4 * (C) Copyright IBM Corp. 2005
6 * Author: Mark Nutter <mnutter@us.ibm.com>
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources. SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes. When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
40 #include <linux/vmalloc.h>
41 #include <linux/smp.h>
42 #include <linux/smp_lock.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
52 #include "spu_save_dump.h"
53 #include "spu_restore_dump.h"
56 #define POLL_WHILE_TRUE(_c) { \
61 #define RELAX_SPIN_COUNT 1000
62 #define POLL_WHILE_TRUE(_c) { \
65 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68 if (unlikely(_c)) yield(); \
74 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
76 static inline void acquire_spu_lock(struct spu *spu)
80 * Acquire SPU-specific mutual exclusion lock.
85 static inline void release_spu_lock(struct spu *spu)
88 * Release SPU-specific mutual exclusion lock.
93 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
95 struct spu_problem __iomem *prob = spu->problem;
100 * If SPU_Status[E,L,IS] any field is '1', this
101 * SPU is in isolate state and cannot be context
102 * saved at this time.
104 isolate_state = SPU_STATUS_ISOLATED_STATE |
105 SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
106 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
113 * Save INT_Mask_class0 in CSA.
114 * Write INT_MASK_class0 with value of 0.
115 * Save INT_Mask_class1 in CSA.
116 * Write INT_MASK_class1 with value of 0.
117 * Save INT_Mask_class2 in CSA.
118 * Write INT_MASK_class2 with value of 0.
120 spin_lock_irq(&spu->register_lock);
122 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
123 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
124 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
126 spu_int_mask_set(spu, 0, 0ul);
127 spu_int_mask_set(spu, 1, 0ul);
128 spu_int_mask_set(spu, 2, 0ul);
130 spin_unlock_irq(&spu->register_lock);
133 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
137 * Set a software watchdog timer, which specifies the
138 * maximum allowable time for a context save sequence.
140 * For present, this implementation will not set a global
141 * watchdog timer, as virtualization & variable system load
142 * may cause unpredictable execution times.
146 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
150 * Inhibit user-space access (if provided) to this
151 * SPU by unmapping the virtual pages assigned to
152 * the SPU memory-mapped I/O (MMIO) for problem
157 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
161 * Set a software context switch pending flag.
163 set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
167 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
169 struct spu_priv2 __iomem *priv2 = spu->priv2;
172 * Suspend DMA and save MFC_CNTL.
174 switch (in_be64(&priv2->mfc_control_RW) &
175 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176 case MFC_CNTL_SUSPEND_IN_PROGRESS:
177 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179 MFC_CNTL_SUSPEND_COMPLETE);
181 case MFC_CNTL_SUSPEND_COMPLETE:
183 csa->priv2.mfc_control_RW =
184 in_be64(&priv2->mfc_control_RW) |
185 MFC_CNTL_SUSPEND_DMA_QUEUE;
188 case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
189 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
190 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
191 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
192 MFC_CNTL_SUSPEND_COMPLETE);
194 csa->priv2.mfc_control_RW =
195 in_be64(&priv2->mfc_control_RW) &
196 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
202 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
204 struct spu_problem __iomem *prob = spu->problem;
207 * Save SPU_Runcntl in the CSA. This value contains
208 * the "Application Desired State".
210 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
213 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
216 * Save MFC_SR1 in the CSA.
218 csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
221 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
223 struct spu_problem __iomem *prob = spu->problem;
226 * Read SPU_Status[R], and save to CSA.
228 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
229 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
233 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
235 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
238 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
239 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
240 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
241 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
243 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
247 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
249 struct spu_priv2 __iomem *priv2 = spu->priv2;
252 * Read MFC_CNTL[Ds]. Update saved copy of
255 if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
256 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
257 csa->suspend_time = get_cycles();
258 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
260 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
263 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
267 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
269 struct spu_priv2 __iomem *priv2 = spu->priv2;
272 * Write MFC_CNTL[Dh] set to a '1' to halt
275 out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
279 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
282 * Read PPE Timebase High and Timebase low registers
283 * and save in CSA. TBD.
285 csa->suspend_time = get_cycles();
288 static inline void remove_other_spu_access(struct spu_state *csa,
292 * Remove other SPU access to this SPU by unmapping
293 * this SPU's pages from their address space. TBD.
297 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
299 struct spu_problem __iomem *prob = spu->problem;
303 * Write SPU_MSSync register. Poll SPU_MSSync[P]
306 out_be64(&prob->spc_mssync_RW, 1UL);
307 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
310 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
315 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
316 * Then issue a PPE sync instruction.
318 spu_tlb_invalidate(spu);
322 static inline void handle_pending_interrupts(struct spu_state *csa,
326 * Handle any pending interrupts from this SPU
327 * here. This is OS or hypervisor specific. One
328 * option is to re-enable interrupts to handle any
329 * pending interrupts, with the interrupt handlers
330 * recognizing the software Context Switch Pending
331 * flag, to ensure the SPU execution or MFC command
332 * queue is not restarted. TBD.
336 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
338 struct spu_priv2 __iomem *priv2 = spu->priv2;
342 * If MFC_Cntl[Se]=0 then save
343 * MFC command queues.
345 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
346 for (i = 0; i < 8; i++) {
347 csa->priv2.puq[i].mfc_cq_data0_RW =
348 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
349 csa->priv2.puq[i].mfc_cq_data1_RW =
350 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
351 csa->priv2.puq[i].mfc_cq_data2_RW =
352 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
353 csa->priv2.puq[i].mfc_cq_data3_RW =
354 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
356 for (i = 0; i < 16; i++) {
357 csa->priv2.spuq[i].mfc_cq_data0_RW =
358 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
359 csa->priv2.spuq[i].mfc_cq_data1_RW =
360 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
361 csa->priv2.spuq[i].mfc_cq_data2_RW =
362 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
363 csa->priv2.spuq[i].mfc_cq_data3_RW =
364 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
369 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
371 struct spu_problem __iomem *prob = spu->problem;
374 * Save the PPU_QueryMask register
377 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
380 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
382 struct spu_problem __iomem *prob = spu->problem;
385 * Save the PPU_QueryType register
388 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
391 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
393 struct spu_priv2 __iomem *priv2 = spu->priv2;
396 * Save the MFC_CSR_TSQ register
399 csa->priv2.spu_tag_status_query_RW =
400 in_be64(&priv2->spu_tag_status_query_RW);
403 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
405 struct spu_priv2 __iomem *priv2 = spu->priv2;
408 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
409 * registers in the CSA.
