2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
5 #include <linux/time.h>
6 #include <linux/reiserfs_fs.h>
7 #include <linux/reiserfs_acl.h>
8 #include <linux/reiserfs_xattr.h>
9 #include <linux/smp_lock.h>
10 #include <asm/uaccess.h>
11 #include <linux/pagemap.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/blkdev.h>
15 #include <linux/buffer_head.h>
16 #include <linux/quotaops.h>
19 ** We pack the tails of files on file close, not at the time they are written.
20 ** This implies an unnecessary copy of the tail and an unnecessary indirect item
21 ** insertion/balancing, for files that are written in one write.
22 ** It avoids unnecessary tail packings (balances) for files that are written in
23 ** multiple writes and are small enough to have tails.
25 ** file_release is called by the VFS layer when the file is closed. If
26 ** this is the last open file descriptor, and the file
27 ** small enough to have a tail, and the tail is currently in an
28 ** unformatted node, the tail is converted back into a direct item.
30 ** We use reiserfs_truncate_file to pack the tail, since it already has
31 ** all the conditions coded.
33 static int reiserfs_file_release(struct inode *inode, struct file *filp)
36 struct reiserfs_transaction_handle th;
38 int jbegin_failure = 0;
40 if (!S_ISREG(inode->i_mode))
43 /* fast out for when nothing needs to be done */
44 if ((atomic_read(&inode->i_count) > 1 ||
45 !(REISERFS_I(inode)->i_flags & i_pack_on_close_mask) ||
46 !tail_has_to_be_packed(inode)) &&
47 REISERFS_I(inode)->i_prealloc_count <= 0) {
51 reiserfs_write_lock(inode->i_sb);
53 /* freeing preallocation only involves relogging blocks that
54 * are already in the current transaction. preallocation gets
55 * freed at the end of each transaction, so it is impossible for
56 * us to log any additional blocks (including quota blocks)
58 err = journal_begin(&th, inode->i_sb, 1);
60 /* uh oh, we can't allow the inode to go away while there
61 * is still preallocation blocks pending. Try to join the
65 err = journal_join_abort(&th, inode->i_sb, 1);
68 /* hmpf, our choices here aren't good. We can pin the inode
69 * which will disallow unmount from every happening, we can
70 * do nothing, which will corrupt random memory on unmount,
71 * or we can forcibly remove the file from the preallocation
72 * list, which will leak blocks on disk. Lets pin the inode
73 * and let the admin know what is going on.
76 reiserfs_warning(inode->i_sb,
77 "pinning inode %lu because the "
78 "preallocation can't be freed");
82 reiserfs_update_inode_transaction(inode);
84 #ifdef REISERFS_PREALLOCATE
85 reiserfs_discard_prealloc(&th, inode);
87 err = journal_end(&th, inode->i_sb, 1);
89 /* copy back the error code from journal_begin */
93 if (!err && atomic_read(&inode->i_count) <= 1 &&
94 (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) &&
95 tail_has_to_be_packed(inode)) {
96 /* if regular file is released by last holder and it has been
97 appended (we append by unformatted node only) or its direct
98 item(s) had to be converted, then it may have to be
99 indirect2direct converted */
100 err = reiserfs_truncate_file(inode, 0);
104 reiserfs_write_unlock(inode->i_sb);
108 static void reiserfs_vfs_truncate_file(struct inode *inode)
110 reiserfs_truncate_file(inode, 1);
113 /* Sync a reiserfs file. */
116 * FIXME: sync_mapping_buffers() never has anything to sync. Can
120 static int reiserfs_sync_file(struct file *p_s_filp,
121 struct dentry *p_s_dentry, int datasync)
123 struct inode *p_s_inode = p_s_dentry->d_inode;
127 if (!S_ISREG(p_s_inode->i_mode))
129 n_err = sync_mapping_buffers(p_s_inode->i_mapping);
130 reiserfs_write_lock(p_s_inode->i_sb);
131 barrier_done = reiserfs_commit_for_inode(p_s_inode);
132 reiserfs_write_unlock(p_s_inode->i_sb);
133 if (barrier_done != 1)
134 blkdev_issue_flush(p_s_inode->i_sb->s_bdev, NULL);
135 if (barrier_done < 0)
137 return (n_err < 0) ? -EIO : 0;
140 /* I really do not want to play with memory shortage right now, so
141 to simplify the code, we are not going to write more than this much pages at
142 a time. This still should considerably improve performance compared to 4k
143 at a time case. This is 32 pages of 4k size. */
144 #define REISERFS_WRITE_PAGES_AT_A_TIME (128 * 1024) / PAGE_CACHE_SIZE
146 /* Allocates blocks for a file to fulfil write request.
