2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, ®);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
61 udelay(REGISTER_BUSY_DELAY);
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
73 * Wait until the BBP becomes ready.
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
82 * Write the data into the BBP.
85 rt2x00_set_field32(®, BBPCSR_VALUE, value);
86 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
99 * Wait until the BBP becomes ready.
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
108 * Write the request into the BBP.
111 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
118 * Wait until the BBP becomes ready.
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, ®);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
143 udelay(REGISTER_BUSY_DELAY);
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
151 rt2x00_set_field32(®, RFCSR_VALUE, value);
152 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(®, RFCSR_BUSY, 1);
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
165 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 unsigned int activity =
254 led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
257 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®);
259 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260 rt2x00_set_field32(®, LEDCSR_LINK, enabled);
261 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled && activity);
264 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
267 #define rt2500pci_led_brightness NULL
268 #endif /* CONFIG_RT2500PCI_LEDS */
271 * Configuration handlers.
273 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
274 const unsigned int filter_flags)
279 * Start configuration steps.
280 * Note that the version error will always be dropped
281 * and broadcast frames will always be accepted since
282 * there is no filter for it at this time.
284 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
285 rt2x00_set_field32(®, RXCSR0_DROP_CRC,
286 !(filter_flags & FIF_FCSFAIL));
287 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
288 !(filter_flags & FIF_PLCPFAIL));
289 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
290 !(filter_flags & FIF_CONTROL));
291 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
292 !(filter_flags & FIF_PROMISC_IN_BSS));
293 rt2x00_set_field32(®, RXCSR0_DROP_TODS,
294 !(filter_flags & FIF_PROMISC_IN_BSS) &&
295 !rt2x00dev->intf_ap_count);
296 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
297 rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
298 !(filter_flags & FIF_ALLMULTI));
299 rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
300 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
303 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
304 struct rt2x00_intf *intf,
305 struct rt2x00intf_conf *conf,
306 const unsigned int flags)
308 struct data_queue *queue =
309 rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
310 unsigned int bcn_preload;
313 if (flags & CONFIG_UPDATE_TYPE) {
315 * Enable beacon config
317 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
318 rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®);
319 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
320 rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
321 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
324 * Enable synchronisation.
326 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
327 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
328 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
329 rt2x00_set_field32(®, CSR14_TBCN, 1);
330 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
333 if (flags & CONFIG_UPDATE_MAC)
334 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
335 conf->mac, sizeof(conf->mac));
337 if (flags & CONFIG_UPDATE_BSSID)
338 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
339 conf->bssid, sizeof(conf->bssid));
342 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
343 struct rt2x00lib_erp *erp)
349 * When short preamble is enabled, we should set bit 0x08
351 preamble_mask = erp->short_preamble << 3;
353 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
354 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT,
356 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME,
357 erp->ack_consume_time);
358 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
360 rt2x00pci_register_read(rt2x00dev, ARCSR2, ®);
361 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00 | preamble_mask);
362 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
363 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
364 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
366 rt2x00pci_register_read(rt2x00dev, ARCSR3, ®);
367 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
368 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
369 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
370 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
372 rt2x00pci_register_read(rt2x00dev, ARCSR4, ®);
373 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
374 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
375 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
376 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
378 rt2x00pci_register_read(rt2x00dev, ARCSR5, ®);
379 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
380 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
381 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
382 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
385 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
386 const int basic_rate_mask)
388 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
391 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
392 struct rf_channel *rf, const int txpower)
399 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
402 * Switch on tuning bits.
403 * For RT2523 devices we do not need to update the R1 register.
405 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
406 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
407 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
410 * For RT2525 we should first set the channel to half band higher.
412 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
413 static const u32 vals[] = {
414 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
415 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
416 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
417 0x00080d2e, 0x00080d3a
420 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
421 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
422 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
424 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
427 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
428 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
429 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
431 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
434 * Channel 14 requires the Japan filter bit to be set.
437 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
438 rt2500pci_bbp_write(rt2x00dev, 70, r70);
443 * Switch off tuning bits.
444 * For RT2523 devices we do not need to update the R1 register.