411 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
412 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
415 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
417 struct spu_priv2 __iomem *priv2 = spu->priv2;
420 * Save the MFC_CSR_ATO register in
423 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
426 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
429 * Save the MFC_TCLASS_ID register in
432 csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
435 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
439 * Write the MFC_TCLASS_ID register with
440 * the value 0x10000000.
442 spu_mfc_tclass_id_set(spu, 0x10000000);
446 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
448 struct spu_priv2 __iomem *priv2 = spu->priv2;
452 * Write MFC_CNTL[Pc]=1 (purge queue).
454 out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
458 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
460 struct spu_priv2 __iomem *priv2 = spu->priv2;
463 * Poll MFC_CNTL[Ps] until value '11' is read
466 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
467 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
468 MFC_CNTL_PURGE_DMA_COMPLETE);
471 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
475 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
476 * MFC_SR1[TL,R,Pr,T] set correctly for the
477 * OS specific environment.
479 * Implementation note: The SPU-side code
480 * for save/restore is privileged, so the
481 * MFC_SR1[Pr] bit is not set.
484 spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
485 MFC_STATE1_RELOCATE_MASK |
486 MFC_STATE1_BUS_TLBIE_MASK));
489 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
491 struct spu_problem __iomem *prob = spu->problem;
494 * Save SPU_NPC in the CSA.
496 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
499 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
501 struct spu_priv2 __iomem *priv2 = spu->priv2;
504 * Save SPU_PrivCntl in the CSA.
506 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
509 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
511 struct spu_priv2 __iomem *priv2 = spu->priv2;
515 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
517 out_be64(&priv2->spu_privcntl_RW, 0UL);
521 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
523 struct spu_priv2 __iomem *priv2 = spu->priv2;
526 * Save SPU_LSLR in the CSA.
528 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
531 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
533 struct spu_priv2 __iomem *priv2 = spu->priv2;
539 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
543 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
545 struct spu_priv2 __iomem *priv2 = spu->priv2;
548 * Save SPU_Cfg in the CSA.
550 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
553 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
556 * Save PM_Trace_Tag_Wait_Mask in the CSA.
557 * Not performed by this implementation.
561 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
564 * Save RA_GROUP_ID register and the
565 * RA_ENABLE reigster in the CSA.
567 csa->priv1.resource_allocation_groupID_RW =
568 spu_resource_allocation_groupID_get(spu);
569 csa->priv1.resource_allocation_enable_RW =
570 spu_resource_allocation_enable_get(spu);
573 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
575 struct spu_problem __iomem *prob = spu->problem;
578 * Save MB_Stat register in the CSA.
580 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
583 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
585 struct spu_problem __iomem *prob = spu->problem;
588 * Save the PPU_MB register in the CSA.
590 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
593 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
595 struct spu_priv2 __iomem *priv2 = spu->priv2;
598 * Save the PPUINT_MB register in the CSA.
600 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
603 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
605 struct spu_priv2 __iomem *priv2 = spu->priv2;
606 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
612 /* Save CH 1, without channel count */
613 out_be64(&priv2->spu_chnlcntptr_RW, 1);
614 csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
616 /* Save the following CH: [0,3,4,24,25,27] */
617 for (i = 0; i < 7; i++) {
619 out_be64(&priv2->spu_chnlcntptr_RW, idx);
621 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
622 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
623 out_be64(&priv2->spu_chnldata_RW, 0UL);
624 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
629 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
631 struct spu_priv2 __iomem *priv2 = spu->priv2;
635 * Save SPU Read Mailbox Channel.
637 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
639 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
640 for (i = 0; i < 4; i++) {
641 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
643 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
647 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
649 struct spu_priv2 __iomem *priv2 = spu->priv2;
652 * Save MFC_CMD Channel.
654 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
656 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
660 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
662 struct spu_priv2 __iomem *priv2 = spu->priv2;
663 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
664 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
669 * Reset the following CH: [21, 23, 28, 30]
671 for (i = 0; i < 4; i++) {
673 out_be64(&priv2->spu_chnlcntptr_RW, idx);
675 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
680 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
682 struct spu_priv2 __iomem *priv2 = spu->priv2;
686 * Write MFC_CNTL[Sc]=0 (resume queue processing).
688 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
691 static inline void get_kernel_slb(u64 ea, u64 slb[2])
695 if (REGION_ID(ea) == KERNEL_REGION_ID)
696 llp = mmu_psize_defs[mmu_linear_psize].sllp;
698 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
699 slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
700 SLB_VSID_KERNEL | llp;
701 slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
704 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
706 struct spu_priv2 __iomem *priv2 = spu->priv2;
708 out_be64(&priv2->slb_index_W, slbe);
710 out_be64(&priv2->slb_vsid_RW, slb[0]);
711 out_be64(&priv2->slb_esid_RW, slb[1]);
715 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
722 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
723 * register, then initialize SLB_VSID and SLB_ESID
724 * to provide access to SPU context save code and
727 * This implementation places both the context
728 * switch code and LSCSA in kernel address space.
730 * Further this implementation assumes that the
731 * MFC_SR1[R]=1 (in other words, assume that
732 * translation is desired by OS environment).
734 spu_invalidate_slbs(spu);
735 get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
736 get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
737 load_mfc_slb(spu, code_slb, 0);
738 if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
739 load_mfc_slb(spu, lscsa_slb, 1);
742 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
746 * Change the software context switch pending flag
747 * to context switch active.
749 set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
750 clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
754 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
756 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
757 CLASS1_ENABLE_STORAGE_FAULT_INTR;
761 * Reset and then enable interrupts, as
764 * This implementation enables only class1
765 * (translation) interrupts.