147 Maps all unmapped but prepared pages from the list.
148 Updates metadata with newly allocated blocknumbers as needed */
149 static int reiserfs_allocate_blocks_for_region(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode we work with */
150 loff_t pos, /* Writing position */
151 int num_pages, /* number of pages write going
153 int write_bytes, /* amount of bytes to write */
154 struct page **prepared_pages, /* array of
157 int blocks_to_allocate /* Amount of blocks we
159 fit the data into file
163 struct cpu_key key; // cpu key of item that we are going to deal with
164 struct item_head *ih; // pointer to item head that we are going to deal with
165 struct buffer_head *bh; // Buffer head that contains items that we are going to deal with
166 __le32 *item; // pointer to item we are going to deal with
167 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
168 b_blocknr_t *allocated_blocks; // Pointer to a place where allocated blocknumbers would be stored.
169 reiserfs_blocknr_hint_t hint; // hint structure for block allocator.
170 size_t res; // return value of various functions that we call.
171 int curr_block; // current block used to keep track of unmapped blocks.
172 int i; // loop counter
173 int itempos; // position in item
174 unsigned int from = (pos & (PAGE_CACHE_SIZE - 1)); // writing position in
176 unsigned int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1; /* last modified byte offset in last page */
177 __u64 hole_size; // amount of blocks for a file hole, if it needed to be created.
178 int modifying_this_item = 0; // Flag for items traversal code to keep track
179 // of the fact that we already prepared
180 // current block for journal
181 int will_prealloc = 0;
182 RFALSE(!blocks_to_allocate,
183 "green-9004: tried to allocate zero blocks?");
185 /* only preallocate if this is a small write */
186 if (REISERFS_I(inode)->i_prealloc_count ||
187 (!(write_bytes & (inode->i_sb->s_blocksize - 1)) &&
189 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize))
191 REISERFS_SB(inode->i_sb)->s_alloc_options.preallocsize;
193 allocated_blocks = kmalloc((blocks_to_allocate + will_prealloc) *
194 sizeof(b_blocknr_t), GFP_NOFS);
196 /* First we compose a key to point at the writing position, we want to do
197 that outside of any locking region. */
198 make_cpu_key(&key, inode, pos + 1, TYPE_ANY, 3 /*key length */ );
200 /* If we came here, it means we absolutely need to open a transaction,
201 since we need to allocate some blocks */
202 reiserfs_write_lock(inode->i_sb); // Journaling stuff and we need that.
203 res = journal_begin(th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb)); // Wish I know if this number enough
206 reiserfs_update_inode_transaction(inode);
208 /* Look for the in-tree position of our write, need path for block allocator */
209 res = search_for_position_by_key(inode->i_sb, &key, &path);
210 if (res == IO_ERROR) {
215 /* Allocate blocks */
216 /* First fill in "hint" structure for block allocator */
217 hint.th = th; // transaction handle.
218 hint.path = &path; // Path, so that block allocator can determine packing locality or whatever it needs to determine.
219 hint.inode = inode; // Inode is needed by block allocator too.
220 hint.search_start = 0; // We have no hint on where to search free blocks for block allocator.
221 hint.key = key.on_disk_key; // on disk key of file.
222 hint.block = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9); // Number of disk blocks this file occupies already.
223 hint.formatted_node = 0; // We are allocating blocks for unformatted node.
224 hint.preallocate = will_prealloc;
226 /* Call block allocator to allocate blocks */
228 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
229 blocks_to_allocate, blocks_to_allocate);
230 if (res != CARRY_ON) {
231 if (res == NO_DISK_SPACE) {
232 /* We flush the transaction in case of no space. This way some
233 blocks might become free */
234 SB_JOURNAL(inode->i_sb)->j_must_wait = 1;
235 res = restart_transaction(th, inode, &path);
239 /* We might have scheduled, so search again */
241 search_for_position_by_key(inode->i_sb, &key,
243 if (res == IO_ERROR) {
248 /* update changed info for hint structure. */
250 reiserfs_allocate_blocknrs(&hint, allocated_blocks,
253 if (res != CARRY_ON) {
265 // Too bad, I have not found any way to convert a given region from
266 // cpu format to little endian format
269 for (i = 0; i < blocks_to_allocate; i++)
270 allocated_blocks[i] = cpu_to_le32(allocated_blocks[i]);
274 /* Blocks allocating well might have scheduled and tree might have changed,
275 let's search the tree again */
276 /* find where in the tree our write should go */
277 res = search_for_position_by_key(inode->i_sb, &key, &path);
278 if (res == IO_ERROR) {
280 goto error_exit_free_blocks;
283 bh = get_last_bh(&path); // Get a bufferhead for last element in path.
284 ih = get_ih(&path); // Get a pointer to last item head in path.
