Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6] / sound / pci / vx222 / vx222_ops.c
1 /*
2  * Driver for Digigram VX222 V2/Mic soundcards
3  *
4  * VX222-specific low-level routines
5  *
6  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/firmware.h>
26 #include <linux/mutex.h>
27
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <asm/io.h>
32 #include "vx222.h"
33
34
35 static int vx2_reg_offset[VX_REG_MAX] = {
36         [VX_ICR]    = 0x00,
37         [VX_CVR]    = 0x04,
38         [VX_ISR]    = 0x08,
39         [VX_IVR]    = 0x0c,
40         [VX_RXH]    = 0x14,
41         [VX_RXM]    = 0x18,
42         [VX_RXL]    = 0x1c,
43         [VX_DMA]    = 0x10,
44         [VX_CDSP]   = 0x20,
45         [VX_CFG]    = 0x24,
46         [VX_RUER]   = 0x28,
47         [VX_DATA]   = 0x2c,
48         [VX_STATUS] = 0x30,
49         [VX_LOFREQ] = 0x34,
50         [VX_HIFREQ] = 0x38,
51         [VX_CSUER]  = 0x3c,
52         [VX_SELMIC] = 0x40,
53         [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
54         [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
55         [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
56         [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
57         [VX_CNTRL]  = 0x50,             // VX_CNTRL_REGISTER_OFFSET
58         [VX_GPIOC]  = 0x54,             // VX_GPIOC (new with PLX9030)
59 };
60
61 static int vx2_reg_index[VX_REG_MAX] = {
62         [VX_ICR]        = 1,
63         [VX_CVR]        = 1,
64         [VX_ISR]        = 1,
65         [VX_IVR]        = 1,
66         [VX_RXH]        = 1,
67         [VX_RXM]        = 1,
68         [VX_RXL]        = 1,
69         [VX_DMA]        = 1,
70         [VX_CDSP]       = 1,
71         [VX_CFG]        = 1,
72         [VX_RUER]       = 1,
73         [VX_DATA]       = 1,
74         [VX_STATUS]     = 1,
75         [VX_LOFREQ]     = 1,
76         [VX_HIFREQ]     = 1,
77         [VX_CSUER]      = 1,
78         [VX_SELMIC]     = 1,
79         [VX_COMPOT]     = 1,
80         [VX_SCOMPR]     = 1,
81         [VX_GLIMIT]     = 1,
82         [VX_INTCSR]     = 0,    /* on the PLX */
83         [VX_CNTRL]      = 0,    /* on the PLX */
84         [VX_GPIOC]      = 0,    /* on the PLX */
85 };
86
87 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
88 {
89         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
90         return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
91 }
92
93 /**
94  * snd_vx_inb - read a byte from the register
95  * @offset: register enum
96  */
97 static unsigned char vx2_inb(struct vx_core *chip, int offset)
98 {
99         return inb(vx2_reg_addr(chip, offset));
100 }
101
102 /**
103  * snd_vx_outb - write a byte on the register
104  * @offset: the register offset
105  * @val: the value to write
106  */
107 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
108 {
109         outb(val, vx2_reg_addr(chip, offset));
110         //printk("outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
111 }
112
113 /**
114  * snd_vx_inl - read a 32bit word from the register
115  * @offset: register enum
116  */
117 static unsigned int vx2_inl(struct vx_core *chip, int offset)
118 {
119         return inl(vx2_reg_addr(chip, offset));
120 }
121
122 /**
123  * snd_vx_outl - write a 32bit word on the register
124  * @offset: the register enum
125  * @val: the value to write
126  */
127 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
128 {
129         // printk("outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
130         outl(val, vx2_reg_addr(chip, offset));
131 }
132
133 /*
134  * redefine macros to call directly
135  */
136 #undef vx_inb
137 #define vx_inb(chip,reg)        vx2_inb((struct vx_core*)(chip), VX_##reg)
138 #undef vx_outb
139 #define vx_outb(chip,reg,val)   vx2_outb((struct vx_core*)(chip), VX_##reg, val)
140 #undef vx_inl
141 #define vx_inl(chip,reg)        vx2_inl((struct vx_core*)(chip), VX_##reg)
142 #undef vx_outl
143 #define vx_outl(chip,reg,val)   vx2_outl((struct vx_core*)(chip), VX_##reg, val)
144
145
146 /*
147  * vx_reset_dsp - reset the DSP
148  */
149
150 #define XX_DSP_RESET_WAIT_TIME          2       /* ms */
151
152 static void vx2_reset_dsp(struct vx_core *_chip)
153 {
154         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
155
156         /* set the reset dsp bit to 0 */
157         vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
158
159         mdelay(XX_DSP_RESET_WAIT_TIME);
160
161         chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
162         /* set the reset dsp bit to 1 */
163         vx_outl(chip, CDSP, chip->regCDSP);
164 }
165
166
167 static int vx2_test_xilinx(struct vx_core *_chip)
168 {
169         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