446 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
447 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
448 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
451 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
452 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
455 * Clear false CRC during channel switch.
457 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
460 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
465 rt2x00_rf_read(rt2x00dev, 3, &rf3);
466 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
467 rt2500pci_rf_write(rt2x00dev, 3, rf3);
470 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
471 struct antenna_setup *ant)
478 * We should never come here because rt2x00lib is supposed
479 * to catch this and send us the correct antenna explicitely.
481 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
482 ant->tx == ANTENNA_SW_DIVERSITY);
484 rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®);
485 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
486 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
489 * Configure the TX antenna.
493 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
494 rt2x00_set_field32(®, BBPCSR1_CCK, 0);
495 rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
499 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
500 rt2x00_set_field32(®, BBPCSR1_CCK, 2);
501 rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
506 * Configure the RX antenna.
510 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
514 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
519 * RT2525E and RT5222 need to flip TX I/Q
521 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
522 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
523 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
524 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
525 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
528 * RT2525E does not need RX I/Q Flip.
530 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
531 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
533 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
534 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
537 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
538 rt2500pci_bbp_write(rt2x00dev, 14, r14);
539 rt2500pci_bbp_write(rt2x00dev, 2, r2);
542 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
543 struct rt2x00lib_conf *libconf)
547 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
548 rt2x00_set_field32(®, CSR11_SLOT_TIME, libconf->slot_time);
549 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
551 rt2x00pci_register_read(rt2x00dev, CSR18, ®);
552 rt2x00_set_field32(®, CSR18_SIFS, libconf->sifs);
553 rt2x00_set_field32(®, CSR18_PIFS, libconf->pifs);
554 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
556 rt2x00pci_register_read(rt2x00dev, CSR19, ®);
557 rt2x00_set_field32(®, CSR19_DIFS, libconf->difs);
558 rt2x00_set_field32(®, CSR19_EIFS, libconf->eifs);
559 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
561 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
562 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
563 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
564 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
566 rt2x00pci_register_read(rt2x00dev, CSR12, ®);
567 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
568 libconf->conf->beacon_int * 16);
569 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
570 libconf->conf->beacon_int * 16);
571 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
574 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
575 struct rt2x00lib_conf *libconf,
576 const unsigned int flags)
578 if (flags & CONFIG_UPDATE_PHYMODE)
579 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
580 if (flags & CONFIG_UPDATE_CHANNEL)
581 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
582 libconf->conf->power_level);
583 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
584 rt2500pci_config_txpower(rt2x00dev,
585 libconf->conf->power_level);
586 if (flags & CONFIG_UPDATE_ANTENNA)
587 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
588 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
589 rt2500pci_config_duration(rt2x00dev, libconf);
595 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
596 struct link_qual *qual)
601 * Update FCS error count from register.
603 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
604 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
607 * Update False CCA count from register.
609 rt2x00pci_register_read(rt2x00dev, CNT3, ®);
610 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
613 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
615 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
616 rt2x00dev->link.vgc_level = 0x48;
619 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
621 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
625 * To prevent collisions with MAC ASIC on chipsets
626 * up to version C the link tuning should halt after 20
627 * seconds while being associated.
629 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
630 rt2x00dev->intf_associated &&
631 rt2x00dev->link.count > 20)
634 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
637 * Chipset versions C and lower should directly continue
638 * to the dynamic CCA tuning. Chipset version D and higher
639 * should go straight to dynamic CCA tuning when they
640 * are not associated.
642 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
643 !rt2x00dev->intf_associated)
644 goto dynamic_cca_tune;
647 * A too low RSSI will cause too much false CCA which will
648 * then corrupt the R17 tuning. To remidy this the tuning should
649 * be stopped (While making sure the R17 value will not exceed limits)
651 if (rssi < -80 && rt2x00dev->link.count > 20) {
653 r17 = rt2x00dev->link.vgc_level;
654 rt2500pci_bbp_write(rt2x00dev, 17, r17);
660 * Special big-R17 for short distance
664 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
669 * Special mid-R17 for middle distance
673 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
678 * Leave short or middle distance condition, restore r17
679 * to the dynamic tuning range.