285 item = get_item(&path); // Get a pointer to last item in path
287 /* Let's see what we have found */
288 if (res != POSITION_FOUND) { /* position not found, this means that we
289 might need to append file with holes
291 // Since we are writing past the file's end, we need to find out if
292 // there is a hole that needs to be inserted before our writing
293 // position, and how many blocks it is going to cover (we need to
294 // populate pointers to file blocks representing the hole with zeros)
299 * if ih is stat data, its offset is 0 and we don't want to
300 * add 1 to pos in the hole_size calculation
302 if (is_statdata_le_ih(ih))
304 hole_size = (pos + item_offset -
306 (get_inode_item_key_version(inode),
307 &(ih->ih_key)) + op_bytes_number(ih,
311 >> inode->i_sb->s_blocksize_bits;
315 int to_paste = min_t(__u64, hole_size, MAX_ITEM_LEN(inode->i_sb->s_blocksize) / UNFM_P_SIZE); // How much data to insert first time.
316 /* area filled with zeroes, to supply as list of zero blocknumbers
317 We allocate it outside of loop just in case loop would spin for
318 several iterations. */
319 char *zeros = kmalloc(to_paste * UNFM_P_SIZE, GFP_ATOMIC); // We cannot insert more than MAX_ITEM_LEN bytes anyway.
322 goto error_exit_free_blocks;
324 memset(zeros, 0, to_paste * UNFM_P_SIZE);
327 min_t(__u64, hole_size,
328 MAX_ITEM_LEN(inode->i_sb->
331 if (is_indirect_le_ih(ih)) {
332 /* Ok, there is existing indirect item already. Need to append it */
333 /* Calculate position past inserted item */
334 make_cpu_key(&key, inode,
336 (get_inode_item_key_version
345 reiserfs_paste_into_item(th, &path,
355 goto error_exit_free_blocks;
357 } else if (is_statdata_le_ih(ih)) {
358 /* No existing item, create it */
359 /* item head for new item */
360 struct item_head ins_ih;
362 /* create a key for our new item */
363 make_cpu_key(&key, inode, 1,
366 /* Create new item head for our new item */
367 make_le_item_head(&ins_ih, &key,
372 0 /* free space */ );
374 /* Find where such item should live in the tree */
376 search_item(inode->i_sb, &key,
378 if (res != ITEM_NOT_FOUND) {
379 /* item should not exist, otherwise we have error */
380 if (res != -ENOSPC) {
381 reiserfs_warning(inode->
383 "green-9008: search_by_key (%K) returned %d",
389 goto error_exit_free_blocks;
392 reiserfs_insert_item(th, &path,
397 reiserfs_panic(inode->i_sb,
398 "green-9011: Unexpected key type %K\n",
403 goto error_exit_free_blocks;
405 /* Now we want to check if transaction is too full, and if it is
406 we restart it. This will also free the path. */
407 if (journal_transaction_should_end
408 (th, th->t_blocks_allocated)) {
410 restart_transaction(th, inode,
419 /* Well, need to recalculate path and stuff */
420 set_cpu_key_k_offset(&key,
421 cpu_key_k_offset(&key) +
425 search_for_position_by_key(inode->i_sb,
427 if (res == IO_ERROR) {
430 goto error_exit_free_blocks;
432 bh = get_last_bh(&path);
434 item = get_item(&path);
435 hole_size -= to_paste;
440 // Go through existing indirect items first
441 // replace all zeroes with blocknumbers from list
442 // Note that if no corresponding item was found, by previous search,
443 // it means there are no existing in-tree representation for file area
444 // we are going to overwrite, so there is nothing to scan through for holes.
445 for (curr_block = 0, itempos = path.pos_in_item;
446 curr_block < blocks_to_allocate && res == POSITION_FOUND;) {
449 if (itempos >= ih_item_len(ih) / UNFM_P_SIZE) {
450 /* We run out of data in this indirect item, let's look for another
452 /* First if we are already modifying current item, log it */
453 if (modifying_this_item) {
454 journal_mark_dirty(th, inode->i_sb, bh);
455 modifying_this_item = 0;
457 /* Then set the key to look for a new indirect item (offset of old
458 item is added to old item length */
459 set_cpu_key_k_offset(&key,
461 (get_inode_item_key_version(inode),
466 /* Search ofor position of new key in the tree. */
468 search_for_position_by_key(inode->i_sb, &key,
470 if (res == IO_ERROR) {
472 goto error_exit_free_blocks;
474 bh = get_last_bh(&path);
476 item = get_item(&path);
477 itempos = path.pos_in_item;
478 continue; // loop to check all kinds of conditions and so on.
