t.integer = 0;
813         err = snd_interval_refine(i, &t);
814         if (err < 0)
815                 return err;
816
817         if (snd_interval_single(i)) {
818                 if (nump)
819                         *nump = best_num;
820                 if (denp)
821                         *denp = best_den;
822         }
823         return err;
824 }
825
826 /**
827  * snd_interval_list - refine the interval value from the list
828  * @i: the interval value to refine
829  * @count: the number of elements in the list
830  * @list: the value list
831  * @mask: the bit-mask to evaluate
832  *
833  * Refines the interval value from the list.
834  * When mask is non-zero, only the elements corresponding to bit 1 are
835  * evaluated.
836  *
837  * Returns non-zero if the value is changed, zero if not changed.
838  */
839 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
840 {
841         unsigned int k;
842         int changed = 0;
843         for (k = 0; k < count; k++) {
844                 if (mask && !(mask & (1 << k)))
845                         continue;
846                 if (i->min == list[k] && !i->openmin)
847                         goto _l1;
848                 if (i->min < list[k]) {
849                         i->min = list[k];
850                         i->openmin = 0;
851                         changed = 1;
852                         goto _l1;
853                 }
854         }
855         i->empty = 1;
856         return -EINVAL;
857  _l1:
858         for (k = count; k-- > 0;) {
859                 if (mask && !(mask & (1 << k)))
860                         continue;
861                 if (i->max == list[k] && !i->openmax)
862                         goto _l2;
863                 if (i->max > list[k]) {
864                         i->max = list[k];
865                         i->openmax = 0;
866                         changed = 1;
867                         goto _l2;
868                 }
869         }
870         i->empty = 1;
871         return -EINVAL;
872  _l2:
873         if (snd_interval_checkempty(i)) {
874                 i->empty = 1;
875                 return -EINVAL;
876         }
877         return changed;
878 }
879
880 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
881 {
882         unsigned int n;
883         int changed = 0;
884         n = (i->min - min) % step;
885         if (n != 0 || i->openmin) {
886                 i->min += step - n;
887                 changed = 1;
888         }
889         n = (i->max - min) % step;
890         if (n != 0 || i->openmax) {
891                 i->max -= n;
892                 changed = 1;
893         }
894         if (snd_interval_checkempty(i)) {
895                 i->empty = 1;
896                 return -EINVAL;
897         }
898         return changed;
899 }
900
901 /* Info constraints helpers */
902
903 /**
904  * snd_pcm_hw_rule_add - add the hw-constraint rule
905  * @runtime: the pcm runtime instance
906  * @cond: condition bits
907  * @var: the variable to evaluate
908  * @func: the evaluation function
909  * @private: the private data pointer passed to function
910  * @dep: the dependent variables
911  *
912  * Returns zero if successful, or a negative error code on failure.
913  */
914 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
915                         int var,
916                         snd_pcm_hw_rule_func_t func, void *private,
917                         int dep, ...)
918 {
919         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
920         struct snd_pcm_hw_rule *c;
921         unsigned int k;
922         va_list args;
923         va_start(args, dep);
924         if (constrs->rules_num >= constrs->rules_all) {
925                 struct snd_pcm_hw_rule *new;
926                 unsigned int new_rules = constrs->rules_all + 16;
927                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
928                 if (!new)
929                         return -ENOMEM;
930                 if (constrs->rules) {
931                         memcpy(new, constrs->rules,
932                                constrs->rules_num * sizeof(*c));
933                         kfree(constrs->rules);
934                 }
935                 constrs->rules = new;
936                 constrs->rules_all = new_rules;
937         }
938         c = &constrs->rules[constrs->rules_num];
939         c->cond = cond;
940         c->func = func;
941         c->var = var;
942         c->private = private;
943         k = 0;
944         while (1) {
945                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
946                 c->deps[k++] = dep;
947                 if (dep < 0)
948                         break;
949                 dep = va_arg(args, int);
950         }
951         constrs->rules_num++;
952         va_end(args);
953         return 0;
954 }                                   
955
956 /**
957  * snd_pcm_hw_constraint_mask
958  * @runtime: PCM runtime instance
959  * @var: hw_params variable to apply the mask
960  * @mask: the bitmap mask
961  *
962  * Apply the constraint of the given bitmap mask to a mask parameter.
963  */
964 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
965                                u_int32_t mask)
966 {
967         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
968         struct snd_mask *maskp = constrs_mask(constrs, var);
969         *maskp->bits &= mask;
970         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
971         if (*maskp->bits == 0)
972                 return -EINVAL;
973         return 0;
974 }
975
976 /**
977  * snd_pcm_hw_constraint_mask64
978  * @runtime: PCM runtime instance
979  * @var: hw_params variable to apply the mask
980  * @mask: the 64bit bitmap mask
981  *
982  * Apply the constraint of the given bitmap mask to a mask parameter.
983  */
984 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
985                                  u_int64_t mask)
986 {
987         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
988         struct snd_mask *maskp = constrs_mask(constrs, var);
989         maskp->bits[0] &= (u_int32_t)mask;
990         maskp->bits[1] &= (u_int32_t)(mask >> 32);
991         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
992         if (! maskp->bits[0] && ! maskp->bits[1])
993                 return -EINVAL;
994         return 0;
995 }
996
997 /**
998  * snd_pcm_hw_constraint_integer
999  * @runtime: PCM runtime instance
1000  * @var: hw_params variable to apply the integer constraint
1001  *
1002  * Apply the constraint of integer to an interval parameter.
1003  */
1004 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1005 {
1006         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1007         return snd_interval_setinteger(constrs_interval(constrs, var));
1008 }
1009
1010 /**
1011  * snd_pcm_hw_constraint_minmax
1012  * @runtime: PCM runtime instance
1013  * @var: hw_params variable to apply the range
1014  * @min: the minimal value
1015  * @max: the maximal value
1016  * 
1017  * Apply the min/max range constraint to an interval parameter.
1018  */
1019 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1020                                  unsigned int min, unsigned int max)
1021 {
1022         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1023         struct snd_interval t;
1024         t.min = min;
1025         t.max = max;
1026         t.openmin = t.openmax = 0;
1027         t.integer = 0;
1028         return snd_interval_refine(constrs_interval(constrs, var), &t);
1029 }
1030
1031 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1032                                 struct snd_pcm_hw_rule *rule)
1033 {
1034         struct snd_pcm_hw_constraint_list *list = rule->private;
1035         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1036 }               
1037
1038
1039 /**
1040  * snd_pcm_hw_constraint_list
1041  * @runtime: PCM runtime instance
1042  * @cond: condition bits
1043  * @var: hw_params variable to apply the list constraint
1044  * @l: list
1045  * 
1046  * Apply the list of constraints to an interval parameter.