682 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
689 * R17 is inside the dynamic tuning range,
690 * start tuning the link based on the false cca counter.
692 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
693 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
694 rt2x00dev->link.vgc_level = r17;
695 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
696 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
697 rt2x00dev->link.vgc_level = r17;
702 * Initialization functions.
704 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
705 struct queue_entry *entry)
707 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
710 rt2x00_desc_read(priv_rx->desc, 1, &word);
711 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
712 rt2x00_desc_write(priv_rx->desc, 1, word);
714 rt2x00_desc_read(priv_rx->desc, 0, &word);
715 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
716 rt2x00_desc_write(priv_rx->desc, 0, word);
719 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
720 struct queue_entry *entry)
722 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
725 rt2x00_desc_read(priv_tx->desc, 1, &word);
726 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
727 rt2x00_desc_write(priv_tx->desc, 1, word);
729 rt2x00_desc_read(priv_tx->desc, 0, &word);
730 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
731 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
732 rt2x00_desc_write(priv_tx->desc, 0, word);
735 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
737 struct queue_entry_priv_pci_rx *priv_rx;
738 struct queue_entry_priv_pci_tx *priv_tx;
742 * Initialize registers.
744 rt2x00pci_register_read(rt2x00dev, TXCSR2, ®);
745 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
746 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
747 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
748 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
749 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
751 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
752 rt2x00pci_register_read(rt2x00dev, TXCSR3, ®);
753 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
755 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
757 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
758 rt2x00pci_register_read(rt2x00dev, TXCSR5, ®);
759 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
761 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
763 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
764 rt2x00pci_register_read(rt2x00dev, TXCSR4, ®);
765 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
767 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
769 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
770 rt2x00pci_register_read(rt2x00dev, TXCSR6, ®);
771 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
773 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
775 rt2x00pci_register_read(rt2x00dev, RXCSR1, ®);
776 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
777 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
778 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
780 priv_rx = rt2x00dev->rx->entries[0].priv_data;
781 rt2x00pci_register_read(rt2x00dev, RXCSR2, ®);
782 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
783 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
788 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
792 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
793 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
794 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
795 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
797 rt2x00pci_register_read(rt2x00dev, TIMECSR, ®);
798 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
799 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
800 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
801 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
803 rt2x00pci_register_read(rt2x00dev, CSR9, ®);
804 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
805 rt2x00dev->rx->data_size / 128);
806 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
809 * Always use CWmin and CWmax set in descriptor.
811 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
812 rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
813 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
815 rt2x00pci_register_read(rt2x00dev, LEDCSR, ®);
816 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, 70);
817 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, 30);
818 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
820 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
822 rt2x00pci_register_read(rt2x00dev, TXCSR8, ®);
823 rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
824 rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
825 rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
826 rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
827 rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
828 rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
829 rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
830 rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
831 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
833 rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®);
834 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
835 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
836 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
837 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
838 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
840 rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®);
841 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
842 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
843 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
844 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
845 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
847 rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®);
848 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
849 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
850 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
851 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
852 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
854 rt2x00pci_register_read(rt2x00dev, RXCSR3, ®);
855 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
856 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
857 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
858 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
859 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
860 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
861 rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
862 rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
863 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
865 rt2x00pci_register_read(rt2x00dev, PCICSR, ®);
866 rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
867 rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
868 rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
869 rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
870 rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
871 rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
872 rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
873 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
875 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
877 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
878 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
880 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
883 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
884 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
886 rt2x00pci_register_read(rt2x00dev, MACCSR2, ®);
887 rt2x00_set_field32(®, MACCSR2_DELAY, 64);
888 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
890 rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®);
891 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
892 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
893 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
894 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
895 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
896 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
897 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
899 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
901 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
903 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
904 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
905 rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
906 rt2x00_set_field32(®, CSR1_HOST_READY, 0);
907 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
909 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
910 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
911 rt2x00_set_field32(®, CSR1_HOST_READY, 1);
912 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
915 * We must clear the FCS and FIFO error count.
916 * These registers are cleared on read,
917 * so we may pass a useless variable to store the value.