170         unsigned int data;
171
172         snd_printdd("testing xilinx...\n");
173         /* This test uses several write/read sequences on TEST0 and TEST1 bits
174          * to figure out whever or not the xilinx was correctly loaded
175          */
176
177         /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
178         vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
179         vx_inl(chip, ISR);
180         data = vx_inl(chip, STATUS);
181         if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
182                 snd_printdd("bad!\n");
183                 return -ENODEV;
184         }
185
186         /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
187         vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
188         vx_inl(chip, ISR);
189         data = vx_inl(chip, STATUS);
190         if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
191                 snd_printdd("bad! #2\n");
192                 return -ENODEV;
193         }
194
195         if (_chip->type == VX_TYPE_BOARD) {
196                 /* not implemented on VX_2_BOARDS */
197                 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
198                 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
199                 vx_inl(chip, ISR);
200                 data = vx_inl(chip, STATUS);
201                 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
202                         snd_printdd("bad! #3\n");
203                         return -ENODEV;
204                 }
205
206                 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
207                 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
208                 vx_inl(chip, ISR);
209                 data = vx_inl(chip, STATUS);
210                 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
211                         snd_printdd("bad! #4\n");
212                         return -ENODEV;
213                 }
214         }
215         snd_printdd("ok, xilinx fine.\n");
216         return 0;
217 }
218
219
220 /**
221  * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
222  * @do_write: 0 = read, 1 = set up for DMA write
223  */
224 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
225 {
226         /* Interrupt mode and HREQ pin enabled for host transmit data transfers
227          * (in case of the use of the pseudo-dma facility).
228          */
229         vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
230
231         /* Reset the pseudo-dma register (in case of the use of the
232          * pseudo-dma facility).
233          */
234         vx_outl(chip, RESET_DMA, 0);
235 }
236
237 /*
238  * vx_release_pseudo_dma - disable the pseudo-DMA mode
239  */
240 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
241 {
242         /* HREQ pin disabled. */
243         vx_outl(chip, ICR, 0);
244 }
245
246
247
248 /* pseudo-dma write */
249 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
250                           struct vx_pipe *pipe, int count)
251 {
252         unsigned long port = vx2_reg_addr(chip, VX_DMA);
253         int offset = pipe->hw_ptr;
254         u32 *addr = (u32 *)(runtime->dma_area + offset);
255
256         if (snd_BUG_ON(count % 4))
257                 return;
258
259         vx2_setup_pseudo_dma(chip, 1);
260
261         /* Transfer using pseudo-dma.
262          */
263         if (offset + count > pipe->buffer_bytes) {
264                 int length = pipe->buffer_bytes - offset;
265                 count -= length;
266                 length >>= 2; /* in 32bit words */
267                 /* Transfer using pseudo-dma. */
268                 while (length-- > 0) {
269                         outl(cpu_to_le32(*addr), port);
270                         addr++;
271                 }
272                 addr = (u32 *)runtime->dma_area;
273                 pipe->hw_ptr = 0;
274         }
275         pipe->hw_ptr += count;
276         count >>= 2; /* in 32bit words */
277         /* Transfer using pseudo-dma. */
278         while (count-- > 0) {
279                 outl(cpu_to_le32(*addr), port);
280                 addr++;
281         }
282
283         vx2_release_pseudo_dma(chip);
284 }
285
286
287 /* pseudo dma read */
288 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
289                          struct vx_pipe *pipe, int count)
290 {
291         int offset = pipe->hw_ptr;
292         u32 *addr = (u32 *)(runtime->dma_area + offset);
293         unsigned long port = vx2_reg_addr(chip, VX_DMA);
294
295         if (snd_BUG_ON(count % 4))
296                 return;
297
298         vx2_setup_pseudo_dma(chip, 0);
299         /* Transfer using pseudo-dma.