1047  */
1048 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1049                                unsigned int cond,
1050                                snd_pcm_hw_param_t var,
1051                                struct snd_pcm_hw_constraint_list *l)
1052 {
1053         return snd_pcm_hw_rule_add(runtime, cond, var,
1054                                    snd_pcm_hw_rule_list, l,
1055                                    var, -1);
1056 }
1057
1058 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1059                                    struct snd_pcm_hw_rule *rule)
1060 {
1061         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1062         unsigned int num = 0, den = 0;
1063         int err;
1064         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1065                                   r->nrats, r->rats, &num, &den);
1066         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1067                 params->rate_num = num;
1068                 params->rate_den = den;
1069         }
1070         return err;
1071 }
1072
1073 /**
1074  * snd_pcm_hw_constraint_ratnums
1075  * @runtime: PCM runtime instance
1076  * @cond: condition bits
1077  * @var: hw_params variable to apply the ratnums constraint
1078  * @r: struct snd_ratnums constriants
1079  */
1080 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1081                                   unsigned int cond,
1082                                   snd_pcm_hw_param_t var,
1083                                   struct snd_pcm_hw_constraint_ratnums *r)
1084 {
1085         return snd_pcm_hw_rule_add(runtime, cond, var,
1086                                    snd_pcm_hw_rule_ratnums, r,
1087                                    var, -1);
1088 }
1089
1090 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1091                                    struct snd_pcm_hw_rule *rule)
1092 {
1093         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1094         unsigned int num = 0, den = 0;
1095         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1096                                   r->nrats, r->rats, &num, &den);
1097         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1098                 params->rate_num = num;
1099                 params->rate_den = den;
1100         }
1101         return err;
1102 }
1103
1104 /**
1105  * snd_pcm_hw_constraint_ratdens
1106  * @runtime: PCM runtime instance
1107  * @cond: condition bits
1108  * @var: hw_params variable to apply the ratdens constraint
1109  * @r: struct snd_ratdens constriants
1110  */
1111 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1112                                   unsigned int cond,
1113                                   snd_pcm_hw_param_t var,
1114                                   struct snd_pcm_hw_constraint_ratdens *r)
1115 {
1116         return snd_pcm_hw_rule_add(runtime, cond, var,
1117                                    snd_pcm_hw_rule_ratdens, r,
1118                                    var, -1);
1119 }
1120
1121 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1122                                   struct snd_pcm_hw_rule *rule)
1123 {
1124         unsigned int l = (unsigned long) rule->private;
1125         int width = l & 0xffff;
1126         unsigned int msbits = l >> 16;
1127         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1128         if (snd_interval_single(i) && snd_interval_value(i) == width)
1129                 params->msbits = msbits;
1130         return 0;
1131 }
1132
1133 /**
1134  * snd_pcm_hw_constraint_msbits
1135  * @runtime: PCM runtime instance
1136  * @cond: condition bits
1137  * @width: sample bits width
1138  * @msbits: msbits width
1139  */
1140 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1141                                  unsigned int cond,
1142                                  unsigned int width,
1143                                  unsigned int msbits)
1144 {
1145         unsigned long l = (msbits << 16) | width;
1146         return snd_pcm_hw_rule_add(runtime, cond, -1,
1147                                     snd_pcm_hw_rule_msbits,
1148                                     (void*) l,
1149                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1150 }
1151
1152 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1153                                 struct snd_pcm_hw_rule *rule)
1154 {
1155         unsigned long step = (unsigned long) rule->private;
1156         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1157 }
1158
1159 /**
1160  * snd_pcm_hw_constraint_step
1161  * @runtime: PCM runtime instance
1162  * @cond: condition bits
1163  * @var: hw_params variable to apply the step constraint
1164  * @step: step size
1165  */
1166 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1167                                unsigned int cond,
1168                                snd_pcm_hw_param_t var,
1169                                unsigned long step)
1170 {
1171         return snd_pcm_hw_rule_add(runtime, cond, var, 
1172                                    snd_pcm_hw_rule_step, (void *) step,
1173                                    var, -1);
1174 }
1175
1176 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1177 {
1178         static int pow2_sizes[] = {
1179                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1180                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1181                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1182                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1183         };
1184         return snd_interval_list(hw_param_interval(params, rule->var),
1185                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1186 }               
1187
1188 /**
1189  * snd_pcm_hw_constraint_pow2
1190  * @runtime: PCM runtime instance
1191  * @cond: condition bits
1192  * @var: hw_params variable to apply the power-of-2 constraint
1193  */
1194 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1195                                unsigned int cond,
1196                                snd_pcm_hw_param_t var)
1197 {
1198         return snd_pcm_hw_rule_add(runtime, cond, var, 
1199                                    snd_pcm_hw_rule_pow2, NULL,
1200                                    var, -1);
1201 }
1202
1203 /* To use the same code we have in alsa-lib */
1204 #define assert(i) snd_assert((i), return -EINVAL)
1205 #ifndef INT_MIN
1206 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1207 #endif
1208
1209 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1210                                   snd_pcm_hw_param_t var)
1211 {
1212         if (hw_is_mask(var)) {
1213                 snd_mask_any(hw_param_mask(params, var));
1214                 params->cmask |= 1 << var;
1215                 params->rmask |= 1 << var;
1216                 return;
1217         }
1218         if (hw_is_interval(var)) {
1219                 snd_interval_any(hw_param_interval(params, var));
1220                 params->cmask |= 1 << var;
1221                 params->rmask |= 1 << var;
1222                 return;
1223         }
1224         snd_BUG();
1225 }
1226
1227 #if 0
1228 /*
1229  * snd_pcm_hw_param_any
1230  */
1231 int snd_pcm_hw_param_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1232                          snd_pcm_hw_param_t var)
1233 {
1234         _snd_pcm_hw_param_any(params, var);
1235         return snd_pcm_hw_refine(pcm, params);
1236 }
1237 #endif  /*  0  */
1238
1239 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1240 {
1241         unsigned int k;
1242         memset(params, 0, sizeof(*params));
1243         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1244                 _snd_pcm_hw_param_any(params, k);
1245         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1246                 _snd_pcm_hw_param_any(params, k);
1247         params->info = ~0U;
1248 }
1249
1250 #if 0
1251 /*
1252  * snd_pcm_hw_params_any
1253  *
1254  * Fill PARAMS with full configuration space boundaries
1255  */
1256 int snd_pcm_hw_params_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params)
1257 {
1258         _snd_pcm_hw_params_any(params);
1259         return snd_pcm_hw_refine(pcm, params);
1260 }
1261 #endif  /*  0  */
1262
1263 /**
1264  * snd_pcm_hw_param_value
1265  * @params: the hw_params instance
1266  * @var: parameter to retrieve
1267  * @dir: pointer to the direction (-1,0,1) or NULL
1268  *
1269  * Return the value for field PAR if it's fixed in configuration space 
1270  *  defined by PARAMS. Return -EINVAL otherwise
1271  */
1272 static int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1273                                   snd_pcm_hw_param_t var, int *dir)
1274 {
1275         if (hw_is_mask(var)) {
1276                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1277                 if (!snd_mask_single(mask))
1278                         return -EINVAL;
1279                 if (dir)
1280                         *dir = 0;
1281                 return snd_mask_value(mask);
1282         }
1283         if (hw_is_interval(var)) {
1284                 const struct snd_interval *i = hw_param_interval_c(params, var);
1285                 if (!snd_interval_single(i))
1286                         return -EINVAL;
1287                 if (dir)
1288                         *dir = i->openmin;
1289                 return snd_interval_value(i);
1290         }
1291         assert(0);
1292         return -EINVAL;
1293 }
1294
1295 /**
1296  * snd_pcm_hw_param_value_min
1297  * @params: the hw_params instance
1298  * @var: parameter to retrieve
1299  * @dir: pointer to the direction (-1,0,1) or NULL
1300  *
1301  * Return the minimum value for field PAR.