767 spin_lock_irq(&spu->register_lock);
768 spu_int_stat_clear(spu, 0, ~0ul);
769 spu_int_stat_clear(spu, 1, ~0ul);
770 spu_int_stat_clear(spu, 2, ~0ul);
771 spu_int_mask_set(spu, 0, 0ul);
772 spu_int_mask_set(spu, 1, class1_mask);
773 spu_int_mask_set(spu, 2, 0ul);
774 spin_unlock_irq(&spu->register_lock);
777 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
778 unsigned int ls_offset, unsigned int size,
779 unsigned int tag, unsigned int rclass,
782 struct spu_problem __iomem *prob = spu->problem;
783 union mfc_tag_size_class_cmd command;
784 unsigned int transfer_size;
785 volatile unsigned int status = 0x0;
789 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
790 command.u.mfc_size = transfer_size;
791 command.u.mfc_tag = tag;
792 command.u.mfc_rclassid = rclass;
793 command.u.mfc_cmd = cmd;
795 out_be32(&prob->mfc_lsa_W, ls_offset);
796 out_be64(&prob->mfc_ea_W, ea);
797 out_be64(&prob->mfc_union_W.all64, command.all64);
799 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
800 if (unlikely(status & 0x2)) {
803 } while (status & 0x3);
804 size -= transfer_size;
806 ls_offset += transfer_size;
811 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
813 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
814 unsigned int ls_offset = 0x0;
815 unsigned int size = 16384;
816 unsigned int tag = 0;
817 unsigned int rclass = 0;
818 unsigned int cmd = MFC_PUT_CMD;
821 * Issue a DMA command to copy the first 16K bytes
822 * of local storage to the CSA.
824 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
827 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
829 struct spu_problem __iomem *prob = spu->problem;
833 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
834 * point address of context save code in local
837 * This implementation uses SPU-side save/restore
838 * programs with entry points at LSA of 0.
840 out_be32(&prob->spu_npc_RW, 0);
844 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
846 struct spu_problem __iomem *prob = spu->problem;
854 * Write SPU_Sig_Notify_1 register with upper 32-bits
855 * of the CSA.LSCSA effective address.
857 addr64.ull = (u64) csa->lscsa;
858 out_be32(&prob->signal_notify1, addr64.ui[0]);
862 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
864 struct spu_problem __iomem *prob = spu->problem;
872 * Write SPU_Sig_Notify_2 register with lower 32-bits
873 * of the CSA.LSCSA effective address.
875 addr64.ull = (u64) csa->lscsa;
876 out_be32(&prob->signal_notify2, addr64.ui[1]);
880 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
882 unsigned long addr = (unsigned long)&spu_save_code[0];
883 unsigned int ls_offset = 0x0;
884 unsigned int size = sizeof(spu_save_code);
885 unsigned int tag = 0;
886 unsigned int rclass = 0;
887 unsigned int cmd = MFC_GETFS_CMD;
890 * Issue a DMA command to copy context save code
891 * to local storage and start SPU.
893 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
896 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
898 struct spu_problem __iomem *prob = spu->problem;
902 * Write PPU_QueryMask=1 (enable Tag Group 0)
903 * and issue eieio instruction.
905 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
909 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
911 struct spu_problem __iomem *prob = spu->problem;
912 u32 mask = MFC_TAGID_TO_TAGMASK(0);
919 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
920 * or write PPU_QueryType[TS]=01 and wait for Tag Group
921 * Complete Interrupt. Write INT_Stat_Class0 or
922 * INT_Stat_Class2 with value of 'handled'.
924 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
926 local_irq_save(flags);
927 spu_int_stat_clear(spu, 0, ~(0ul));
928 spu_int_stat_clear(spu, 2, ~(0ul));
929 local_irq_restore(flags);
932 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
934 struct spu_problem __iomem *prob = spu->problem;
939 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
940 * or SPU Class 2 interrupt. Write INT_Stat_class0
941 * or INT_Stat_class2 with value of handled.
943 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
945 local_irq_save(flags);
946 spu_int_stat_clear(spu, 0, ~(0ul));
947 spu_int_stat_clear(spu, 2, ~(0ul));
948 local_irq_restore(flags);
951 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
953 struct spu_problem __iomem *prob = spu->problem;
957 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
958 * context save succeeded, otherwise context save
961 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
962 SPU_STATUS_STOPPED_BY_STOP);
963 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
966 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
969 * If required, notify the "using application" that
970 * the SPU task has been terminated. TBD.
974 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
976 struct spu_priv2 __iomem *priv2 = spu->priv2;
980 * Write MFC_Cntl[Dh,Sc]='1','1' to suspend
981 * the queue and halt the decrementer.
983 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
984 MFC_CNTL_DECREMENTER_HALTED);
988 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
991 struct spu_priv2 __iomem *priv2 = spu->priv2;
995 * Poll MFC_CNTL[Ss] until 11 is returned.
997 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
998 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
999 MFC_CNTL_SUSPEND_COMPLETE);
1002 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1004 struct spu_problem __iomem *prob = spu->problem;
1007 * If SPU_Status[R]=1, stop SPU execution
1008 * and wait for stop to complete.
1010 * Returns 1 if SPU_Status[R]=1 on entry.
1013 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1014 if (in_be32(&prob->spu_status_R) &
1015 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1016 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1017 SPU_STATUS_RUNNING);
1019 if ((in_be32(&prob->spu_status_R) &
1020 SPU_STATUS_ISOLATED_LOAD_STATUS)
1021 || (in_be32(&prob->spu_status_R) &
1022 SPU_STATUS_ISOLATED_STATE)) {
1023 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1025 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1026 SPU_STATUS_RUNNING);
1027 out_be32(&prob->spu_runcntl_RW, 0x2);
1029 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1030 SPU_STATUS_RUNNING);
1032 if (in_be32(&prob->spu_status_R) &
1033 SPU_STATUS_WAITING_FOR_CHANNEL) {
1034 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1036 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1037 SPU_STATUS_RUNNING);
1044 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1046 struct spu_problem __iomem *prob = spu->problem;
1048 /* Restore, Step 10:
1049 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1050 * release SPU from isolate state.