480 /* Ok, we have correct position in item now, so let's see if it is
481 representing file hole (blocknumber is zero) and fill it if needed */
482 if (!item[itempos]) {
483 /* Ok, a hole. Now we need to check if we already prepared this
484 block to be journaled */
485 while (!modifying_this_item) { // loop until succeed
486 /* Well, this item is not journaled yet, so we must prepare
487 it for journal first, before we can change it */
488 struct item_head tmp_ih; // We copy item head of found item,
489 // here to detect if fs changed under
490 // us while we were preparing for
492 int fs_gen; // We store fs generation here to find if someone
493 // changes fs under our feet
495 copy_item_head(&tmp_ih, ih); // Remember itemhead
496 fs_gen = get_generation(inode->i_sb); // remember fs generation
497 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); // Prepare a buffer within which indirect item is stored for changing.
498 if (fs_changed(fs_gen, inode->i_sb)
499 && item_moved(&tmp_ih, &path)) {
500 // Sigh, fs was changed under us, we need to look for new
501 // location of item we are working with
503 /* unmark prepaerd area as journaled and search for it's
505 reiserfs_restore_prepared_buffer(inode->
509 search_for_position_by_key(inode->
513 if (res == IO_ERROR) {
515 goto error_exit_free_blocks;
517 bh = get_last_bh(&path);
519 item = get_item(&path);
520 itempos = path.pos_in_item;
523 modifying_this_item = 1;
525 item[itempos] = allocated_blocks[curr_block]; // Assign new block
531 if (modifying_this_item) { // We need to log last-accessed block, if it
532 // was modified, but not logged yet.
533 journal_mark_dirty(th, inode->i_sb, bh);
536 if (curr_block < blocks_to_allocate) {
537 // Oh, well need to append to indirect item, or to create indirect item
538 // if there weren't any
539 if (is_indirect_le_ih(ih)) {
540 // Existing indirect item - append. First calculate key for append
541 // position. We do not need to recalculate path as it should
542 // already point to correct place.
543 make_cpu_key(&key, inode,
544 le_key_k_offset(get_inode_item_key_version
548 inode->i_sb->s_blocksize),
551 reiserfs_paste_into_item(th, &path, &key, inode,
552 (char *)(allocated_blocks +
555 (blocks_to_allocate -
558 goto error_exit_free_blocks;
560 } else if (is_statdata_le_ih(ih)) {
561 // Last found item was statdata. That means we need to create indirect item.
562 struct item_head ins_ih; /* itemhead for new item */
564 /* create a key for our new item */
565 make_cpu_key(&key, inode, 1, TYPE_INDIRECT, 3); // Position one,
570 /* Create new item head for our new item */
571 make_le_item_head(&ins_ih, &key, key.version, 1,
573 (blocks_to_allocate -
574 curr_block) * UNFM_P_SIZE,
575 0 /* free space */ );
576 /* Find where such item should live in the tree */
577 res = search_item(inode->i_sb, &key, &path);
578 if (res != ITEM_NOT_FOUND) {
579 /* Well, if we have found such item already, or some error
580 occured, we need to warn user and return error */
581 if (res != -ENOSPC) {
582 reiserfs_warning(inode->i_sb,
583 "green-9009: search_by_key (%K) "
588 goto error_exit_free_blocks;
590 /* Insert item into the tree with the data as its body */
592 reiserfs_insert_item(th, &path, &key, &ins_ih,
594 (char *)(allocated_blocks +
597 reiserfs_panic(inode->i_sb,
598 "green-9010: unexpected item type for key %K\n",
602 // the caller is responsible for closing the transaction
603 // unless we return an error, they are also responsible for logging
608 * cleanup prellocation from previous writes
609 * if this is a partial block write
611 if (write_bytes & (inode->i_sb->s_blocksize - 1))
612 reiserfs_discard_prealloc(th, inode);
613 reiserfs_write_unlock(inode->i_sb);
615 // go through all the pages/buffers and map the buffers to newly allocated
616 // blocks (so that system knows where to write these pages later).
618 for (i = 0; i < num_pages; i++) {
619 struct page *page = prepared_pages[i]; //current page
620 struct buffer_head *head = page_buffers(page); // first buffer for a page
621 int block_start, block_end; // in-page offsets for buffers.
623 if (!page_buffers(page))
624 reiserfs_panic(inode->i_sb,
625 "green-9005: No buffers for prepared page???");
627 /* For each buffer in page */
628 for (bh = head, block_start = 0; bh != head || !block_start;
629 block_start = block_end, bh = bh->b_this_page) {
631 reiserfs_panic(inode->i_sb,
632 "green-9006: Allocated but absent buffer for a page?");
633 block_end = block_start + inode->i_sb->s_blocksize;
634 if (i == 0 && block_end <= from)
635 /* if this buffer is before requested data to map, skip it */
637 if (i == num_pages - 1 && block_start >= to)
638 /* If this buffer is after requested data to map, abort
639 processing of current page */
642 if (!buffer_mapped(bh)) { // Ok, unmapped buffer, need to map it
643 map_bh(bh, inode->i_sb,
644 le32_to_cpu(allocated_blocks
652 RFALSE(curr_block > blocks_to_allocate,
653 "green-9007: Used too many blocks? weird");
655 kfree(allocated_blocks);
658 // Need to deal with transaction here.