300          */
301         if (offset + count > pipe->buffer_bytes) {
302                 int length = pipe->buffer_bytes - offset;
303                 count -= length;
304                 length >>= 2; /* in 32bit words */
305                 /* Transfer using pseudo-dma. */
306                 while (length-- > 0)
307                         *addr++ = le32_to_cpu(inl(port));
308                 addr = (u32 *)runtime->dma_area;
309                 pipe->hw_ptr = 0;
310         }
311         pipe->hw_ptr += count;
312         count >>= 2; /* in 32bit words */
313         /* Transfer using pseudo-dma. */
314         while (count-- > 0)
315                 *addr++ = le32_to_cpu(inl(port));
316
317         vx2_release_pseudo_dma(chip);
318 }
319
320 #define VX_XILINX_RESET_MASK        0x40000000
321 #define VX_USERBIT0_MASK            0x00000004
322 #define VX_USERBIT1_MASK            0x00000020
323 #define VX_CNTRL_REGISTER_VALUE     0x00172012
324
325 /*
326  * transfer counts bits to PLX
327  */
328 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
329 {
330         unsigned int i;
331
332         for (i = 0; i < counts; i++) {
333                 unsigned int val;
334
335                 /* set the clock bit to 0. */
336                 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
337                 vx2_outl(chip, port, val);
338                 vx2_inl(chip, port);
339                 udelay(1);
340
341                 if (data & (1 << i))
342                         val |= VX_USERBIT1_MASK;
343                 else
344                         val &= ~VX_USERBIT1_MASK;
345                 vx2_outl(chip, port, val);
346                 vx2_inl(chip, port);
347
348                 /* set the clock bit to 1. */
349                 val |= VX_USERBIT0_MASK;
350                 vx2_outl(chip, port, val);
351                 vx2_inl(chip, port);
352                 udelay(1);
353         }
354         return 0;
355 }
356
357 /*
358  * load the xilinx image
359  */
360 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
361 {
362         unsigned int i;
363         unsigned int port;
364         const unsigned char *image;
365
366         /* XILINX reset (wait at least 1 milisecond between reset on and off). */
367         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
368         vx_inl(chip, CNTRL);
369         msleep(10);
370         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
371         vx_inl(chip, CNTRL);
372         msleep(10);
373
374         if (chip->type == VX_TYPE_BOARD)
375                 port = VX_CNTRL;
376         else
377                 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
378
379         image = xilinx->data;
380         for (i = 0; i < xilinx->size; i++, image++) {
381                 if (put_xilinx_data(chip, port, 8, *image) < 0)
382                         return -EINVAL;
383                 /* don't take too much time in this loop... */
384                 cond_resched();
385         }
386         put_xilinx_data(chip, port, 4, 0xff); /* end signature */
387
388         msleep(200);
389
390         /* test after loading (is buggy with VX222) */
391         if (chip->type != VX_TYPE_BOARD) {
392                 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
393                 i = vx_inl(chip, GPIOC);
394                 if (i & 0x0100)
395                         return 0;
396                 snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
397                 return -EINVAL;
398         }
399
400         return 0;
401 }
402
403         
404 /*
405  * load the boot/dsp images
406  */
407 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
408 {
409         int err;
410
411         switch (index) {
412         case 1:
413                 /* xilinx image */
414                 if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
415                         return err;
416                 if ((err = vx2_test_xilinx(vx)) < 0)
417                         return err;
418                 return 0;
419         case 2:
420                 /* DSP boot */
421                 return snd_vx_dsp_boot(vx, dsp);
422         case 3:
423                 /* DSP image */
424                 return snd_vx_dsp_load(vx, dsp);
425         default:
426                 snd_BUG();
427                 return -EINVAL;
428         }
429 }
430
431
432 /*
433  * vx_test_and_ack - test and acknowledge interrupt
434  *
435  * called from irq hander, too
436  *
437  * spinlock held!