919 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
920 rt2x00pci_register_read(rt2x00dev, CNT4, ®);
925 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
932 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
933 rt2500pci_bbp_read(rt2x00dev, 0, &value);
934 if ((value != 0xff) && (value != 0x00))
935 goto continue_csr_init;
936 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
937 udelay(REGISTER_BUSY_DELAY);
940 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
944 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
945 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
946 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
947 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
948 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
949 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
950 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
951 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
952 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
953 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
954 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
955 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
956 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
957 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
958 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
959 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
960 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
961 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
962 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
963 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
964 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
965 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
966 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
967 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
968 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
969 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
970 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
971 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
972 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
973 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
975 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
976 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
978 if (eeprom != 0xffff && eeprom != 0x0000) {
979 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
980 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
981 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
989 * Device state switch handlers.
991 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
992 enum dev_state state)
996 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
997 rt2x00_set_field32(®, RXCSR0_DISABLE_RX,
998 state == STATE_RADIO_RX_OFF);
999 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1002 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1003 enum dev_state state)
1005 int mask = (state == STATE_RADIO_IRQ_OFF);
1009 * When interrupts are being enabled, the interrupt registers
1010 * should clear the register to assure a clean state.
1012 if (state == STATE_RADIO_IRQ_ON) {
1013 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1014 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1018 * Only toggle the interrupts bits we are going to use.
1019 * Non-checked interrupt bits are disabled by default.
1021 rt2x00pci_register_read(rt2x00dev, CSR8, ®);
1022 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
1023 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
1024 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
1025 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
1026 rt2x00_set_field32(®, CSR8_RXDONE, mask);
1027 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1030 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1033 * Initialize all registers.
1035 if (rt2500pci_init_queues(rt2x00dev) ||
1036 rt2500pci_init_registers(rt2x00dev) ||
1037 rt2500pci_init_bbp(rt2x00dev)) {
1038 ERROR(rt2x00dev, "Register initialization failed.\n");
1043 * Enable interrupts.
1045 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1050 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1054 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1057 * Disable synchronisation.
1059 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1064 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1065 rt2x00_set_field32(®, TXCSR0_ABORT, 1);
1066 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1069 * Disable interrupts.
1071 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1074 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1075 enum dev_state state)
1083 put_to_sleep = (state != STATE_AWAKE);
1085 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1086 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
1087 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
1088 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
1089 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1090 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1093 * Device is not guaranteed to be in the requested state yet.
1094 * We must wait until the register indicates that the
1095 * device has entered the correct state.
1097 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1098 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1099 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1100 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1101 if (bbp_state == state && rf_state == state)
1106 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1107 "current device state: bbp %d and rf %d.\n",
1108 state, bbp_state, rf_state);
1113 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1114 enum dev_state state)
1119 case STATE_RADIO_ON:
1120 retval = rt2500pci_enable_radio(rt2x00dev);
1122 case STATE_RADIO_OFF:
1123 rt2500pci_disable_radio(rt2x00dev);
1125 case STATE_RADIO_RX_ON:
1126 case STATE_RADIO_RX_ON_LINK:
1127 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1129 case STATE_RADIO_RX_OFF:
1130 case STATE_RADIO_RX_OFF_LINK:
1131 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1133 case STATE_DEEP_SLEEP:
1137 retval = rt2500pci_set_state(rt2x00dev, state);
1148 * TX descriptor initialization
1150 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1151 struct sk_buff *skb,
1152 struct txentry_desc *txdesc,
1153 struct ieee80211_tx_control *control)
1155 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1156 __le32 *txd = skbdesc->desc;
1160 * Start writing the descriptor words.