1052 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1053 if (in_be32(&prob->spu_status_R) &
1054 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1055 spu_mfc_sr1_set(spu,
1056 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1058 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1060 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1061 SPU_STATUS_RUNNING);
1063 if ((in_be32(&prob->spu_status_R) &
1064 SPU_STATUS_ISOLATED_LOAD_STATUS)
1065 || (in_be32(&prob->spu_status_R) &
1066 SPU_STATUS_ISOLATED_STATE)) {
1067 spu_mfc_sr1_set(spu,
1068 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1070 out_be32(&prob->spu_runcntl_RW, 0x2);
1072 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1073 SPU_STATUS_RUNNING);
1078 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1080 struct spu_priv2 __iomem *priv2 = spu->priv2;
1081 u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1085 /* Restore, Step 20:
1089 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1090 out_be64(&priv2->spu_chnldata_RW, 0UL);
1092 /* Reset the following CH: [0,3,4,24,25,27] */
1093 for (i = 0; i < 7; i++) {
1094 idx = ch_indices[i];
1095 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1097 out_be64(&priv2->spu_chnldata_RW, 0UL);
1098 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1103 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1105 struct spu_priv2 __iomem *priv2 = spu->priv2;
1106 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1107 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1111 /* Restore, Step 21:
1112 * Reset the following CH: [21, 23, 28, 29, 30]
1114 for (i = 0; i < 5; i++) {
1115 idx = ch_indices[i];
1116 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1118 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1123 static inline void setup_spu_status_part1(struct spu_state *csa,
1126 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1127 u32 status_I = SPU_STATUS_INVALID_INSTR;
1128 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1129 u32 status_S = SPU_STATUS_SINGLE_STEP;
1130 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1131 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1132 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1133 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1136 /* Restore, Step 27:
1137 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1138 * instruction sequence to the end of the SPU based restore
1139 * code (after the "context restored" stop and signal) to
1140 * restore the correct SPU status.
1142 * NOTE: Rather than modifying the SPU executable, we
1143 * instead add a new 'stopped_status' field to the
1144 * LSCSA. The SPU-side restore reads this field and
1145 * takes the appropriate action when exiting.
1149 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1150 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1152 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1153 * by Stop and Signal instruction, followed by 'br -4'.
1156 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1157 csa->lscsa->stopped_status.slot[1] = status_code;
1159 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1161 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1162 * by Stop and Signal instruction, followed by
1165 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1166 csa->lscsa->stopped_status.slot[1] = status_code;
1168 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1170 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1171 * followed by 'br -4'.
1173 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1174 csa->lscsa->stopped_status.slot[1] = status_code;
1176 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1178 /* SPU_Status[S,I]=1 - Illegal instruction followed
1181 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1182 csa->lscsa->stopped_status.slot[1] = status_code;
1184 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1186 /* SPU_Status[P]=1 - Stop and Signal instruction
1187 * followed by 'br -4'.
1189 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1190 csa->lscsa->stopped_status.slot[1] = status_code;
1192 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1194 /* SPU_Status[H]=1 - Halt Conditional, followed
1197 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1199 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1201 /* SPU_Status[S]=1 - Two nop instructions.
1203 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1205 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1207 /* SPU_Status[I]=1 - Illegal instruction followed
1210 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1215 static inline void setup_spu_status_part2(struct spu_state *csa,
1220 /* Restore, Step 28:
1221 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1222 * add a 'br *' instruction to the end of
1223 * the SPU based restore code.
1225 * NOTE: Rather than modifying the SPU executable, we
1226 * instead add a new 'stopped_status' field to the
1227 * LSCSA. The SPU-side restore reads this field and
1228 * takes the appropriate action when exiting.
1230 mask = SPU_STATUS_INVALID_INSTR |
1231 SPU_STATUS_SINGLE_STEP |
1232 SPU_STATUS_STOPPED_BY_HALT |
1233 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1234 if (!(csa->prob.spu_status_R & mask)) {
1235 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1239 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1241 /* Restore, Step 29:
1242 * Restore RA_GROUP_ID register and the
1243 * RA_ENABLE reigster from the CSA.
1245 spu_resource_allocation_groupID_set(spu,
1246 csa->priv1.resource_allocation_groupID_RW);
1247 spu_resource_allocation_enable_set(spu,
1248 csa->priv1.resource_allocation_enable_RW);
1251 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1253 unsigned long addr = (unsigned long)&spu_restore_code[0];
1254 unsigned int ls_offset = 0x0;
1255 unsigned int size = sizeof(spu_restore_code);
1256 unsigned int tag = 0;
1257 unsigned int rclass = 0;
1258 unsigned int cmd = MFC_GETFS_CMD;
1260 /* Restore, Step 37:
1261 * Issue MFC DMA command to copy context
1262 * restore code to local storage.
1264 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1267 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1269 /* Restore, Step 34:
1270 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1271 * running) then adjust decrementer, set
1272 * decrementer running status in LSCSA,
1273 * and set decrementer "wrapped" status
1276 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1277 cycles_t resume_time = get_cycles();
1278 cycles_t delta_time = resume_time - csa->suspend_time;
1280 csa->lscsa->decr.slot[0] -= delta_time;
1284 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1286 /* Restore, Step 35:
1287 * Copy the CSA.PU_MB data into the LSCSA.
1289 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1292 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1294 /* Restore, Step 36:
1295 * Copy the CSA.PUINT_MB data into the LSCSA.
1297 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1300 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1302 struct spu_problem __iomem *prob = spu->problem;
1305 /* Restore, Step 40:
1306 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1307 * context restore succeeded, otherwise context restore
1310 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1311 SPU_STATUS_STOPPED_BY_STOP);
1312 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1315 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1317 struct spu_priv2 __iomem *priv2 = spu->priv2;
1319 /* Restore, Step 41:
1320 * Restore SPU_PrivCntl from the CSA.
1322 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1326 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1328 struct spu_problem __iomem *prob = spu->problem;
1331 /* Restore, Step 42:
1332 * If any CSA.SPU_Status[I,S,H,P]=1, then
1333 * restore the error or single step state.
1335 mask = SPU_STATUS_INVALID_INSTR |
1336 SPU_STATUS_SINGLE_STEP |
1337 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1338 if (csa->prob.spu_status_R & mask) {
1339 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1341 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1342 SPU_STATUS_RUNNING);
1346 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1348 struct spu_problem __iomem *prob = spu->problem;
1351 /* Restore, Step 43:
1352 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1353 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1354 * then write '00' to SPU_RunCntl[R0R1] and wait
1355 * for SPU_Status[R]=0.