1302  */
1303 unsigned int snd_pcm_hw_param_value_min(const struct snd_pcm_hw_params *params,
1304                                         snd_pcm_hw_param_t var, int *dir)
1305 {
1306         if (hw_is_mask(var)) {
1307                 if (dir)
1308                         *dir = 0;
1309                 return snd_mask_min(hw_param_mask_c(params, var));
1310         }
1311         if (hw_is_interval(var)) {
1312                 const struct snd_interval *i = hw_param_interval_c(params, var);
1313                 if (dir)
1314                         *dir = i->openmin;
1315                 return snd_interval_min(i);
1316         }
1317         assert(0);
1318         return -EINVAL;
1319 }
1320
1321 /**
1322  * snd_pcm_hw_param_value_max
1323  * @params: the hw_params instance
1324  * @var: parameter to retrieve
1325  * @dir: pointer to the direction (-1,0,1) or NULL
1326  *
1327  * Return the maximum value for field PAR.
1328  */
1329 unsigned int snd_pcm_hw_param_value_max(const struct snd_pcm_hw_params *params,
1330                                         snd_pcm_hw_param_t var, int *dir)
1331 {
1332         if (hw_is_mask(var)) {
1333                 if (dir)
1334                         *dir = 0;
1335                 return snd_mask_max(hw_param_mask_c(params, var));
1336         }
1337         if (hw_is_interval(var)) {
1338                 const struct snd_interval *i = hw_param_interval_c(params, var);
1339                 if (dir)
1340                         *dir = - (int) i->openmax;
1341                 return snd_interval_max(i);
1342         }
1343         assert(0);
1344         return -EINVAL;
1345 }
1346
1347 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1348                                 snd_pcm_hw_param_t var)
1349 {
1350         if (hw_is_mask(var)) {
1351                 snd_mask_none(hw_param_mask(params, var));
1352                 params->cmask |= 1 << var;
1353                 params->rmask |= 1 << var;
1354         } else if (hw_is_interval(var)) {
1355                 snd_interval_none(hw_param_interval(params, var));
1356                 params->cmask |= 1 << var;
1357                 params->rmask |= 1 << var;
1358         } else {
1359                 snd_BUG();
1360         }
1361 }
1362
1363 int _snd_pcm_hw_param_setinteger(struct snd_pcm_hw_params *params,
1364                                  snd_pcm_hw_param_t var)
1365 {
1366         int changed;
1367         assert(hw_is_interval(var));
1368         changed = snd_interval_setinteger(hw_param_interval(params, var));
1369         if (changed) {
1370                 params->cmask |= 1 << var;
1371                 params->rmask |= 1 << var;
1372         }
1373         return changed;
1374 }
1375         
1376 #if 0
1377 /*
1378  * snd_pcm_hw_param_setinteger
1379  *
1380  * Inside configuration space defined by PARAMS remove from PAR all 
1381  * non integer values. Reduce configuration space accordingly.
1382  * Return -EINVAL if the configuration space is empty
1383  */
1384 int snd_pcm_hw_param_setinteger(struct snd_pcm_substream *pcm, 
1385                                 struct snd_pcm_hw_params *params,
1386                                 snd_pcm_hw_param_t var)
1387 {
1388         int changed = _snd_pcm_hw_param_setinteger(params, var);
1389         if (changed < 0)
1390                 return changed;
1391         if (params->rmask) {
1392                 int err = snd_pcm_hw_refine(pcm, params);
1393                 if (err < 0)
1394                         return err;
1395         }
1396         return 0;
1397 }
1398 #endif  /*  0  */
1399
1400 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1401                                    snd_pcm_hw_param_t var)
1402 {
1403         int changed;
1404         if (hw_is_mask(var))
1405                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1406         else if (hw_is_interval(var))
1407                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1408         else {
1409                 assert(0);
1410                 return -EINVAL;
1411         }
1412         if (changed) {
1413                 params->cmask |= 1 << var;
1414                 params->rmask |= 1 << var;
1415         }
1416         return changed;
1417 }
1418
1419
1420 /**
1421  * snd_pcm_hw_param_first
1422  * @pcm: PCM instance
1423  * @params: the hw_params instance
1424  * @var: parameter to retrieve
1425  * @dir: pointer to the direction (-1,0,1) or NULL
1426  *
1427  * Inside configuration space defined by PARAMS remove from PAR all 
1428  * values > minimum. Reduce configuration space accordingly.
1429  * Return the minimum.
1430  */
1431 static int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1432                                   struct snd_pcm_hw_params *params, 
1433                                   snd_pcm_hw_param_t var, int *dir)
1434 {
1435         int changed = _snd_pcm_hw_param_first(params, var);
1436         if (changed < 0)
1437                 return changed;
1438         if (params->rmask) {
1439                 int err = snd_pcm_hw_refine(pcm, params);
1440                 assert(err >= 0);
1441         }
1442         return snd_pcm_hw_param_value(params, var, dir);
1443 }
1444
1445 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1446                                   snd_pcm_hw_param_t var)
1447 {
1448         int changed;
1449         if (hw_is_mask(var))
1450                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1451         else if (hw_is_interval(var))
1452                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1453         else {
1454                 assert(0);
1455                 return -EINVAL;
1456         }
1457         if (changed) {
1458                 params->cmask |= 1 << var;
1459                 params->rmask |= 1 << var;
1460         }
1461         return changed;
1462 }
1463
1464
1465 /**
1466  * snd_pcm_hw_param_last
1467  * @pcm: PCM instance
1468  * @params: the hw_params instance
1469  * @var: parameter to retrieve
1470  * @dir: pointer to the direction (-1,0,1) or NULL
1471  *
1472  * Inside configuration space defined by PARAMS remove from PAR all 
1473  * values < maximum. Reduce configuration space accordingly.
1474  * Return the maximum.
1475  */
1476 static int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1477                                  struct snd_pcm_hw_params *params,
1478                                  snd_pcm_hw_param_t var, int *dir)
1479 {
1480         int changed = _snd_pcm_hw_param_last(params, var);
1481         if (changed < 0)
1482                 return changed;
1483         if (params->rmask) {
1484                 int err = snd_pcm_hw_refine(pcm, params);
1485                 assert(err >= 0);
1486         }
1487         return snd_pcm_hw_param_value(params, var, dir);
1488 }
1489
1490 int _snd_pcm_hw_param_min(struct snd_pcm_hw_params *params,
1491                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1492 {
1493         int changed;
1494         int open = 0;
1495         if (dir) {
1496                 if (dir > 0) {
1497                         open = 1;
1498                 } else if (dir < 0) {
1499                         if (val > 0) {
1500                                 open = 1;
1501                                 val--;
1502                         }
1503                 }
1504         }
1505         if (hw_is_mask(var))
1506                 changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1507         else if (hw_is_interval(var))
1508                 changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1509         else {
1510                 assert(0);
1511                 return -EINVAL;
1512         }
1513         if (changed) {
1514                 params->cmask |= 1 << var;
1515                 params->rmask |= 1 << var;
1516         }
1517         return changed;
1518 }
1519
1520 /**
1521  * snd_pcm_hw_param_min
1522  * @pcm: PCM instance
1523  * @params: the hw_params instance
1524  * @var: parameter to retrieve
1525  * @val: minimal value
1526  * @dir: pointer to the direction (-1,0,1) or NULL
1527  *
1528  * Inside configuration space defined by PARAMS remove from PAR all 
1529  * values < VAL. Reduce configuration space accordingly.