1162 rt2x00_desc_read(txd, 2, &word);
1163 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1164 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1165 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1166 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1167 rt2x00_desc_write(txd, 2, word);
1169 rt2x00_desc_read(txd, 3, &word);
1170 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1171 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1172 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1173 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1174 rt2x00_desc_write(txd, 3, word);
1176 rt2x00_desc_read(txd, 10, &word);
1177 rt2x00_set_field32(&word, TXD_W10_RTS,
1178 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1179 rt2x00_desc_write(txd, 10, word);
1181 rt2x00_desc_read(txd, 0, &word);
1182 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1183 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1184 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1185 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1186 rt2x00_set_field32(&word, TXD_W0_ACK,
1187 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1188 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1189 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1190 rt2x00_set_field32(&word, TXD_W0_OFDM,
1191 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1192 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1193 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1194 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1196 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1197 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1198 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1199 rt2x00_desc_write(txd, 0, word);
1203 * TX data initialization
1205 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1206 const unsigned int queue)
1210 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1211 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1212 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1213 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
1214 rt2x00_set_field32(®, CSR14_TBCN, 1);
1215 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
1216 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1221 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1222 rt2x00_set_field32(®, TXCSR0_KICK_PRIO,
1223 (queue == IEEE80211_TX_QUEUE_DATA0));
1224 rt2x00_set_field32(®, TXCSR0_KICK_TX,
1225 (queue == IEEE80211_TX_QUEUE_DATA1));
1226 rt2x00_set_field32(®, TXCSR0_KICK_ATIM,
1227 (queue == RT2X00_BCN_QUEUE_ATIM));
1228 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1232 * RX control handlers
1234 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1235 struct rxdone_entry_desc *rxdesc)
1237 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1241 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1242 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1245 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1246 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1247 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1248 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1251 * Obtain the status about this packet.
1252 * When frame was received with an OFDM bitrate,
1253 * the signal is the PLCP value. If it was received with
1254 * a CCK bitrate the signal is the rate in 100kbit/s.
1256 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1257 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1258 entry->queue->rt2x00dev->rssi_offset;
1259 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1261 rxdesc->dev_flags = 0;
1262 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1263 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1264 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1265 rxdesc->dev_flags |= RXDONE_MY_BSS;
1269 * Interrupt functions.
1271 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1272 const enum ieee80211_tx_queue queue_idx)
1274 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1275 struct queue_entry_priv_pci_tx *priv_tx;
1276 struct queue_entry *entry;
1277 struct txdone_entry_desc txdesc;
1280 while (!rt2x00queue_empty(queue)) {
1281 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1282 priv_tx = entry->priv_data;
1283 rt2x00_desc_read(priv_tx->desc, 0, &word);
1285 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1286 !rt2x00_get_field32(word, TXD_W0_VALID))
1290 * Obtain the status about this packet.
1292 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1293 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1295 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1299 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1301 struct rt2x00_dev *rt2x00dev = dev_instance;
1305 * Get the interrupt sources & saved to local variable.
1306 * Write register value back to clear pending interrupts.
1308 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1309 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1314 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1318 * Handle interrupts, walk through all bits
1319 * and run the tasks, the bits are checked in order of
1324 * 1 - Beacon timer expired interrupt.
1326 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1327 rt2x00lib_beacondone(rt2x00dev);
1330 * 2 - Rx ring done interrupt.
1332 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1333 rt2x00pci_rxdone(rt2x00dev);
1336 * 3 - Atim ring transmit done interrupt.
1338 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1339 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1342 * 4 - Priority ring transmit done interrupt.
1344 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1345 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1348 * 5 - Tx ring transmit done interrupt.
1350 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1351 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1357 * Device probe functions.
1359 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1361 struct eeprom_93cx6 eeprom;
1366 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
1368 eeprom.data = rt2x00dev;
1369 eeprom.register_read = rt2500pci_eepromregister_read;
1370 eeprom.register_write = rt2500pci_eepromregister_write;
1371 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1372 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1373 eeprom.reg_data_in = 0;
1374 eeprom.reg_data_out = 0;
1375 eeprom.reg_data_clock = 0;
1376 eeprom.reg_chip_select = 0;
1378 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1379 EEPROM_SIZE / sizeof(u16));
1382 * Start validation of the data that has been read.