659 error_exit_free_blocks:
662 for (i = 0; i < blocks_to_allocate; i++)
663 reiserfs_free_block(th, inode, le32_to_cpu(allocated_blocks[i]),
667 if (th->t_trans_id) {
669 // update any changes we made to blk count
670 reiserfs_update_sd(th, inode);
672 journal_end(th, inode->i_sb,
673 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb));
678 reiserfs_write_unlock(inode->i_sb);
679 kfree(allocated_blocks);
684 /* Unlock pages prepared by reiserfs_prepare_file_region_for_write */
685 static void reiserfs_unprepare_pages(struct page **prepared_pages, /* list of locked pages */
686 size_t num_pages /* amount of pages */ )
688 int i; // loop counter
690 for (i = 0; i < num_pages; i++) {
691 struct page *page = prepared_pages[i];
693 try_to_free_buffers(page);
695 page_cache_release(page);
699 /* This function will copy data from userspace to specified pages within
700 supplied byte range */
701 static int reiserfs_copy_from_user_to_file_region(loff_t pos, /* In-file position */
702 int num_pages, /* Number of pages affected */
703 int write_bytes, /* Amount of bytes to write */
704 struct page **prepared_pages, /* pointer to
708 const char __user * buf /* Pointer to user-supplied
712 long page_fault = 0; // status of copy_from_user.
713 int i; // loop counter.
714 int offset; // offset in page
716 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
718 size_t count = min_t(size_t, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
719 struct page *page = prepared_pages[i]; // Current page we process.
721 fault_in_pages_readable(buf, count);
723 /* Copy data from userspace to the current page */
725 page_fault = __copy_from_user(page_address(page) + offset, buf, count); // Copy the data.
726 /* Flush processor's dcache for this page */
727 flush_dcache_page(page);
730 write_bytes -= count;
733 break; // Was there a fault? abort.
736 return page_fault ? -EFAULT : 0;
739 /* taken fs/buffer.c:__block_commit_write */
740 int reiserfs_commit_page(struct inode *inode, struct page *page,
741 unsigned from, unsigned to)
743 unsigned block_start, block_end;
746 struct buffer_head *bh, *head;
747 unsigned long i_size_index = inode->i_size >> PAGE_CACHE_SHIFT;
749 int logit = reiserfs_file_data_log(inode);
750 struct super_block *s = inode->i_sb;
751 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
752 struct reiserfs_transaction_handle th;
756 blocksize = 1 << inode->i_blkbits;
759 reiserfs_write_lock(s);
760 ret = journal_begin(&th, s, bh_per_page + 1);
762 goto drop_write_lock;
763 reiserfs_update_inode_transaction(inode);
765 for (bh = head = page_buffers(page), block_start = 0;
766 bh != head || !block_start;
767 block_start = block_end, bh = bh->b_this_page) {
769 new = buffer_new(bh);
770 clear_buffer_new(bh);
771 block_end = block_start + blocksize;
772 if (block_end <= from || block_start >= to) {
773 if (!buffer_uptodate(bh))
776 set_buffer_uptodate(bh);
778 reiserfs_prepare_for_journal(s, bh, 1);
779 journal_mark_dirty(&th, s, bh);
780 } else if (!buffer_dirty(bh)) {
781 mark_buffer_dirty(bh);
782 /* do data=ordered on any page past the end
783 * of file and any buffer marked BH_New.
785 if (reiserfs_data_ordered(inode->i_sb) &&
786 (new || page->index >= i_size_index)) {
787 reiserfs_add_ordered_list(inode, bh);
793 ret = journal_end(&th, s, bh_per_page + 1);
795 reiserfs_write_unlock(s);
798 * If this is a partial write which happened to make all buffers
799 * uptodate then we can optimize away a bogus readpage() for
800 * the next read(). Here we 'discover' whether the page went
801 * uptodate as a result of this (potentially partial) write.
804 SetPageUptodate(page);
808 /* Submit pages for write. This was separated from actual file copying
809 because we might want to allocate block numbers in-between.
810 This function assumes that caller will adjust file size to correct value. */
811 static int reiserfs_submit_file_region_for_write(struct reiserfs_transaction_handle *th, struct inode *inode, loff_t pos, /* Writing position offset */
812 size_t num_pages, /* Number of pages to write */
813 size_t write_bytes, /* number of bytes to write */
814 struct page **prepared_pages /* list of pages */
817 int status; // return status of block_commit_write.