1357 mask = SPU_STATUS_INVALID_INSTR |
1358 SPU_STATUS_SINGLE_STEP |
1359 SPU_STATUS_STOPPED_BY_HALT |
1360 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1361 if (!(csa->prob.spu_status_R & mask)) {
1362 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1364 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1365 SPU_STATUS_RUNNING);
1366 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1368 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1369 SPU_STATUS_RUNNING);
1373 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1375 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1376 unsigned int ls_offset = 0x0;
1377 unsigned int size = 16384;
1378 unsigned int tag = 0;
1379 unsigned int rclass = 0;
1380 unsigned int cmd = MFC_GET_CMD;
1382 /* Restore, Step 44:
1383 * Issue a DMA command to restore the first
1384 * 16kb of local storage from CSA.
1386 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1389 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1391 /* Restore, Step 49:
1392 * Write INT_MASK_class0 with value of 0.
1393 * Write INT_MASK_class1 with value of 0.
1394 * Write INT_MASK_class2 with value of 0.
1395 * Write INT_STAT_class0 with value of -1.
1396 * Write INT_STAT_class1 with value of -1.
1397 * Write INT_STAT_class2 with value of -1.
1399 spin_lock_irq(&spu->register_lock);
1400 spu_int_mask_set(spu, 0, 0ul);
1401 spu_int_mask_set(spu, 1, 0ul);
1402 spu_int_mask_set(spu, 2, 0ul);
1403 spu_int_stat_clear(spu, 0, ~0ul);
1404 spu_int_stat_clear(spu, 1, ~0ul);
1405 spu_int_stat_clear(spu, 2, ~0ul);
1406 spin_unlock_irq(&spu->register_lock);
1409 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1411 struct spu_priv2 __iomem *priv2 = spu->priv2;
1414 /* Restore, Step 50:
1415 * If MFC_Cntl[Se]!=0 then restore
1416 * MFC command queues.
1418 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1419 for (i = 0; i < 8; i++) {
1420 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1421 csa->priv2.puq[i].mfc_cq_data0_RW);
1422 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1423 csa->priv2.puq[i].mfc_cq_data1_RW);
1424 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1425 csa->priv2.puq[i].mfc_cq_data2_RW);
1426 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1427 csa->priv2.puq[i].mfc_cq_data3_RW);
1429 for (i = 0; i < 16; i++) {
1430 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1431 csa->priv2.spuq[i].mfc_cq_data0_RW);
1432 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1433 csa->priv2.spuq[i].mfc_cq_data1_RW);
1434 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1435 csa->priv2.spuq[i].mfc_cq_data2_RW);
1436 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1437 csa->priv2.spuq[i].mfc_cq_data3_RW);
1443 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1445 struct spu_problem __iomem *prob = spu->problem;
1447 /* Restore, Step 51:
1448 * Restore the PPU_QueryMask register from CSA.
1450 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1454 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1456 struct spu_problem __iomem *prob = spu->problem;
1458 /* Restore, Step 52:
1459 * Restore the PPU_QueryType register from CSA.
1461 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1465 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1467 struct spu_priv2 __iomem *priv2 = spu->priv2;
1469 /* Restore, Step 53:
1470 * Restore the MFC_CSR_TSQ register from CSA.
1472 out_be64(&priv2->spu_tag_status_query_RW,
1473 csa->priv2.spu_tag_status_query_RW);
1477 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1479 struct spu_priv2 __iomem *priv2 = spu->priv2;
1481 /* Restore, Step 54:
1482 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1483 * registers from CSA.
1485 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1486 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1490 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1492 struct spu_priv2 __iomem *priv2 = spu->priv2;
1494 /* Restore, Step 55:
1495 * Restore the MFC_CSR_ATO register from CSA.
1497 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1500 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1502 /* Restore, Step 56:
1503 * Restore the MFC_TCLASS_ID register from CSA.
1505 spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1509 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1511 u64 ch0_cnt, ch0_data;
1514 /* Restore, Step 57:
1515 * Set the Lock Line Reservation Lost Event by:
1516 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1517 * 2. If CSA.SPU_Channel_0_Count=0 and
1518 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1519 * CSA.SPU_Event_Status[Lr]=0 then set
1520 * CSA.SPU_Event_Status_Count=1.
1522 ch0_cnt = csa->spu_chnlcnt_RW[0];
1523 ch0_data = csa->spu_chnldata_RW[0];
1524 ch1_data = csa->spu_chnldata_RW[1];
1525 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1526 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1527 (ch1_data & MFC_LLR_LOST_EVENT)) {
1528 csa->spu_chnlcnt_RW[0] = 1;
1532 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1534 /* Restore, Step 58:
1535 * If the status of the CSA software decrementer
1536 * "wrapped" flag is set, OR in a '1' to
1537 * CSA.SPU_Event_Status[Tm].
1539 if (csa->lscsa->decr_status.slot[0] == 1) {
1540 csa->spu_chnldata_RW[0] |= 0x20;
1542 if ((csa->lscsa->decr_status.slot[0] == 1) &&
1543 (csa->spu_chnlcnt_RW[0] == 0 &&
1544 ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1545 ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1546 csa->spu_chnlcnt_RW[0] = 1;
1550 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1552 struct spu_priv2 __iomem *priv2 = spu->priv2;
1553 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1556 /* Restore, Step 59:
1559 /* Restore CH 1 without count */
1560 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1561 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1563 /* Restore the following CH: [0,3,4,24,25,27] */
1564 for (i = 0; i < 7; i++) {
1565 idx = ch_indices[i];
1566 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1568 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1569 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1574 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1576 struct spu_priv2 __iomem *priv2 = spu->priv2;
1577 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1578 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1582 /* Restore, Step 60:
1583 * Restore the following CH: [9,21,23].
1586 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1588 for (i = 0; i < 3; i++) {
1589 idx = ch_indices[i];
1590 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1592 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1597 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1599 struct spu_priv2 __iomem *priv2 = spu->priv2;
1601 /* Restore, Step 61:
1602 * Restore the SPU_LSLR register from CSA.