438  */
439 static int vx2_test_and_ack(struct vx_core *chip)
440 {
441         /* not booted yet? */
442         if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
443                 return -ENXIO;
444
445         if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
446                 return -EIO;
447         
448         /* ok, interrupts generated, now ack it */
449         /* set ACQUIT bit up and down */
450         vx_outl(chip, STATUS, 0);
451         /* useless read just to spend some time and maintain
452          * the ACQUIT signal up for a while ( a bus cycle )
453          */
454         vx_inl(chip, STATUS);
455         /* ack */
456         vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
457         /* useless read just to spend some time and maintain
458          * the ACQUIT signal up for a while ( a bus cycle ) */
459         vx_inl(chip, STATUS);
460         /* clear */
461         vx_outl(chip, STATUS, 0);
462
463         return 0;
464 }
465
466
467 /*
468  * vx_validate_irq - enable/disable IRQ
469  */
470 static void vx2_validate_irq(struct vx_core *_chip, int enable)
471 {
472         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
473
474         /* Set the interrupt enable bit to 1 in CDSP register */
475         if (enable) {
476                 /* Set the PCI interrupt enable bit to 1.*/
477                 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
478                 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
479         } else {
480                 /* Set the PCI interrupt enable bit to 0. */
481                 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
482                 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
483         }
484         vx_outl(chip, CDSP, chip->regCDSP);
485 }
486
487
488 /*
489  * write an AKM codec data (24bit)
490  */
491 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
492 {
493         unsigned int i;
494
495         vx_inl(chip, HIFREQ);
496
497         /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
498         for (i = 0; i < 24; i++, data <<= 1)
499                 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
500         /* Terminate access to codec registers */
501         vx_inl(chip, RUER);
502 }
503
504
505 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
506 #define AKM_CODEC_RESET_ON_CMD      0xA100
507 #define AKM_CODEC_RESET_OFF_CMD     0xA103
508 #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
509 #define AKM_CODEC_MUTE_CMD          0xA38D
510 #define AKM_CODEC_UNMUTE_CMD        0xA30D
511 #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
512 #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
513
514 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
515     0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
516     0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
517     0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
518     0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
519     0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
520     0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
521     0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
522     0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
523     0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
524     0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
525     0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
526     0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
527     0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
528     0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
529     0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
530     0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
531     0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
532     0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
533     0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
534     0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
535     0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
536     0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
537     0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
538     0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
539     0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
540     0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
541     0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
542     0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
543     0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
544     0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
545     0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
546     0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
547     0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
548     0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
549     0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
550     0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
551     0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
552     0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
553     0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
554     0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
555     0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
556     0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
557     0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
558     0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
559     0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
560     0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
561     0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
562     0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
563     0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
564     0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
565     0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
566     0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
567     0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
568     0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
569     0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
570     0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
571     0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
572     0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
573     0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
574     0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
575     0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
576     0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
577     0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
578     0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
579     0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
580     0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
581     0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
582     0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
583     0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
584     0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
585     0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
586     0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
587     0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
588     0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
589     0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
590     0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
591     0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
592     0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
593     0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
594     0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
595     0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
596     0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
597     0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
598     0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
599     0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
600     0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
601     0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