1530  * Return new minimum or -EINVAL if the configuration space is empty
1531  */
1532 static int snd_pcm_hw_param_min(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1533                                 snd_pcm_hw_param_t var, unsigned int val,
1534                                 int *dir)
1535 {
1536         int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1537         if (changed < 0)
1538                 return changed;
1539         if (params->rmask) {
1540                 int err = snd_pcm_hw_refine(pcm, params);
1541                 if (err < 0)
1542                         return err;
1543         }
1544         return snd_pcm_hw_param_value_min(params, var, dir);
1545 }
1546
1547 static int _snd_pcm_hw_param_max(struct snd_pcm_hw_params *params,
1548                                  snd_pcm_hw_param_t var, unsigned int val,
1549                                  int dir)
1550 {
1551         int changed;
1552         int open = 0;
1553         if (dir) {
1554                 if (dir < 0) {
1555                         open = 1;
1556                 } else if (dir > 0) {
1557                         open = 1;
1558                         val++;
1559                 }
1560         }
1561         if (hw_is_mask(var)) {
1562                 if (val == 0 && open) {
1563                         snd_mask_none(hw_param_mask(params, var));
1564                         changed = -EINVAL;
1565                 } else
1566                         changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1567         } else if (hw_is_interval(var))
1568                 changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1569         else {
1570                 assert(0);
1571                 return -EINVAL;
1572         }
1573         if (changed) {
1574                 params->cmask |= 1 << var;
1575                 params->rmask |= 1 << var;
1576         }
1577         return changed;
1578 }
1579
1580 /**
1581  * snd_pcm_hw_param_max
1582  * @pcm: PCM instance
1583  * @params: the hw_params instance
1584  * @var: parameter to retrieve
1585  * @val: maximal value
1586  * @dir: pointer to the direction (-1,0,1) or NULL
1587  *
1588  * Inside configuration space defined by PARAMS remove from PAR all 
1589  *  values >= VAL + 1. Reduce configuration space accordingly.
1590  *  Return new maximum or -EINVAL if the configuration space is empty
1591  */
1592 static int snd_pcm_hw_param_max(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1593                                 snd_pcm_hw_param_t var, unsigned int val,
1594                                 int *dir)
1595 {
1596         int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1597         if (changed < 0)
1598                 return changed;
1599         if (params->rmask) {
1600                 int err = snd_pcm_hw_refine(pcm, params);
1601                 if (err < 0)
1602                         return err;
1603         }
1604         return snd_pcm_hw_param_value_max(params, var, dir);
1605 }
1606
1607 int _snd_pcm_hw_param_set(struct snd_pcm_hw_params *params,
1608                           snd_pcm_hw_param_t var, unsigned int val, int dir)
1609 {
1610         int changed;
1611         if (hw_is_mask(var)) {
1612                 struct snd_mask *m = hw_param_mask(params, var);
1613                 if (val == 0 && dir < 0) {
1614                         changed = -EINVAL;
1615                         snd_mask_none(m);
1616                 } else {
1617                         if (dir > 0)
1618                                 val++;
1619                         else if (dir < 0)
1620                                 val--;
1621                         changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1622                 }
1623         } else if (hw_is_interval(var)) {
1624                 struct snd_interval *i = hw_param_interval(params, var);
1625                 if (val == 0 && dir < 0) {
1626                         changed = -EINVAL;
1627                         snd_interval_none(i);
1628                 } else if (dir == 0)
1629                         changed = snd_interval_refine_set(i, val);
1630                 else {
1631                         struct snd_interval t;
1632                         t.openmin = 1;
1633                         t.openmax = 1;
1634                         t.empty = 0;
1635                         t.integer = 0;
1636                         if (dir < 0) {
1637                                 t.min = val - 1;
1638                                 t.max = val;
1639                         } else {
1640                                 t.min = val;
1641                                 t.max = val+1;
1642                         }
1643                         changed = snd_interval_refine(i, &t);
1644                 }
1645         } else {
1646                 assert(0);
1647                 return -EINVAL;
1648         }
1649         if (changed) {
1650                 params->cmask |= 1 << var;
1651                 params->rmask |= 1 << var;
1652         }
1653         return changed;
1654 }
1655
1656 /**
1657  * snd_pcm_hw_param_set
1658  * @pcm: PCM instance
1659  * @params: the hw_params instance
1660  * @var: parameter to retrieve
1661  * @val: value to set
1662  * @dir: pointer to the direction (-1,0,1) or NULL
1663  *
1664  * Inside configuration space defined by PARAMS remove from PAR all 
1665  * values != VAL. Reduce configuration space accordingly.
1666  *  Return VAL or -EINVAL if the configuration space is empty
1667  */
1668 int snd_pcm_hw_param_set(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1669                          snd_pcm_hw_param_t var, unsigned int val, int dir)
1670 {
1671         int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1672         if (changed < 0)
1673                 return changed;
1674         if (params->rmask) {
1675                 int err = snd_pcm_hw_refine(pcm, params);
1676                 if (err < 0)
1677                         return err;
1678         }
1679         return snd_pcm_hw_param_value(params, var, NULL);
1680 }
1681
1682 static int _snd_pcm_hw_param_mask(struct snd_pcm_hw_params *params,
1683                                   snd_pcm_hw_param_t var, const struct snd_mask *val)
1684 {
1685         int changed;
1686         assert(hw_is_mask(var));
1687         changed = snd_mask_refine(hw_param_mask(params, var), val);
1688         if (changed) {
1689                 params->cmask |= 1 << var;
1690                 params->rmask |= 1 << var;
1691         }
1692         return changed;
1693 }
1694
1695 /**
1696  * snd_pcm_hw_param_mask
1697  * @pcm: PCM instance
1698  * @params: the hw_params instance
1699  * @var: parameter to retrieve
1700  * @val: mask to apply
1701  *
1702  * Inside configuration space defined by PARAMS remove from PAR all values
1703  * not contained in MASK. Reduce configuration space accordingly.
1704  * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1705  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1706  * Return 0 on success or -EINVAL
1707  * if the configuration space is empty
1708  */
1709 int snd_pcm_hw_param_mask(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1710                           snd_pcm_hw_param_t var, const struct snd_mask *val)
1711 {
1712         int changed = _snd_pcm_hw_param_mask(params, var, val);
1713         if (changed < 0)
1714                 return changed;
1715         if (params->rmask) {
1716                 int err = snd_pcm_hw_refine(pcm, params);
1717                 if (err < 0)
1718                         return err;
1719         }
1720         return 0;
1721 }
1722
1723 static int boundary_sub(int a, int adir,
1724                         int b, int bdir,
1725                         int *c, int *cdir)
1726 {
1727         adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1728         bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1729         *c = a - b;
1730         *cdir = adir - bdir;
1731         if (*cdir == -2) {
1732                 assert(*c > INT_MIN);
1733                 (*c)--;
1734         } else if (*cdir == 2) {
1735                 assert(*c < INT_MAX);
1736                 (*c)++;
1737         }
1738         return 0;
1739 }
1740
1741 static int boundary_lt(unsigned int a, int adir,
1742                        unsigned int b, int bdir)
1743 {
1744         assert(a > 0 || adir >= 0);
1745         assert(b > 0 || bdir >= 0);
1746         if (adir < 0) {
1747                 a--;
1748                 adir = 1;
1749         } else if (adir > 0)
1750                 adir = 1;
1751         if (bdir < 0) {
1752                 b--;
1753                 bdir = 1;
1754         } else if (bdir > 0)
1755                 bdir = 1;
1756         return a < b || (a == b && adir < bdir);
1757 }
1758
1759 /* Return 1 if min is nearer to best than max */
1760 static int boundary_nearer(int min, int mindir,
1761                            int best, int bestdir,
1762                            int max, int maxdir)
1763 {
1764         int dmin, dmindir;
1765         int dmax, dmaxdir;
1766         boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1767         boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1768         return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1769 }
1770
1771 /**
1772  * snd_pcm_hw_param_near
1773  * @pcm: PCM instance
1774  * @params: the hw_params instance
1775  * @var: parameter to retrieve
1776  * @best: value to set
1777  * @dir: pointer to the direction (-1,0,1) or NULL
1778  *
1779  * Inside configuration space defined by PARAMS set PAR to the available value
1780  * nearest to VAL. Reduce configuration space accordingly.