1384 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1385 if (!is_valid_ether_addr(mac)) {
1386 DECLARE_MAC_BUF(macbuf);
1388 random_ether_addr(mac);
1389 EEPROM(rt2x00dev, "MAC: %s\n",
1390 print_mac(macbuf, mac));
1393 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1394 if (word == 0xffff) {
1395 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1396 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1397 ANTENNA_SW_DIVERSITY);
1398 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1399 ANTENNA_SW_DIVERSITY);
1400 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1402 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1403 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1404 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1405 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1406 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1409 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1410 if (word == 0xffff) {
1411 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1412 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1413 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1414 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1415 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1418 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1419 if (word == 0xffff) {
1420 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1421 DEFAULT_RSSI_OFFSET);
1422 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1423 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1429 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1436 * Read EEPROM word for configuration.
1438 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1441 * Identify RF chipset.
1443 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1444 rt2x00pci_register_read(rt2x00dev, CSR0, ®);
1445 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1447 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1448 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1449 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1450 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1451 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1452 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1453 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1458 * Identify default antenna configuration.
1460 rt2x00dev->default_ant.tx =
1461 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1462 rt2x00dev->default_ant.rx =
1463 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1466 * Store led mode, for correct led behaviour.
1468 #ifdef CONFIG_RT2500PCI_LEDS
1469 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1473 case LED_MODE_ALPHA:
1474 case LED_MODE_DEFAULT:
1475 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1477 case LED_MODE_TXRX_ACTIVITY:
1478 rt2x00dev->led_flags =
1479 LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1481 case LED_MODE_SIGNAL_STRENGTH:
1482 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1485 #endif /* CONFIG_RT2500PCI_LEDS */
1488 * Detect if this device has an hardware controlled radio.
1490 #ifdef CONFIG_RT2500PCI_RFKILL
1491 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1492 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1493 #endif /* CONFIG_RT2500PCI_RFKILL */
1496 * Check if the BBP tuning should be enabled.
1498 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1500 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1501 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1504 * Read the RSSI <-> dBm offset information.
1506 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1507 rt2x00dev->rssi_offset =
1508 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1514 * RF value list for RF2522
1517 static const struct rf_channel rf_vals_bg_2522[] = {
1518 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1519 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1520 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1521 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1522 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1523 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1524 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1525 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1526 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1527 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1528 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1529 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1530 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1531 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1535 * RF value list for RF2523
1538 static const struct rf_channel rf_vals_bg_2523[] = {
1539 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1540 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1541 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1542 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1543 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1544 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1545 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1546 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1547 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1548 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1549 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1550 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1551 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1552 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1556 * RF value list for RF2524
1559 static const struct rf_channel rf_vals_bg_2524[] = {
1560 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1561 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1562 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1563 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1564 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1565 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1566 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1567 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1568 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1569 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1570 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1571 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1572 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1573 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1577 * RF value list for RF2525
1580 static const struct rf_channel rf_vals_bg_2525[] = {
1581 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1582 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1583 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1584 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1585 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1586 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1587 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1588 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1589 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1590 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1591 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1592 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1593 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1594 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1598 * RF value list for RF2525e
1601 static const struct rf_channel rf_vals_bg_2525e[] = {
1602 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1603 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1604 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1605 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1606 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1607 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1608 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1609 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1610 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1611 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1612 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1613 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1614 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1615 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1619 * RF value list for RF5222
1620 * Supports: 2.4 GHz & 5.2 GHz
1622 static const struct rf_channel rf_vals_5222[] = {
1623 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1624 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1625 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1626 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1627 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1628 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1629 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1630 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1631 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1632 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1633 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1634 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1635 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1636 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1638 /* 802.11 UNI / HyperLan 2 */
1639 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1640 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1641 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1642 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1643 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1644 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1645 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1646 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1648 /* 802.11 HyperLan 2 */
1649 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1650 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1651 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1652 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1653 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1654 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1655 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1656 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1657 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1658 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1661 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1662 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1663 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1664 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1665 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1668 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1670 struct hw_mode_spec *spec = &rt2x00dev->spec;
1675 * Initialize all hw fields.
1677 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1678 rt2x00dev->hw->extra_tx_headroom = 0;
1679 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1680 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1681 rt2x00dev->hw->queues = 2;
1683 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1684 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1685 rt2x00_eeprom_addr(rt2x00dev,
1686 EEPROM_MAC_ADDR_0));
1689 * Convert tx_power array in eeprom.