602     0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
603     0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
604     0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
605     0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
606     0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
607     0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
608     0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
609     0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
610     0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
611     0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
612     0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
613     0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
614     0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
615     0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
616     0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
617     0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
618     0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
619     0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
620     0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
621     0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
622     0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
623     0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
624     0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
625     0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
626     0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
627     0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
628     0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
629     0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
630     0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
631     0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
632     0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
633     0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
634     0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
635     0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
636     0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
637     0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
638     0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
639     0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
640     0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
641     0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
642     0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
643     0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
644     0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
645     0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
646     0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
647     0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
648     0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
649     0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
650     0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
651     0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
652     0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
653     0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
654     0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
655     0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
656     0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
657     0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
658     0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
659     0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
660     0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
661     0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
662     0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
663
664 /*
665  * pseudo-codec write entry
666  */
667 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
668 {
669         unsigned int val;
670
671         if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
672                 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
673                 return;
674         }
675
676         /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
677            a look up table, as there is no linear matching between the driver codec values
678            and the real dBu value
679         */
680         if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
681                 return;
682
683         switch (reg) {
684         case XX_CODEC_LEVEL_LEFT_REGISTER:
685                 val = AKM_CODEC_LEFT_LEVEL_CMD;
686                 break;
687         case XX_CODEC_LEVEL_RIGHT_REGISTER:
688                 val = AKM_CODEC_RIGHT_LEVEL_CMD;
689                 break;
690         default:
691                 snd_BUG();
692                 return;
693         }
694         val |= vx2_akm_gains_lut[data];
695
696         vx2_write_codec_reg(chip, val);
697 }
698
699
700 /*
701  * write codec bit for old VX222 board
702  */
703 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
704 {
705         int i;
706
707         /* activate access to codec registers */
708         vx_inl(chip, HIFREQ);
709
710         for (i = 0; i < 24; i++, data <<= 1)
711                 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
712
713         /* Terminate access to codec registers */
714         vx_inl(chip, RUER);
715 }
716
717
718 /*
719  * reset codec bit
720  */
721 static void vx2_reset_codec(struct vx_core *_chip)
722 {
723         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
724
725         /* Set the reset CODEC bit to 0. */
726         vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
727         vx_inl(chip, CDSP);
728         msleep(10);
729         /* Set the reset CODEC bit to 1. */
730         chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
731         vx_outl(chip, CDSP, chip->regCDSP);
732         vx_inl(chip, CDSP);
733         if (_chip->type == VX_TYPE_BOARD) {
734                 msleep(1);
735                 return;
736         }
737
738         msleep(5);  /* additionnel wait time for AKM's */
739
740         vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
741         
742         vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
743         vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
744         vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
745
746         if (_chip->type == VX_TYPE_MIC) {
747                 /* set up the micro input selector */
748                 chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
749                         MICRO_SELECT_PREAMPLI_G_0 |
750                         MICRO_SELECT_NOISE_T_52DB;
751
752                 /* reset phantom power supply */
753                 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
754
755                 vx_outl(_chip, SELMIC, chip->regSELMIC);
756         }
757 }
758
759
760 /*
761  * change the audio source
762  */
763 static void vx2_change_audio_source(struct vx_core *_chip, int src)
764 {
765         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
766
767         switch (src) {
768         case VX_AUDIO_SRC_DIGITAL:
769                 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
770                 break;
771         default:
772                 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
773                 break;
774         }
775         vx_outl(chip, CFG, chip->regCFG);
776 }
777
778
779 /*
780  * set the clock source
781  */
782 static void vx2_set_clock_source(struct vx_core *_chip, int source)
783 {
784         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
785
786         if (source == INTERNAL_QUARTZ)
787                 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
788         else
789                 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
790         vx_outl(chip, CFG, chip->regCFG);
791 }
792
793 /*
794  * reset the board
795  */
796 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
797 {
798         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
799
800         /* initialize the register values */
801         chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