1781  * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1782  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1783  * Return the value found.
1784   */
1785 int snd_pcm_hw_param_near(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params,
1786                           snd_pcm_hw_param_t var, unsigned int best, int *dir)
1787 {
1788         struct snd_pcm_hw_params *save = NULL;
1789         int v;
1790         unsigned int saved_min;
1791         int last = 0;
1792         int min, max;
1793         int mindir, maxdir;
1794         int valdir = dir ? *dir : 0;
1795         /* FIXME */
1796         if (best > INT_MAX)
1797                 best = INT_MAX;
1798         min = max = best;
1799         mindir = maxdir = valdir;
1800         if (maxdir > 0)
1801                 maxdir = 0;
1802         else if (maxdir == 0)
1803                 maxdir = -1;
1804         else {
1805                 maxdir = 1;
1806                 max--;
1807         }
1808         save = kmalloc(sizeof(*save), GFP_KERNEL);
1809         if (save == NULL)
1810                 return -ENOMEM;
1811         *save = *params;
1812         saved_min = min;
1813         min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1814         if (min >= 0) {
1815                 struct snd_pcm_hw_params *params1;
1816                 if (max < 0)
1817                         goto _end;
1818                 if ((unsigned int)min == saved_min && mindir == valdir)
1819                         goto _end;
1820                 params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1821                 if (params1 == NULL) {
1822                         kfree(save);
1823                         return -ENOMEM;
1824                 }
1825                 *params1 = *save;
1826                 max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1827                 if (max < 0) {
1828                         kfree(params1);
1829                         goto _end;
1830                 }
1831                 if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1832                         *params = *params1;
1833                         last = 1;
1834                 }
1835                 kfree(params1);
1836         } else {
1837                 *params = *save;
1838                 max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1839                 assert(max >= 0);
1840                 last = 1;
1841         }
1842  _end:
1843         kfree(save);
1844         if (last)
1845                 v = snd_pcm_hw_param_last(pcm, params, var, dir);
1846         else
1847                 v = snd_pcm_hw_param_first(pcm, params, var, dir);
1848         assert(v >= 0);
1849         return v;
1850 }
1851
1852 /**
1853  * snd_pcm_hw_param_choose
1854  * @pcm: PCM instance
1855  * @params: the hw_params instance
1856  *
1857  * Choose one configuration from configuration space defined by PARAMS
1858  * The configuration chosen is that obtained fixing in this order:
1859  * first access, first format, first subformat, min channels,
1860  * min rate, min period time, max buffer size, min tick time
1861  */
1862 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params)
1863 {
1864         int err;
1865
1866         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1867         assert(err >= 0);
1868
1869         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1870         assert(err >= 0);
1871
1872         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1873         assert(err >= 0);
1874
1875         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1876         assert(err >= 0);
1877
1878         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1879         assert(err >= 0);
1880
1881         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1882         assert(err >= 0);
1883
1884         err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1885         assert(err >= 0);
1886
1887         err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1888         assert(err >= 0);
1889
1890         return 0;
1891 }
1892
1893 #undef assert
1894
1895 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1896                                    void *arg)
1897 {
1898         struct snd_pcm_runtime *runtime = substream->runtime;
1899         unsigned long flags;
1900         snd_pcm_stream_lock_irqsave(substream, flags);
1901         if (snd_pcm_running(substream) &&
1902             snd_pcm_update_hw_ptr(substream) >= 0)
1903                 runtime->status->hw_ptr %= runtime->buffer_size;
1904         else
1905                 runtime->status->hw_ptr = 0;
1906         snd_pcm_stream_unlock_irqrestore(substream, flags);
1907         return 0;
1908 }
1909
1910 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1911                                           void *arg)
1912 {
1913         struct snd_pcm_channel_info *info = arg;
1914         struct snd_pcm_runtime *runtime = substream->runtime;
1915         int width;
1916         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1917                 info->offset = -1;
1918                 return 0;
1919         }
1920         width = snd_pcm_format_physical_width(runtime->format);
1921         if (width < 0)
1922                 return width;
1923         info->offset = 0;
1924         switch (runtime->access) {
1925         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1926         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1927                 info->first = info->channel * width;
1928                 info->step = runtime->channels * width;
1929                 break;
1930         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1931         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1932         {
1933                 size_t size = runtime->dma_bytes / runtime->channels;
1934                 info->first = info->channel * size * 8;
1935                 info->step = width;
1936                 break;
1937         }
1938         default:
1939                 snd_BUG();
1940                 break;
1941         }
1942         return 0;
1943 }
1944
1945 /**
1946  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1947  * @substream: the pcm substream instance
1948  * @cmd: ioctl command
1949  * @arg: ioctl argument
1950  *
1951  * Processes the generic ioctl commands for PCM.
1952  * Can be passed as the ioctl callback for PCM ops.
1953  *
1954  * Returns zero if successful, or a negative error code on failure.
1955  */
1956 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1957                       unsigned int cmd, void *arg)
1958 {
1959         switch (cmd) {
1960         case SNDRV_PCM_IOCTL1_INFO:
1961                 return 0;
1962         case SNDRV_PCM_IOCTL1_RESET:
1963                 return snd_pcm_lib_ioctl_reset(substream, arg);
1964         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1965                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1966         }
1967         return -ENXIO;
1968 }
1969
1970 /*
1971  *  Conditions
1972  */
1973
1974 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream, 
1975                                     unsigned long ticks)
1976 {
1977         struct snd_pcm_runtime *runtime = substream->runtime;
1978         if (ticks == 0)
1979                 del_timer(&runtime->tick_timer);
1980         else {
1981                 ticks += (1000000 / HZ) - 1;
1982                 ticks /= (1000000 / HZ);
1983                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1984         }
1985 }
1986
1987 /* Temporary alias */
1988 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
1989 {
1990         snd_pcm_system_tick_set(substream, ticks);
1991 }
1992
1993 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
1994 {
1995         struct snd_pcm_runtime *runtime = substream->runtime;
1996         snd_pcm_uframes_t frames = ULONG_MAX;
1997         snd_pcm_uframes_t avail, dist;
1998         unsigned int ticks;
1999         u_int64_t n;
2000         u_int32_t r;
2001         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
2002                 if (runtime->silence_size >= runtime->boundary) {
2003                         frames = 1;
2004                 } else if (runtime->silence_size > 0 &&
2005                            runtime->silence_filled < runtime->buffer_size) {
2006                         snd_pcm_sframes_t noise_dist;
2007                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
2008                         if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
2009                                 frames = noise_dist - runtime->silence_threshold;
2010                 }
2011                 avail = snd_pcm_playback_avail(runtime);
2012         } else {
2013                 avail = snd_pcm_capture_avail(runtime);
2014         }
2015         if (avail < runtime->control->avail_min) {
2016                 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
2017                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2018                         frames = n;
2019         }
2020         if (avail < runtime->buffer_size) {
2021                 snd_pcm_sframes_t n = runtime->buffer_size - avail;
2022                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
2023                         frames = n;
2024         }
2025         if (frames == ULONG_MAX) {
2026                 snd_pcm_tick_set(substream, 0);
2027                 return;
2028         }
2029         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
2030         /* Distance to next interrupt */
2031         dist = runtime->period_size - dist % runtime->period_size;
2032         if (dist <= frames) {
2033                 snd_pcm_tick_set(substream, 0);
2034                 return;
2035         }
2036         /* the base time is us */
2037         n = frames;
2038         n *= 1000000;
2039         div64_32(&n, runtime->tick_time * runtime->rate, &r);
2040         ticks = n + (r > 0 ? 1 : 0);
2041         if (ticks < runtime->sleep_min)
2042                 ticks = runtime->sleep_min;
2043         snd_pcm_tick_set(substream, (unsigned long) ticks);
2044 }
2045
2046 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
2047 {
2048         struct snd_pcm_runtime *runtime;
2049         unsigned long flags;
2050         
2051         snd_assert(substream != NULL, return);
2052         runtime = substream->runtime;
2053         snd_assert(runtime != NULL, return);
2054
2055         snd_pcm_stream_lock_irqsave(substream, flags);
2056         if (!snd_pcm_running(substream) ||
2057             snd_pcm_update_hw_ptr(substream) < 0)
2058                 goto _end;
2059         if (runtime->sleep_min)
2060                 snd_pcm_tick_prepare(substream);
2061  _end:
2062         snd_pcm_stream_unlock_irqrestore(substream, flags);
2063 }
2064
2065 /**
2066  * snd_pcm_period_elapsed - update the pcm status for the next period
2067  * @substream: the pcm substream instance
2068  *
2069  * This function is called from the interrupt handler when the
2070  * PCM has processed the period size.  It will update the current
2071  * pointer, set up the tick, wake up sleepers, etc.