818 int retval = 0; // Return value we are going to return.
819 int i; // loop counter
820 int offset; // Writing offset in page.
821 int orig_write_bytes = write_bytes;
824 for (i = 0, offset = (pos & (PAGE_CACHE_SIZE - 1)); i < num_pages;
826 int count = min_t(int, PAGE_CACHE_SIZE - offset, write_bytes); // How much of bytes to write to this page
827 struct page *page = prepared_pages[i]; // Current page we process.
830 reiserfs_commit_page(inode, page, offset, offset + count);
832 retval = status; // To not overcomplicate matters We are going to
833 // submit all the pages even if there was error.
834 // we only remember error status to report it on
836 write_bytes -= count;
838 /* now that we've gotten all the ordered buffers marked dirty,
839 * we can safely update i_size and close any running transaction
841 if (pos + orig_write_bytes > inode->i_size) {
842 inode->i_size = pos + orig_write_bytes; // Set new size
843 /* If the file have grown so much that tail packing is no
844 * longer possible, reset "need to pack" flag */
845 if ((have_large_tails(inode->i_sb) &&
846 inode->i_size > i_block_size(inode) * 4) ||
847 (have_small_tails(inode->i_sb) &&
848 inode->i_size > i_block_size(inode)))
849 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
850 else if ((have_large_tails(inode->i_sb) &&
851 inode->i_size < i_block_size(inode) * 4) ||
852 (have_small_tails(inode->i_sb) &&
853 inode->i_size < i_block_size(inode)))
854 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
856 if (th->t_trans_id) {
857 reiserfs_write_lock(inode->i_sb);
858 reiserfs_update_sd(th, inode); // And update on-disk metadata
859 reiserfs_write_unlock(inode->i_sb);
861 inode->i_sb->s_op->dirty_inode(inode);
865 if (th->t_trans_id) {
866 reiserfs_write_lock(inode->i_sb);
868 reiserfs_update_sd(th, inode);
869 status = journal_end(th, th->t_super, th->t_blocks_allocated);
872 reiserfs_write_unlock(inode->i_sb);
877 * we have to unlock the pages after updating i_size, otherwise
878 * we race with writepage
880 for (i = 0; i < num_pages; i++) {
881 struct page *page = prepared_pages[i];
883 mark_page_accessed(page);
884 page_cache_release(page);
889 /* Look if passed writing region is going to touch file's tail
890 (if it is present). And if it is, convert the tail to unformatted node */
891 static int reiserfs_check_for_tail_and_convert(struct inode *inode, /* inode to deal with */
892 loff_t pos, /* Writing position */
893 int write_bytes /* amount of bytes to write */
896 INITIALIZE_PATH(path); // needed for search_for_position
897 struct cpu_key key; // Key that would represent last touched writing byte.
898 struct item_head *ih; // item header of found block;
899 int res; // Return value of various functions we call.
900 int cont_expand_offset; // We will put offset for generic_cont_expand here
901 // This can be int just because tails are created
902 // only for small files.
904 /* this embodies a dependency on a particular tail policy */
905 if (inode->i_size >= inode->i_sb->s_blocksize * 4) {
906 /* such a big files do not have tails, so we won't bother ourselves
907 to look for tails, simply return */
911 reiserfs_write_lock(inode->i_sb);
912 /* find the item containing the last byte to be written, or if
913 * writing past the end of the file then the last item of the
914 * file (and then we check its type). */
915 make_cpu_key(&key, inode, pos + write_bytes + 1, TYPE_ANY,
917 res = search_for_position_by_key(inode->i_sb, &key, &path);
918 if (res == IO_ERROR) {
919 reiserfs_write_unlock(inode->i_sb);
924 if (is_direct_le_ih(ih)) {
925 /* Ok, closest item is file tail (tails are stored in "direct"
926 * items), so we need to unpack it. */
927 /* To not overcomplicate matters, we just call generic_cont_expand
928 which will in turn call other stuff and finally will boil down to
929 reiserfs_get_block() that would do necessary conversion. */
931 le_key_k_offset(get_inode_item_key_version(inode),
934 res = generic_cont_expand(inode, cont_expand_offset);
938 reiserfs_write_unlock(inode->i_sb);
942 /* This function locks pages starting from @pos for @inode.
943 @num_pages pages are locked and stored in
944 @prepared_pages array. Also buffers are allocated for these pages.
945 First and last page of the region is read if it is overwritten only
946 partially. If last page did not exist before write (file hole or file
947 append), it is zeroed, then.
948 Returns number of unallocated blocks that should be allocated to cover
950 static int reiserfs_prepare_file_region_for_write(struct inode *inode
951 /* Inode of the file */ ,
952 loff_t pos, /* position in the file */
953 size_t num_pages, /* number of pages to
955 size_t write_bytes, /* Amount of bytes to be
958 struct page **prepared_pages /* pointer to array
963 int res = 0; // Return values of different functions we call.