1604 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1608 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1610 struct spu_priv2 __iomem *priv2 = spu->priv2;
1612 /* Restore, Step 62:
1613 * Restore the SPU_Cfg register from CSA.
1615 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1619 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1621 /* Restore, Step 63:
1622 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1623 * Not performed by this implementation.
1627 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1629 struct spu_problem __iomem *prob = spu->problem;
1631 /* Restore, Step 64:
1632 * Restore SPU_NPC from CSA.
1634 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1638 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1640 struct spu_priv2 __iomem *priv2 = spu->priv2;
1643 /* Restore, Step 65:
1644 * Restore MFC_RdSPU_MB from CSA.
1646 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1648 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1649 for (i = 0; i < 4; i++) {
1650 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1655 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1657 struct spu_problem __iomem *prob = spu->problem;
1660 /* Restore, Step 66:
1661 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1662 * read from the PPU_MB register.
1664 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1665 dummy = in_be32(&prob->pu_mb_R);
1670 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1672 struct spu_priv2 __iomem *priv2 = spu->priv2;
1675 /* Restore, Step 66:
1676 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1677 * read from the PPUINT_MB register.
1679 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1680 dummy = in_be64(&priv2->puint_mb_R);
1682 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1687 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1689 /* Restore, Step 69:
1690 * Restore the MFC_SR1 register from CSA.
1692 spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1696 static inline void restore_other_spu_access(struct spu_state *csa,
1699 /* Restore, Step 70:
1700 * Restore other SPU mappings to this SPU. TBD.
1704 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1706 struct spu_problem __iomem *prob = spu->problem;
1708 /* Restore, Step 71:
1709 * If CSA.SPU_Status[R]=1 then write
1710 * SPU_RunCntl[R0R1]='01'.
1712 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1713 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1718 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1720 struct spu_priv2 __iomem *priv2 = spu->priv2;
1722 /* Restore, Step 72:
1723 * Restore the MFC_CNTL register for the CSA.
1725 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1728 * FIXME: this is to restart a DMA that we were processing
1729 * before the save. better remember the fault information
1730 * in the csa instead.
1732 if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1733 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1738 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1740 /* Restore, Step 73:
1741 * Enable user-space access (if provided) to this
1742 * SPU by mapping the virtual pages assigned to
1743 * the SPU memory-mapped I/O (MMIO) for problem
1748 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1750 /* Restore, Step 74:
1751 * Reset the "context switch active" flag.
1753 clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1757 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1759 /* Restore, Step 75:
1760 * Re-enable SPU interrupts.
1762 spin_lock_irq(&spu->register_lock);
1763 spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1764 spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1765 spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1766 spin_unlock_irq(&spu->register_lock);
1769 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1772 * Combined steps 2-18 of SPU context save sequence, which
1773 * quiesce the SPU state (disable SPU execution, MFC command
1774 * queues, decrementer, SPU interrupts, etc.).
1776 * Returns 0 on success.
1777 * 2 if failed step 2.
1778 * 6 if failed step 6.
1781 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1784 disable_interrupts(prev, spu); /* Step 3. */
1785 set_watchdog_timer(prev, spu); /* Step 4. */
1786 inhibit_user_access(prev, spu); /* Step 5. */
1787 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1790 set_switch_pending(prev, spu); /* Step 7. */
1791 save_mfc_cntl(prev, spu); /* Step 8. */
1792 save_spu_runcntl(prev, spu); /* Step 9. */
1793 save_mfc_sr1(prev, spu); /* Step 10. */
1794 save_spu_status(prev, spu); /* Step 11. */
1795 save_mfc_decr(prev, spu); /* Step 12. */
1796 halt_mfc_decr(prev, spu); /* Step 13. */
1797 save_timebase(prev, spu); /* Step 14. */
1798 remove_other_spu_access(prev, spu); /* Step 15. */
1799 do_mfc_mssync(prev, spu); /* Step 16. */
1800 issue_mfc_tlbie(prev, spu); /* Step 17. */
1801 handle_pending_interrupts(prev, spu); /* Step 18. */
1806 static void save_csa(struct spu_state *prev, struct spu *spu)
1809 * Combine steps 19-44 of SPU context save sequence, which
1810 * save regions of the privileged & problem state areas.
1813 save_mfc_queues(prev, spu); /* Step 19. */
1814 save_ppu_querymask(prev, spu); /* Step 20. */
1815 save_ppu_querytype(prev, spu); /* Step 21. */
1816 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1817 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1818 save_mfc_csr_ato(prev, spu); /* Step 24. */
1819 save_mfc_tclass_id(prev, spu); /* Step 25. */
1820 set_mfc_tclass_id(prev, spu); /* Step 26. */
1821 purge_mfc_queue(prev, spu); /* Step 27. */
1822 wait_purge_complete(prev, spu); /* Step 28. */
1823 setup_mfc_sr1(prev, spu); /* Step 30. */
1824 save_spu_npc(prev, spu); /* Step 31. */
1825 save_spu_privcntl(prev, spu); /* Step 32. */
1826 reset_spu_privcntl(prev, spu); /* Step 33. */
1827 save_spu_lslr(prev, spu); /* Step 34. */
1828 reset_spu_lslr(prev, spu); /* Step 35. */
1829 save_spu_cfg(prev, spu); /* Step 36. */
1830 save_pm_trace(prev, spu); /* Step 37. */
1831 save_mfc_rag(prev, spu); /* Step 38. */
1832 save_ppu_mb_stat(prev, spu); /* Step 39. */
1833 save_ppu_mb(prev, spu); /* Step 40. */
1834 save_ppuint_mb(prev, spu); /* Step 41. */
1835 save_ch_part1(prev, spu); /* Step 42. */
1836 save_spu_mb(prev, spu); /* Step 43. */
1837 save_mfc_cmd(prev, spu); /* Step 44. */
1838 reset_ch(prev, spu); /* Step 45. */
1841 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1844 * Perform steps 46-57 of SPU context save sequence,
1845 * which save regions of the local store and register
1849 resume_mfc_queue(prev, spu); /* Step 46. */
1850 setup_mfc_slbs(prev, spu); /* Step 47. */
1851 set_switch_active(prev, spu); /* Step 48. */
1852 enable_interrupts(prev, spu); /* Step 49. */
1853 save_ls_16kb(prev, spu); /* Step 50. */
1854 set_spu_npc(prev, spu); /* Step 51. */
1855 set_signot1(prev, spu); /* Step 52. */
1856 set_signot2(prev, spu); /* Step 53. */
1857 send_save_code(prev, spu); /* Step 54. */
1858 set_ppu_querymask(prev, spu); /* Step 55. */
1859 wait_tag_complete(prev, spu); /* Step 56. */
1860 wait_spu_stopped(prev, spu); /* Step 57. */
1863 static void force_spu_isolate_exit(struct spu *spu)
1865 struct spu_problem __iomem *prob = spu->problem;
1866 struct spu_priv2 __iomem *priv2 = spu->priv2;
1868 /* Stop SPE execution and wait for completion. */
1869 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1871 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1873 /* Restart SPE master runcntl. */
1874 spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1877 /* Initiate isolate exit request and wait for completion. */
1878 out_be64(&priv2->spu_privcntl_RW, 4LL);
1880 out_be32(&prob->spu_runcntl_RW, 2);
1882 POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1883 & SPU_STATUS_STOPPED_BY_STOP));
1885 /* Reset load request to normal. */
1886 out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1892 * Check SPU run-control state and force isolated
1893 * exit function as necessary.