2072  *
2073  * Even if more than one periods have elapsed since the last call, you
2074  * have to call this only once.
2075  */
2076 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
2077 {
2078         struct snd_pcm_runtime *runtime;
2079         unsigned long flags;
2080
2081         snd_assert(substream != NULL, return);
2082         runtime = substream->runtime;
2083         snd_assert(runtime != NULL, return);
2084
2085         if (runtime->transfer_ack_begin)
2086                 runtime->transfer_ack_begin(substream);
2087
2088         snd_pcm_stream_lock_irqsave(substream, flags);
2089         if (!snd_pcm_running(substream) ||
2090             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
2091                 goto _end;
2092
2093         if (substream->timer_running)
2094                 snd_timer_interrupt(substream->timer, 1);
2095         if (runtime->sleep_min)
2096                 snd_pcm_tick_prepare(substream);
2097  _end:
2098         snd_pcm_stream_unlock_irqrestore(substream, flags);
2099         if (runtime->transfer_ack_end)
2100                 runtime->transfer_ack_end(substream);
2101         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
2102 }
2103
2104 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
2105                                       unsigned int hwoff,
2106                                       unsigned long data, unsigned int off,
2107                                       snd_pcm_uframes_t frames)
2108 {
2109         struct snd_pcm_runtime *runtime = substream->runtime;
2110         int err;
2111         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2112         if (substream->ops->copy) {
2113                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2114                         return err;
2115         } else {
2116                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2117                 snd_assert(runtime->dma_area, return -EFAULT);
2118                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2119                         return -EFAULT;
2120         }
2121         return 0;
2122 }
2123  
2124 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2125                           unsigned long data, unsigned int off,
2126                           snd_pcm_uframes_t size);
2127
2128 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
2129                                             unsigned long data,
2130                                             snd_pcm_uframes_t size,
2131                                             int nonblock,
2132                                             transfer_f transfer)
2133 {
2134         struct snd_pcm_runtime *runtime = substream->runtime;
2135         snd_pcm_uframes_t xfer = 0;
2136         snd_pcm_uframes_t offset = 0;
2137         int err = 0;
2138
2139         if (size == 0)
2140                 return 0;
2141         if (size > runtime->xfer_align)
2142                 size -= size % runtime->xfer_align;
2143
2144         snd_pcm_stream_lock_irq(substream);
2145         switch (runtime->status->state) {
2146         case SNDRV_PCM_STATE_PREPARED:
2147         case SNDRV_PCM_STATE_RUNNING:
2148         case SNDRV_PCM_STATE_PAUSED:
2149                 break;
2150         case SNDRV_PCM_STATE_XRUN:
2151                 err = -EPIPE;
2152                 goto _end_unlock;
2153         case SNDRV_PCM_STATE_SUSPENDED:
2154                 err = -ESTRPIPE;
2155                 goto _end_unlock;
2156         default:
2157                 err = -EBADFD;
2158                 goto _end_unlock;
2159         }
2160
2161         while (size > 0) {
2162                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2163                 snd_pcm_uframes_t avail;
2164                 snd_pcm_uframes_t cont;
2165                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2166                         snd_pcm_update_hw_ptr(substream);
2167                 avail = snd_pcm_playback_avail(runtime);
2168                 if (((avail < runtime->control->avail_min && size > avail) ||
2169                    (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2170                         wait_queue_t wait;
2171                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2172                         long tout;
2173
2174                         if (nonblock) {
2175                                 err = -EAGAIN;
2176                                 goto _end_unlock;
2177                         }
2178
2179                         init_waitqueue_entry(&wait, current);
2180                         add_wait_queue(&runtime->sleep, &wait);
2181                         while (1) {
2182                                 if (signal_pending(current)) {
2183                                         state = SIGNALED;
2184                                         break;
2185                                 }
2186                                 set_current_state(TASK_INTERRUPTIBLE);
2187                                 snd_pcm_stream_unlock_irq(substream);
2188                                 tout = schedule_timeout(10 * HZ);
2189                                 snd_pcm_stream_lock_irq(substream);
2190                                 if (tout == 0) {
2191                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2192                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2193                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2194                                                 break;
2195                                         }
2196                                 }
2197                                 switch (runtime->status->state) {
2198                                 case SNDRV_PCM_STATE_XRUN:
2199                                 case SNDRV_PCM_STATE_DRAINING:
2200                                         state = ERROR;
2201                                         goto _end_loop;
2202                                 case SNDRV_PCM_STATE_SUSPENDED:
2203                                         state = SUSPENDED;
2204                                         goto _end_loop;
2205                                 case SNDRV_PCM_STATE_SETUP:
2206                                         state = DROPPED;
2207                                         goto _end_loop;
2208                                 default:
2209                                         break;
2210                                 }
2211                                 avail = snd_pcm_playback_avail(runtime);
2212                                 if (avail >= runtime->control->avail_min) {
2213                                         state = READY;
2214                                         break;
2215                                 }
2216                         }
2217                        _end_loop:
2218                         remove_wait_queue(&runtime->sleep, &wait);
2219
2220                         switch (state) {
2221                         case ERROR:
2222                                 err = -EPIPE;
2223                                 goto _end_unlock;
2224                         case SUSPENDED:
2225                                 err = -ESTRPIPE;
2226                                 goto _end_unlock;
2227                         case SIGNALED:
2228                                 err = -ERESTARTSYS;
2229                                 goto _end_unlock;
2230                         case EXPIRED:
2231                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
2232                                 err = -EIO;
2233                                 goto _end_unlock;
2234                         case DROPPED:
2235                                 err = -EBADFD;
2236                                 goto _end_unlock;
2237                         default:
2238                                 break;
2239                         }
2240                 }
2241                 if (avail > runtime->xfer_align)
2242                         avail -= avail % runtime->xfer_align;
2243                 frames = size > avail ? avail : size;
2244                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2245                 if (frames > cont)
2246                         frames = cont;
2247                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2248                 appl_ptr = runtime->control->appl_ptr;
2249                 appl_ofs = appl_ptr % runtime->buffer_size;
2250                 snd_pcm_stream_unlock_irq(substream);
2251                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2252                         goto _end;
2253                 snd_pcm_stream_lock_irq(substream);
2254                 switch (runtime->status->state) {
2255                 case SNDRV_PCM_STATE_XRUN:
2256                         err = -EPIPE;
2257                         goto _end_unlock;
2258                 case SNDRV_PCM_STATE_SUSPENDED:
2259                         err = -ESTRPIPE;
2260                         goto _end_unlock;
2261                 default:
2262                         break;
2263                 }
2264                 appl_ptr += frames;
2265                 if (appl_ptr >= runtime->boundary)
2266                         appl_ptr -= runtime->boundary;
2267                 runtime->control->appl_ptr = appl_ptr;
2268                 if (substream->ops->ack)
2269                         substream->ops->ack(substream);
2270
2271                 offset += frames;
2272                 size -= frames;
2273                 xfer += frames;
2274                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2275                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2276                         err = snd_pcm_start(substream);
2277                         if (err < 0)
2278                                 goto _end_unlock;
2279                 }
2280                 if (runtime->sleep_min &&
2281                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2282                         snd_pcm_tick_prepare(substream);
2283         }
2284  _end_unlock:
2285         snd_pcm_stream_unlock_irq(substream);
2286  _end:
2287         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2288 }
2289
2290 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2291 {