1691 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1692 for (i = 0; i < 14; i++)
1693 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1696 * Initialize hw_mode information.
1698 spec->supported_bands = SUPPORT_BAND_2GHZ;
1699 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1700 spec->tx_power_a = NULL;
1701 spec->tx_power_bg = txpower;
1702 spec->tx_power_default = DEFAULT_TXPOWER;
1704 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1705 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1706 spec->channels = rf_vals_bg_2522;
1707 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1708 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1709 spec->channels = rf_vals_bg_2523;
1710 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1711 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1712 spec->channels = rf_vals_bg_2524;
1713 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1714 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1715 spec->channels = rf_vals_bg_2525;
1716 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1717 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1718 spec->channels = rf_vals_bg_2525e;
1719 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1720 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1721 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1722 spec->channels = rf_vals_5222;
1726 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1731 * Allocate eeprom data.
1733 retval = rt2500pci_validate_eeprom(rt2x00dev);
1737 retval = rt2500pci_init_eeprom(rt2x00dev);
1742 * Initialize hw specifications.
1744 rt2500pci_probe_hw_mode(rt2x00dev);
1747 * This device requires the atim queue
1749 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1752 * Set the rssi offset.
1754 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1760 * IEEE80211 stack callback functions.
1762 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1763 u32 short_retry, u32 long_retry)
1765 struct rt2x00_dev *rt2x00dev = hw->priv;
1768 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
1769 rt2x00_set_field32(®, CSR11_LONG_RETRY, long_retry);
1770 rt2x00_set_field32(®, CSR11_SHORT_RETRY, short_retry);
1771 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1776 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1778 struct rt2x00_dev *rt2x00dev = hw->priv;
1782 rt2x00pci_register_read(rt2x00dev, CSR17, ®);
1783 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1784 rt2x00pci_register_read(rt2x00dev, CSR16, ®);
1785 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1790 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1791 struct ieee80211_tx_control *control)
1793 struct rt2x00_dev *rt2x00dev = hw->priv;
1794 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1795 struct queue_entry_priv_pci_tx *priv_tx;
1796 struct skb_frame_desc *skbdesc;
1799 if (unlikely(!intf->beacon))
1802 priv_tx = intf->beacon->priv_data;
1805 * Fill in skb descriptor
1807 skbdesc = get_skb_frame_desc(skb);
1808 memset(skbdesc, 0, sizeof(*skbdesc));
1809 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1810 skbdesc->data = skb->data;
1811 skbdesc->data_len = skb->len;
1812 skbdesc->desc = priv_tx->desc;
1813 skbdesc->desc_len = intf->beacon->queue->desc_size;
1814 skbdesc->entry = intf->beacon;
1817 * Disable beaconing while we are reloading the beacon data,
1818 * otherwise we might be sending out invalid data.
1820 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1821 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
1822 rt2x00_set_field32(®, CSR14_TBCN, 0);
1823 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
1824 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1827 * mac80211 doesn't provide the control->queue variable
1828 * for beacons. Set our own queue identification so
1829 * it can be used during descriptor initialization.
1831 control->queue = RT2X00_BCN_QUEUE_BEACON;
1832 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1835 * Enable beacon generation.
1836 * Write entire beacon with descriptor to register,
1837 * and kick the beacon generator.