1895 static void stop_spu_isolate(struct spu *spu)
1897 struct spu_problem __iomem *prob = spu->problem;
1899 if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1900 /* The SPU is in isolated state; the only way
1901 * to get it out is to perform an isolated
1902 * exit (clean) operation.
1904 force_spu_isolate_exit(spu);
1908 static void harvest(struct spu_state *prev, struct spu *spu)
1911 * Perform steps 2-25 of SPU context restore sequence,
1912 * which resets an SPU either after a failed save, or
1913 * when using SPU for first time.
1916 disable_interrupts(prev, spu); /* Step 2. */
1917 inhibit_user_access(prev, spu); /* Step 3. */
1918 terminate_spu_app(prev, spu); /* Step 4. */
1919 set_switch_pending(prev, spu); /* Step 5. */
1920 stop_spu_isolate(spu); /* NEW. */
1921 remove_other_spu_access(prev, spu); /* Step 6. */
1922 suspend_mfc(prev, spu); /* Step 7. */
1923 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1924 if (!suspend_spe(prev, spu)) /* Step 9. */
1925 clear_spu_status(prev, spu); /* Step 10. */
1926 do_mfc_mssync(prev, spu); /* Step 11. */
1927 issue_mfc_tlbie(prev, spu); /* Step 12. */
1928 handle_pending_interrupts(prev, spu); /* Step 13. */
1929 purge_mfc_queue(prev, spu); /* Step 14. */
1930 wait_purge_complete(prev, spu); /* Step 15. */
1931 reset_spu_privcntl(prev, spu); /* Step 16. */
1932 reset_spu_lslr(prev, spu); /* Step 17. */
1933 setup_mfc_sr1(prev, spu); /* Step 18. */
1934 spu_invalidate_slbs(spu); /* Step 19. */
1935 reset_ch_part1(prev, spu); /* Step 20. */
1936 reset_ch_part2(prev, spu); /* Step 21. */
1937 enable_interrupts(prev, spu); /* Step 22. */
1938 set_switch_active(prev, spu); /* Step 23. */
1939 set_mfc_tclass_id(prev, spu); /* Step 24. */
1940 resume_mfc_queue(prev, spu); /* Step 25. */
1943 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1946 * Perform steps 26-40 of SPU context restore sequence,
1947 * which restores regions of the local store and register
1951 set_watchdog_timer(next, spu); /* Step 26. */
1952 setup_spu_status_part1(next, spu); /* Step 27. */
1953 setup_spu_status_part2(next, spu); /* Step 28. */
1954 restore_mfc_rag(next, spu); /* Step 29. */
1955 setup_mfc_slbs(next, spu); /* Step 30. */
1956 set_spu_npc(next, spu); /* Step 31. */
1957 set_signot1(next, spu); /* Step 32. */
1958 set_signot2(next, spu); /* Step 33. */
1959 setup_decr(next, spu); /* Step 34. */
1960 setup_ppu_mb(next, spu); /* Step 35. */
1961 setup_ppuint_mb(next, spu); /* Step 36. */
1962 send_restore_code(next, spu); /* Step 37. */
1963 set_ppu_querymask(next, spu); /* Step 38. */
1964 wait_tag_complete(next, spu); /* Step 39. */
1965 wait_spu_stopped(next, spu); /* Step 40. */
1968 static void restore_csa(struct spu_state *next, struct spu *spu)
1971 * Combine steps 41-76 of SPU context restore sequence, which
1972 * restore regions of the privileged & problem state areas.
1975 restore_spu_privcntl(next, spu); /* Step 41. */
1976 restore_status_part1(next, spu); /* Step 42. */
1977 restore_status_part2(next, spu); /* Step 43. */
1978 restore_ls_16kb(next, spu); /* Step 44. */
1979 wait_tag_complete(next, spu); /* Step 45. */
1980 suspend_mfc(next, spu); /* Step 46. */
1981 wait_suspend_mfc_complete(next, spu); /* Step 47. */
1982 issue_mfc_tlbie(next, spu); /* Step 48. */
1983 clear_interrupts(next, spu); /* Step 49. */
1984 restore_mfc_queues(next, spu); /* Step 50. */
1985 restore_ppu_querymask(next, spu); /* Step 51. */
1986 restore_ppu_querytype(next, spu); /* Step 52. */
1987 restore_mfc_csr_tsq(next, spu); /* Step 53. */
1988 restore_mfc_csr_cmd(next, spu); /* Step 54. */
1989 restore_mfc_csr_ato(next, spu); /* Step 55. */
1990 restore_mfc_tclass_id(next, spu); /* Step 56. */
1991 set_llr_event(next, spu); /* Step 57. */
1992 restore_decr_wrapped(next, spu); /* Step 58. */
1993 restore_ch_part1(next, spu); /* Step 59. */
1994 restore_ch_part2(next, spu); /* Step 60. */
1995 restore_spu_lslr(next, spu); /* Step 61. */
1996 restore_spu_cfg(next, spu); /* Step 62. */
1997 restore_pm_trace(next, spu); /* Step 63. */
1998 restore_spu_npc(next, spu); /* Step 64. */
1999 restore_spu_mb(next, spu); /* Step 65. */
2000 check_ppu_mb_stat(next, spu); /* Step 66. */
2001 check_ppuint_mb_stat(next, spu); /* Step 67. */
2002 spu_invalidate_slbs(spu); /* Modified Step 68. */
2003 restore_mfc_sr1(next, spu); /* Step 69. */
2004 restore_other_spu_access(next, spu); /* Step 70. */
2005 restore_spu_runcntl(next, spu); /* Step 71. */
2006 restore_mfc_cntl(next, spu); /* Step 72. */
2007 enable_user_access(next, spu); /* Step 73. */
2008 reset_switch_active(next, spu); /* Step 74. */
2009 reenable_interrupts(next, spu); /* Step 75. */
2012 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2017 * SPU context save can be broken into three phases:
2019 * (a) quiesce [steps 2-16].