2292         struct snd_pcm_runtime *runtime;
2293         int nonblock;
2294
2295         snd_assert(substream != NULL, return -ENXIO);
2296         runtime = substream->runtime;
2297         snd_assert(runtime != NULL, return -ENXIO);
2298         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2299         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2300                 return -EBADFD;
2301
2302         snd_assert(substream->ffile != NULL, return -ENXIO);
2303         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2304 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2305         if (substream->oss.oss) {
2306                 struct snd_pcm_oss_setup *setup = substream->oss.setup;
2307                 if (setup != NULL) {
2308                         if (setup->nonblock)
2309                                 nonblock = 1;
2310                         else if (setup->block)
2311                                 nonblock = 0;
2312                 }
2313         }
2314 #endif
2315
2316         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2317             runtime->channels > 1)
2318                 return -EINVAL;
2319         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2320                                   snd_pcm_lib_write_transfer);
2321 }
2322
2323 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2324                                        unsigned int hwoff,
2325                                        unsigned long data, unsigned int off,
2326                                        snd_pcm_uframes_t frames)
2327 {
2328         struct snd_pcm_runtime *runtime = substream->runtime;
2329         int err;
2330         void __user **bufs = (void __user **)data;
2331         int channels = runtime->channels;
2332         int c;
2333         if (substream->ops->copy) {
2334                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
2335                 for (c = 0; c < channels; ++c, ++bufs) {
2336                         if (*bufs == NULL) {
2337                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2338                                         return err;
2339                         } else {
2340                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2341                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2342                                         return err;
2343                         }
2344                 }
2345         } else {
2346                 /* default transfer behaviour */
2347                 size_t dma_csize = runtime->dma_bytes / channels;
2348                 snd_assert(runtime->dma_area, return -EFAULT);
2349                 for (c = 0; c < channels; ++c, ++bufs) {
2350                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2351                         if (*bufs == NULL) {
2352                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2353                         } else {
2354                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2355                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2356                                         return -EFAULT;
2357                         }
2358                 }
2359         }
2360         return 0;
2361 }
2362  
2363 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2364                                      void __user **bufs,
2365                                      snd_pcm_uframes_t frames)
2366 {
2367         struct snd_pcm_runtime *runtime;
2368         int nonblock;
2369
2370         snd_assert(substream != NULL, return -ENXIO);
2371         runtime = substream->runtime;
2372         snd_assert(runtime != NULL, return -ENXIO);
2373         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2374         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2375                 return -EBADFD;
2376
2377         snd_assert(substream->ffile != NULL, return -ENXIO);
2378         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2379 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2380         if (substream->oss.oss) {
2381                 struct snd_pcm_oss_setup *setup = substream->oss.setup;
2382                 if (setup != NULL) {
2383                         if (setup->nonblock)
2384                                 nonblock = 1;
2385                         else if (setup->block)
2386                                 nonblock = 0;
2387                 }
2388         }
2389 #endif
2390
2391         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2392                 return -EINVAL;
2393         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2394                                   nonblock, snd_pcm_lib_writev_transfer);
2395 }
2396
2397 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2398                                      unsigned int hwoff,
2399                                      unsigned long data, unsigned int off,
2400                                      snd_pcm_uframes_t frames)
2401 {
2402         struct snd_pcm_runtime *runtime = substream->runtime;
2403         int err;
2404         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2405         if (substream->ops->copy) {
2406                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2407                         return err;
2408         } else {
2409                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2410                 snd_assert(runtime->dma_area, return -EFAULT);
2411                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2412                         return -EFAULT;
2413         }
2414         return 0;
2415 }
2416
2417 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2418                                            unsigned long data,
2419                                            snd_pcm_uframes_t size,
2420                                            int nonblock,
2421                                            transfer_f transfer)
2422 {
2423         struct snd_pcm_runtime *runtime = substream->runtime;
2424         snd_pcm_uframes_t xfer = 0;
2425         snd_pcm_uframes_t offset = 0;
2426         int err = 0;
2427
2428         if (size == 0)
2429                 return 0;
2430         if (size > runtime->xfer_align)
2431                 size -= size % runtime->xfer_align;
2432
2433         snd_pcm_stream_lock_irq(substream);
2434         switch (runtime->status->state) {
2435         case SNDRV_PCM_STATE_PREPARED:
2436                 if (size >= runtime->start_threshold) {
2437                         err = snd_pcm_start(substream);
2438                         if (err < 0)
2439                                 goto _end_unlock;
2440                 }
2441                 break;
2442         case SNDRV_PCM_STATE_DRAINING:
2443         case SNDRV_PCM_STATE_RUNNING:
2444         case SNDRV_PCM_STATE_PAUSED:
2445                 break;
2446         case SNDRV_PCM_STATE_XRUN:
2447                 err = -EPIPE;
2448                 goto _end_unlock;
2449         case SNDRV_PCM_STATE_SUSPENDED:
2450                 err = -ESTRPIPE;
2451                 goto _end_unlock;
2452         default:
2453                 err = -EBADFD;
2454                 goto _end_unlock;
2455         }
2456
2457         while (size > 0) {
2458                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2459                 snd_pcm_uframes_t avail;
2460                 snd_pcm_uframes_t cont;
2461                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2462                         snd_pcm_update_hw_ptr(substream);
2463               __draining:
2464                 avail = snd_pcm_capture_avail(runtime);
2465                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2466                         if (avail < runtime->xfer_align) {
2467                                 err = -EPIPE;
2468                                 goto _end_unlock;
2469                         }
2470                 } else if ((avail < runtime->control->avail_min && size > avail) ||
2471                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2472                         wait_queue_t wait;
2473                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2474                         long tout;
2475
2476                         if (nonblock) {
2477                                 err = -EAGAIN;
2478                                 goto _end_unlock;
2479                         }
2480
2481                         init_waitqueue_entry(&wait, current);
2482                         add_wait_queue(&runtime->sleep, &wait);
2483                         while (1) {
2484                                 if (signal_pending(current)) {
2485                                         state = SIGNALED;
2486                                         break;
2487                                 }
2488                                 set_current_state(TASK_INTERRUPTIBLE);
2489                                 snd_pcm_stream_unlock_irq(substream);
2490                                 tout = schedule_timeout(10 * HZ);
2491                                 snd_pcm_stream_lock_irq(substream);
2492                                 if (tout == 0) {
2493                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2494                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2495                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2496                                                 break;
2497                                         }
2498                                 }
2499                                 switch (runtime->status->state) {
2500                                 case SNDRV_PCM_STATE_XRUN:
2501                                         state = ERROR;
2502                                         goto _end_loop;
2503                                 case SNDRV_PCM_STATE_SUSPENDED:
2504                                         state = SUSPENDED;
2505                                         goto _end_loop;
2506                                 case SNDRV_PCM_STATE_DRAINING:
2507                                         goto __draining;
2508                                 case SNDRV_PCM_STATE_SETUP:
2509                                         state = DROPPED;
2510                                         goto _end_loop;