964 unsigned long index = pos >> PAGE_CACHE_SHIFT; // Offset in file in pages.
965 int from = (pos & (PAGE_CACHE_SIZE - 1)); // Writing offset in first page
966 int to = ((pos + write_bytes - 1) & (PAGE_CACHE_SIZE - 1)) + 1;
967 /* offset of last modified byte in last
969 struct address_space *mapping = inode->i_mapping; // Pages are mapped here.
970 int i; // Simple counter
971 int blocks = 0; /* Return value (blocks that should be allocated) */
972 struct buffer_head *bh, *head; // Current bufferhead and first bufferhead
974 unsigned block_start, block_end; // Starting and ending offsets of current
975 // buffer in the page.
976 struct buffer_head *wait[2], **wait_bh = wait; // Buffers for page, if
977 // Page appeared to be not up
978 // to date. Note how we have
979 // at most 2 buffers, this is
980 // because we at most may
981 // partially overwrite two
982 // buffers for one page. One at // the beginning of write area
983 // and one at the end.
984 // Everything inthe middle gets // overwritten totally.
986 struct cpu_key key; // cpu key of item that we are going to deal with
987 struct item_head *ih = NULL; // pointer to item head that we are going to deal with
988 struct buffer_head *itembuf = NULL; // Buffer head that contains items that we are going to deal with
989 INITIALIZE_PATH(path); // path to item, that we are going to deal with.
990 __le32 *item = NULL; // pointer to item we are going to deal with
991 int item_pos = -1; /* Position in indirect item */
994 reiserfs_warning(inode->i_sb,
995 "green-9001: reiserfs_prepare_file_region_for_write "
996 "called with zero number of pages to process");
1000 /* We have 2 loops for pages. In first loop we grab and lock the pages, so
1001 that nobody would touch these until we release the pages. Then
1002 we'd start to deal with mapping buffers to blocks. */
1003 for (i = 0; i < num_pages; i++) {
1004 prepared_pages[i] = grab_cache_page(mapping, index + i); // locks the page
1005 if (!prepared_pages[i]) {
1007 goto failed_page_grabbing;
1009 if (!page_has_buffers(prepared_pages[i]))
1010 create_empty_buffers(prepared_pages[i],
1011 inode->i_sb->s_blocksize, 0);
1014 /* Let's count amount of blocks for a case where all the blocks
1015 overwritten are new (we will substract already allocated blocks later) */
1017 /* These are full-overwritten pages so we count all the blocks in
1018 these pages are counted as needed to be allocated */
1020 (num_pages - 2) << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1022 /* count blocks needed for first page (possibly partially written) */
1023 blocks += ((PAGE_CACHE_SIZE - from) >> inode->i_blkbits) + !!(from & (inode->i_sb->s_blocksize - 1)); /* roundup */
1025 /* Now we account for last page. If last page == first page (we
1026 overwrite only one page), we substract all the blocks past the
1027 last writing position in a page out of already calculated number
1029 blocks += ((num_pages > 1) << (PAGE_CACHE_SHIFT - inode->i_blkbits)) -
1030 ((PAGE_CACHE_SIZE - to) >> inode->i_blkbits);
1031 /* Note how we do not roundup here since partial blocks still
1032 should be allocated */
1034 /* Now if all the write area lies past the file end, no point in
1035 maping blocks, since there is none, so we just zero out remaining
1036 parts of first and last pages in write area (if needed) */
1037 if ((pos & ~((loff_t) PAGE_CACHE_SIZE - 1)) > inode->i_size) {
1038 if (from != 0) { /* First page needs to be partially zeroed */
1039 char *kaddr = kmap_atomic(prepared_pages[0], KM_USER0);
1040 memset(kaddr, 0, from);
1041 kunmap_atomic(kaddr, KM_USER0);
1043 if (to != PAGE_CACHE_SIZE) { /* Last page needs to be partially zeroed */
1045 kmap_atomic(prepared_pages[num_pages - 1],
1047 memset(kaddr + to, 0, PAGE_CACHE_SIZE - to);
1048 kunmap_atomic(kaddr, KM_USER0);
1051 /* Since all blocks are new - use already calculated value */
1055 /* Well, since we write somewhere into the middle of a file, there is
1056 possibility we are writing over some already allocated blocks, so
1057 let's map these blocks and substract number of such blocks out of blocks
1058 we need to allocate (calculated above) */
1059 /* Mask write position to start on blocksize, we do it out of the
1060 loop for performance reasons */
1061 pos &= ~((loff_t) inode->i_sb->s_blocksize - 1);
1062 /* Set cpu key to the starting position in a file (on left block boundary) */
1063 make_cpu_key(&key, inode,
1064 1 + ((pos) & ~((loff_t) inode->i_sb->s_blocksize - 1)),
1065 TYPE_ANY, 3 /*key length */ );
1067 reiserfs_write_lock(inode->i_sb); // We need that for at least search_by_key()
1068 for (i = 0; i < num_pages; i++) {
1070 head = page_buffers(prepared_pages[i]);
1071 /* For each buffer in the page */
1072 for (bh = head, block_start = 0; bh != head || !block_start;
1073 block_start = block_end, bh = bh->b_this_page) {
1075 reiserfs_panic(inode->i_sb,
1076 "green-9002: Allocated but absent buffer for a page?");
1077 /* Find where this buffer ends */
1078 block_end = block_start + inode->i_sb->s_blocksize;
1079 if (i == 0 && block_end <= from)
1080 /* if this buffer is before requested data to map, skip it */
1083 if (i == num_pages - 1 && block_start >= to) {
1084 /* If this buffer is after requested data to map, abort
1085 processing of current page */
1089 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
1090 /* This is optimisation for a case where buffer is mapped
1091 and have blocknumber assigned. In case significant amount
1092 of such buffers are present, we may avoid some amount
1093 of search_by_key calls.