2020 * (b) save of CSA, performed by PPE [steps 17-42]
2021 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2023 * Returns 0 on success.
2024 * 2,6 if failed to quiece SPU
2025 * 53 if SPU-side of save failed.
2028 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2039 save_csa(prev, spu); /* Steps 17-43. */
2040 save_lscsa(prev, spu); /* Steps 44-53. */
2041 return check_save_status(prev, spu); /* Step 54. */
2044 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2049 * SPU context restore can be broken into three phases:
2051 * (a) harvest (or reset) SPU [steps 2-24].
2052 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2053 * (c) restore CSA [steps 41-76], performed by PPE.
2055 * The 'harvest' step is not performed here, but rather
2059 restore_lscsa(next, spu); /* Steps 24-39. */
2060 rc = check_restore_status(next, spu); /* Step 40. */
2063 /* Failed. Return now. */
2067 /* Fall through to next step. */
2070 restore_csa(next, spu);
2076 * spu_save - SPU context save, with locking.
2077 * @prev: pointer to SPU context save area, to be saved.
2078 * @spu: pointer to SPU iomem structure.
2080 * Acquire locks, perform the save operation then return.
2082 int spu_save(struct spu_state *prev, struct spu *spu)
2086 acquire_spu_lock(spu); /* Step 1. */
2087 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2088 release_spu_lock(spu);
2089 if (rc != 0 && rc != 2 && rc != 6) {
2090 panic("%s failed on SPU[%d], rc=%d.\n",
2091 __func__, spu->number, rc);
2095 EXPORT_SYMBOL_GPL(spu_save);
2098 * spu_restore - SPU context restore, with harvest and locking.
2099 * @new: pointer to SPU context save area, to be restored.
2100 * @spu: pointer to SPU iomem structure.
2102 * Perform harvest + restore, as we may not be coming
2103 * from a previous successful save operation, and the
2104 * hardware state is unknown.
2106 int spu_restore(struct spu_state *new, struct spu *spu)
2110 acquire_spu_lock(spu);
2114 spu->slb_replace = 0;
2115 spu->class_0_pending = 0;
2116 rc = __do_spu_restore(new, spu);
2117 release_spu_lock(spu);
2119 panic("%s failed on SPU[%d] rc=%d.\n",
2120 __func__, spu->number, rc);
2124 EXPORT_SYMBOL_GPL(spu_restore);
2127 * spu_harvest - SPU harvest (reset) operation
2128 * @spu: pointer to SPU iomem structure.
2130 * Perform SPU harvest (reset) operation.
2132 void spu_harvest(struct spu *spu)
2134 acquire_spu_lock(spu);
2136 release_spu_lock(spu);
2139 static void init_prob(struct spu_state *csa)
2141 csa->spu_chnlcnt_RW[9] = 1;
2142 csa->spu_chnlcnt_RW[21] = 16;
2143 csa->spu_chnlcnt_RW[23] = 1;
2144 csa->spu_chnlcnt_RW[28] = 1;
2145 csa->spu_chnlcnt_RW[30] = 1;
2146 csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2147 csa->prob.mb_stat_R = 0x000400;
2150 static void init_priv1(struct spu_state *csa)
2152 /* Enable decode, relocate, tlbie response, master runcntl. */
2153 csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2154 MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2155 MFC_STATE1_PROBLEM_STATE_MASK |
2156 MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2158 /* Enable OS-specific set of interrupts. */
2159 csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2160 CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2161 CLASS0_ENABLE_SPU_ERROR_INTR;
2162 csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2163 CLASS1_ENABLE_STORAGE_FAULT_INTR;
2164 csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2165 CLASS2_ENABLE_SPU_HALT_INTR |
2166 CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2169 static void init_priv2(struct spu_state *csa)
2171 csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2172 csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2173 MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2174 MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2178 * spu_alloc_csa - allocate and initialize an SPU context save area.
2180 * Allocate and initialize the contents of an SPU context save area.
2181 * This includes enabling address translation, interrupt masks, etc.,
2182 * as appropriate for the given OS environment.
2184 * Note that storage for the 'lscsa' is allocated separately,
2185 * as it is by far the largest of the context save regions,
2186 * and may need to be pinned or otherwise specially aligned.
2188 void spu_init_csa(struct spu_state *csa)
2190 struct spu_lscsa *lscsa;
2195 memset(csa, 0, sizeof(struct spu_state));
2197 lscsa = vmalloc(sizeof(struct spu_lscsa));
2201 memset(lscsa, 0, sizeof(struct spu_lscsa));
2203 spin_lock_init(&csa->register_lock);
2205 /* Set LS pages reserved to allow for user-space mapping. */
2206 for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2207 SetPageReserved(vmalloc_to_page(p));
2213 EXPORT_SYMBOL_GPL(spu_init_csa);
2215 void spu_fini_csa(struct spu_state *csa)
2217 /* Clear reserved bit before vfree. */
2219 for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2220 ClearPageReserved(vmalloc_to_page(p));
2224 EXPORT_SYMBOL_GPL(spu_fini_csa);