2511                                 default:
2512                                         break;
2513                                 }
2514                                 avail = snd_pcm_capture_avail(runtime);
2515                                 if (avail >= runtime->control->avail_min) {
2516                                         state = READY;
2517                                         break;
2518                                 }
2519                         }
2520                        _end_loop:
2521                         remove_wait_queue(&runtime->sleep, &wait);
2522
2523                         switch (state) {
2524                         case ERROR:
2525                                 err = -EPIPE;
2526                                 goto _end_unlock;
2527                         case SUSPENDED:
2528                                 err = -ESTRPIPE;
2529                                 goto _end_unlock;
2530                         case SIGNALED:
2531                                 err = -ERESTARTSYS;
2532                                 goto _end_unlock;
2533                         case EXPIRED:
2534                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
2535                                 err = -EIO;
2536                                 goto _end_unlock;
2537                         case DROPPED:
2538                                 err = -EBADFD;
2539                                 goto _end_unlock;
2540                         default:
2541                                 break;
2542                         }
2543                 }
2544                 if (avail > runtime->xfer_align)
2545                         avail -= avail % runtime->xfer_align;
2546                 frames = size > avail ? avail : size;
2547                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2548                 if (frames > cont)
2549                         frames = cont;
2550                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2551                 appl_ptr = runtime->control->appl_ptr;
2552                 appl_ofs = appl_ptr % runtime->buffer_size;
2553                 snd_pcm_stream_unlock_irq(substream);
2554                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2555                         goto _end;
2556                 snd_pcm_stream_lock_irq(substream);
2557                 switch (runtime->status->state) {
2558                 case SNDRV_PCM_STATE_XRUN:
2559                         err = -EPIPE;
2560                         goto _end_unlock;
2561                 case SNDRV_PCM_STATE_SUSPENDED:
2562                         err = -ESTRPIPE;
2563                         goto _end_unlock;
2564                 default:
2565                         break;
2566                 }
2567                 appl_ptr += frames;
2568                 if (appl_ptr >= runtime->boundary)
2569                         appl_ptr -= runtime->boundary;
2570                 runtime->control->appl_ptr = appl_ptr;
2571                 if (substream->ops->ack)
2572                         substream->ops->ack(substream);
2573
2574                 offset += frames;
2575                 size -= frames;
2576                 xfer += frames;
2577                 if (runtime->sleep_min &&
2578                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2579                         snd_pcm_tick_prepare(substream);
2580         }
2581  _end_unlock:
2582         snd_pcm_stream_unlock_irq(substream);
2583  _end:
2584         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2585 }
2586
2587 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2588 {
2589         struct snd_pcm_runtime *runtime;
2590         int nonblock;
2591         
2592         snd_assert(substream != NULL, return -ENXIO);
2593         runtime = substream->runtime;
2594         snd_assert(runtime != NULL, return -ENXIO);
2595         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2596         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2597                 return -EBADFD;
2598
2599         snd_assert(substream->ffile != NULL, return -ENXIO);
2600         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2601 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2602         if (substream->oss.oss) {
2603                 struct snd_pcm_oss_setup *setup = substream->oss.setup;
2604                 if (setup != NULL) {
2605                         if (setup->nonblock)
2606                                 nonblock = 1;
2607                         else if (setup->block)
2608                                 nonblock = 0;
2609                 }
2610         }
2611 #endif
2612         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2613                 return -EINVAL;
2614         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2615 }
2616
2617 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2618                                       unsigned int hwoff,
2619                                       unsigned long data, unsigned int off,
2620                                       snd_pcm_uframes_t frames)
2621 {
2622         struct snd_pcm_runtime *runtime = substream->runtime;
2623         int err;
2624         void __user **bufs = (void __user **)data;
2625         int channels = runtime->channels;
2626         int c;
2627         if (substream->ops->copy) {
2628                 for (c = 0; c < channels; ++c, ++bufs) {
2629                         char __user *buf;
2630                         if (*bufs == NULL)
2631                                 continue;
2632                         buf = *bufs + samples_to_bytes(runtime, off);
2633                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2634                                 return err;
2635                 }
2636         } else {
2637                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2638                 snd_assert(runtime->dma_area, return -EFAULT);
2639                 for (c = 0; c < channels; ++c, ++bufs) {
2640                         char *hwbuf;
2641                         char __user *buf;
2642                         if (*bufs == NULL)
2643                                 continue;
2644
2645                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2646                         buf = *bufs + samples_to_bytes(runtime, off);
2647                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2648                                 return -EFAULT;
2649                 }
2650         }
2651         return 0;
2652 }
2653  
2654 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2655                                     void __user **bufs,
2656                                     snd_pcm_uframes_t frames)
2657 {
2658         struct snd_pcm_runtime *runtime;
2659         int nonblock;
2660
2661         snd_assert(substream != NULL, return -ENXIO);
2662         runtime = substream->runtime;
2663         snd_assert(runtime != NULL, return -ENXIO);
2664         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2665         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2666                 return -EBADFD;
2667
2668         snd_assert(substream->ffile != NULL, return -ENXIO);
2669         nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2670 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2671         if (substream->oss.oss) {
2672                 struct snd_pcm_oss_setup *setup = substream->oss.setup;
2673                 if (setup != NULL) {
2674                         if (setup->nonblock)
2675                                 nonblock = 1;
2676                         else if (setup->block)
2677                                 nonblock = 0;
2678                 }
2679         }
2680 #endif
2681
2682         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2683                 return -EINVAL;
2684         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2685 }
2686
2687 /*
2688  *  Exported symbols
2689  */
2690
2691 EXPORT_SYMBOL(snd_interval_refine);
2692 EXPORT_SYMBOL(snd_interval_list);
2693 EXPORT_SYMBOL(snd_interval_ratnum);
2694 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2695 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2696 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2697 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2698 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2699 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2700 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2701 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2702 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2703 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2704 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2705 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2706 EXPORT_SYMBOL(snd_pcm_hw_refine);
2707 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2708 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2709 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2710 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2711 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2712 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2713 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2714 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2715 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2716 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2717 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2718 EXPORT_SYMBOL(snd_pcm_set_ops);
2719 EXPORT_SYMBOL(snd_pcm_set_sync);
2720 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2721 EXPORT_SYMBOL(snd_pcm_stop);
2722 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2723 EXPORT_SYMBOL(snd_pcm_lib_write);
2724 EXPORT_SYMBOL(snd_pcm_lib_read);
2725 EXPORT_SYMBOL(snd_pcm_lib_writev);
2726 EXPORT_SYMBOL(snd_pcm_lib_readv);
2727 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2728 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2729 /* pcm_memory.c */
2730 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2731 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2732 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2733 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2734 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2735 EXPORT_SYMBOL(snd_pcm_lib_free_pages);