802         chip->regCFG = 0;
803 }
804
805
806
807 /*
808  * input level controls for VX222 Mic
809  */
810
811 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
812  * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
813  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
814  */
815 #define V2_MICRO_LEVEL_RANGE        (318 - 255)
816
817 static void vx2_set_input_level(struct snd_vx222 *chip)
818 {
819         int i, miclevel, preamp;
820         unsigned int data;
821
822         miclevel = chip->mic_level;
823         miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
824         preamp = 0;
825         while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
826                 preamp++;       /* raise pre ampli + 18dB */
827                 miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
828         }
829         if (snd_BUG_ON(preamp >= 4))
830                 return;
831
832         /* set pre-amp level */
833         chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
834         chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
835         vx_outl(chip, SELMIC, chip->regSELMIC);
836
837         data = (unsigned int)miclevel << 16 |
838                 (unsigned int)chip->input_level[1] << 8 |
839                 (unsigned int)chip->input_level[0];
840         vx_inl(chip, DATA); /* Activate input level programming */
841
842         /* We have to send 32 bits (4 x 8 bits) */
843         for (i = 0; i < 32; i++, data <<= 1)
844                 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
845
846         vx_inl(chip, RUER); /* Terminate input level programming */
847 }
848
849
850 #define MIC_LEVEL_MAX   0xff
851
852 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
853
854 /*
855  * controls API for input levels
856  */
857
858 /* input levels */
859 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
860 {
861         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
862         uinfo->count = 2;
863         uinfo->value.integer.min = 0;
864         uinfo->value.integer.max = MIC_LEVEL_MAX;
865         return 0;
866 }
867
868 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
869 {
870         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
871         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
872         mutex_lock(&_chip->mixer_mutex);
873         ucontrol->value.integer.value[0] = chip->input_level[0];
874         ucontrol->value.integer.value[1] = chip->input_level[1];
875         mutex_unlock(&_chip->mixer_mutex);
876         return 0;
877 }
878
879 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
880 {
881         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
882         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
883         if (ucontrol->value.integer.value[0] < 0 ||
884             ucontrol->value.integer.value[0] < MIC_LEVEL_MAX)
885                 return -EINVAL;
886         if (ucontrol->value.integer.value[1] < 0 ||
887             ucontrol->value.integer.value[1] < MIC_LEVEL_MAX)
888                 return -EINVAL;
889         mutex_lock(&_chip->mixer_mutex);
890         if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
891             chip->input_level[1] != ucontrol->value.integer.value[1]) {
892                 chip->input_level[0] = ucontrol->value.integer.value[0];
893                 chip->input_level[1] = ucontrol->value.integer.value[1];
894                 vx2_set_input_level(chip);
895                 mutex_unlock(&_chip->mixer_mutex);
896                 return 1;
897         }
898         mutex_unlock(&_chip->mixer_mutex);
899         return 0;
900 }
901
902 /* mic level */
903 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
904 {
905         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
906         uinfo->count = 1;
907         uinfo->value.integer.min = 0;
908         uinfo->value.integer.max = MIC_LEVEL_MAX;
909         return 0;
910 }
911
912 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
913 {
914         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
915         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
916         ucontrol->value.integer.value[0] = chip->mic_level;
917         return 0;
918 }
919
920 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
921 {
922         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
923         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
924         if (ucontrol->value.integer.value[0] < 0 ||
925             ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
926                 return -EINVAL;
927         mutex_lock(&_chip->mixer_mutex);
928         if (chip->mic_level != ucontrol->value.integer.value[0]) {
929                 chip->mic_level = ucontrol->value.integer.value[0];
930                 vx2_set_input_level(chip);
931                 mutex_unlock(&_chip->mixer_mutex);
932                 return 1;
933         }
934         mutex_unlock(&_chip->mixer_mutex);
935         return 0;
936 }
937
938 static struct snd_kcontrol_new vx_control_input_level = {
939         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
940         .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
941                          SNDRV_CTL_ELEM_ACCESS_TLV_READ),
942         .name =         "Capture Volume",
943         .info =         vx_input_level_info,
944         .get =          vx_input_level_get,
945         .put =          vx_input_level_put,
946         .tlv = { .p = db_scale_mic },
947 };
948
949 static struct snd_kcontrol_new vx_control_mic_level = {
950         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
951         .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
952                          SNDRV_CTL_ELEM_ACCESS_TLV_READ),
953         .name =         "Mic Capture Volume",
954         .info =         vx_mic_level_info,
955         .get =          vx_mic_level_get,
956         .put =          vx_mic_level_put,
957         .tlv = { .p = db_scale_mic },
958 };
959
960 /*
961  * FIXME: compressor/limiter implementation is missing yet...
962  */
963
964 static int vx2_add_mic_controls(struct vx_core *_chip)
965 {
966         struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
967         int err;
968
969         if (_chip->type != VX_TYPE_MIC)
970                 return 0;
971
972         /* mute input levels */
973         chip->input_level[0] = chip->input_level[1] = 0;
974         chip->mic_level = 0;
975         vx2_set_input_level(chip);
976
977         /* controls */
978         if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
979                 return err;
980         if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
981                 return err;
982
983         return 0;
984 }
985
986
987 /*
988  * callbacks
989  */
990 struct snd_vx_ops vx222_ops = {
991         .in8 = vx2_inb,
992         .in32 = vx2_inl,
993         .out8 = vx2_outb,
994         .out32 = vx2_outl,
995         .test_and_ack = vx2_test_and_ack,
996         .validate_irq = vx2_validate_irq,
997         .akm_write = vx2_write_akm,
998         .reset_codec = vx2_reset_codec,
999         .change_audio_source = vx2_change_audio_source,
1000         .set_clock_source = vx2_set_clock_source,
1001         .load_dsp = vx2_load_dsp,
1002         .reset_dsp = vx2_reset_dsp,
1003         .reset_board = vx2_reset_board,
1004         .dma_write = vx2_dma_write,
1005         .dma_read = vx2_dma_read,
1006         .add_controls = vx2_add_mic_controls,
1007 };
1008
1009 /* for old VX222 board */
1010 struct snd_vx_ops vx222_old_ops = {
1011         .in8 = vx2_inb,
1012         .in32 = vx2_inl,
1013         .out8 = vx2_outb,
1014         .out32 = vx2_outl,
1015         .test_and_ack = vx2_test_and_ack,
1016         .validate_irq = vx2_validate_irq,
1017         .write_codec = vx2_old_write_codec_bit,
1018         .reset_codec = vx2_reset_codec,
1019         .change_audio_source = vx2_change_audio_source,
1020         .set_clock_source = vx2_set_clock_source,
1021         .load_dsp = vx2_load_dsp,
1022         .reset_dsp = vx2_reset_dsp,
1023         .reset_board = vx2_reset_board,
1024         .dma_write = vx2_dma_write,
1025         .dma_read = vx2_dma_read,
1026 };
1027