1839 memcpy(priv_tx->data, skb->data, skb->len);
1840 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1845 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1847 struct rt2x00_dev *rt2x00dev = hw->priv;
1850 rt2x00pci_register_read(rt2x00dev, CSR15, ®);
1851 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1854 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1856 .start = rt2x00mac_start,
1857 .stop = rt2x00mac_stop,
1858 .add_interface = rt2x00mac_add_interface,
1859 .remove_interface = rt2x00mac_remove_interface,
1860 .config = rt2x00mac_config,
1861 .config_interface = rt2x00mac_config_interface,
1862 .configure_filter = rt2x00mac_configure_filter,
1863 .get_stats = rt2x00mac_get_stats,
1864 .set_retry_limit = rt2500pci_set_retry_limit,
1865 .bss_info_changed = rt2x00mac_bss_info_changed,
1866 .conf_tx = rt2x00mac_conf_tx,
1867 .get_tx_stats = rt2x00mac_get_tx_stats,
1868 .get_tsf = rt2500pci_get_tsf,
1869 .beacon_update = rt2500pci_beacon_update,
1870 .tx_last_beacon = rt2500pci_tx_last_beacon,
1873 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1874 .irq_handler = rt2500pci_interrupt,
1875 .probe_hw = rt2500pci_probe_hw,
1876 .initialize = rt2x00pci_initialize,
1877 .uninitialize = rt2x00pci_uninitialize,
1878 .init_rxentry = rt2500pci_init_rxentry,
1879 .init_txentry = rt2500pci_init_txentry,
1880 .set_device_state = rt2500pci_set_device_state,
1881 .rfkill_poll = rt2500pci_rfkill_poll,
1882 .link_stats = rt2500pci_link_stats,
1883 .reset_tuner = rt2500pci_reset_tuner,
1884 .link_tuner = rt2500pci_link_tuner,
1885 .led_brightness = rt2500pci_led_brightness,
1886 .write_tx_desc = rt2500pci_write_tx_desc,
1887 .write_tx_data = rt2x00pci_write_tx_data,
1888 .kick_tx_queue = rt2500pci_kick_tx_queue,
1889 .fill_rxdone = rt2500pci_fill_rxdone,
1890 .config_filter = rt2500pci_config_filter,
1891 .config_intf = rt2500pci_config_intf,
1892 .config_erp = rt2500pci_config_erp,
1893 .config = rt2500pci_config,
1896 static const struct data_queue_desc rt2500pci_queue_rx = {
1897 .entry_num = RX_ENTRIES,
1898 .data_size = DATA_FRAME_SIZE,
1899 .desc_size = RXD_DESC_SIZE,
1900 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1903 static const struct data_queue_desc rt2500pci_queue_tx = {
1904 .entry_num = TX_ENTRIES,
1905 .data_size = DATA_FRAME_SIZE,
1906 .desc_size = TXD_DESC_SIZE,
1907 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1910 static const struct data_queue_desc rt2500pci_queue_bcn = {
1911 .entry_num = BEACON_ENTRIES,
1912 .data_size = MGMT_FRAME_SIZE,
1913 .desc_size = TXD_DESC_SIZE,
1914 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1917 static const struct data_queue_desc rt2500pci_queue_atim = {
1918 .entry_num = ATIM_ENTRIES,
1919 .data_size = DATA_FRAME_SIZE,
1920 .desc_size = TXD_DESC_SIZE,
1921 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1924 static const struct rt2x00_ops rt2500pci_ops = {
1925 .name = KBUILD_MODNAME,
1928 .eeprom_size = EEPROM_SIZE,
1930 .rx = &rt2500pci_queue_rx,
1931 .tx = &rt2500pci_queue_tx,
1932 .bcn = &rt2500pci_queue_bcn,
1933 .atim = &rt2500pci_queue_atim,
1934 .lib = &rt2500pci_rt2x00_ops,
1935 .hw = &rt2500pci_mac80211_ops,
1936 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1937 .debugfs = &rt2500pci_rt2x00debug,
1938 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1942 * RT2500pci module information.
1944 static struct pci_device_id rt2500pci_device_table[] = {
1945 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1949 MODULE_AUTHOR(DRV_PROJECT);
1950 MODULE_VERSION(DRV_VERSION);
1951 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1952 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1953 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1954 MODULE_LICENSE("GPL");
1956 static struct pci_driver rt2500pci_driver = {
1957 .name = KBUILD_MODNAME,
1958 .id_table = rt2500pci_device_table,
1959 .probe = rt2x00pci_probe,
1960 .remove = __devexit_p(rt2x00pci_remove),
1961 .suspend = rt2x00pci_suspend,
1962 .resume = rt2x00pci_resume,
1965 static int __init rt2500pci_init(void)
1967 return pci_register_driver(&rt2500pci_driver);
1970 static void __exit rt2500pci_exit(void)
1972 pci_unregister_driver(&rt2500pci_driver);
1975 module_init(rt2500pci_init);
1976 module_exit(rt2500pci_exit);