1094 Probably it would be possible to move parts of this code
1095 out of BKL, but I afraid that would overcomplicate code
1096 without any noticeable benefit.
1099 /* Update the key */
1100 set_cpu_key_k_offset(&key,
1101 cpu_key_k_offset(&key) +
1102 inode->i_sb->s_blocksize);
1103 blocks--; // Decrease the amount of blocks that need to be
1105 continue; // Go to the next buffer
1108 if (!itembuf || /* if first iteration */
1109 item_pos >= ih_item_len(ih) / UNFM_P_SIZE) { /* or if we progressed past the
1110 current unformatted_item */
1111 /* Try to find next item */
1113 search_for_position_by_key(inode->i_sb,
1115 /* Abort if no more items */
1116 if (res != POSITION_FOUND) {
1117 /* make sure later loops don't use this item */
1123 /* Update information about current indirect item */
1124 itembuf = get_last_bh(&path);
1126 item = get_item(&path);
1127 item_pos = path.pos_in_item;
1129 RFALSE(!is_indirect_le_ih(ih),
1130 "green-9003: indirect item expected");
1133 /* See if there is some block associated with the file
1134 at that position, map the buffer to this block */
1135 if (get_block_num(item, item_pos)) {
1136 map_bh(bh, inode->i_sb,
1137 get_block_num(item, item_pos));
1138 blocks--; // Decrease the amount of blocks that need to be
1142 /* Update the key */
1143 set_cpu_key_k_offset(&key,
1144 cpu_key_k_offset(&key) +
1145 inode->i_sb->s_blocksize);
1148 pathrelse(&path); // Free the path
1149 reiserfs_write_unlock(inode->i_sb);
1151 /* Now zero out unmappend buffers for the first and last pages of
1152 write area or issue read requests if page is mapped. */
1153 /* First page, see if it is not uptodate */
1154 if (!PageUptodate(prepared_pages[0])) {
1155 head = page_buffers(prepared_pages[0]);
1157 /* For each buffer in page */
1158 for (bh = head, block_start = 0; bh != head || !block_start;
1159 block_start = block_end, bh = bh->b_this_page) {
1162 reiserfs_panic(inode->i_sb,
1163 "green-9002: Allocated but absent buffer for a page?");
1164 /* Find where this buffer ends */
1165 block_end = block_start + inode->i_sb->s_blocksize;
1166 if (block_end <= from)
1167 /* if this buffer is before requested data to map, skip it */
1169 if (block_start < from) { /* Aha, our partial buffer */
1170 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1171 issue READ request for it to
1173 ll_rw_block(READ, 1, &bh);
1175 } else { /* Not mapped, zero it */
1177 kmap_atomic(prepared_pages[0],
1179 memset(kaddr + block_start, 0,
1180 from - block_start);
1181 kunmap_atomic(kaddr, KM_USER0);
1182 set_buffer_uptodate(bh);
1188 /* Last page, see if it is not uptodate, or if the last page is past the end of the file. */
1189 if (!PageUptodate(prepared_pages[num_pages - 1]) ||
1190 ((pos + write_bytes) >> PAGE_CACHE_SHIFT) >
1191 (inode->i_size >> PAGE_CACHE_SHIFT)) {
1192 head = page_buffers(prepared_pages[num_pages - 1]);
1194 /* for each buffer in page */
1195 for (bh = head, block_start = 0; bh != head || !block_start;
1196 block_start = block_end, bh = bh->b_this_page) {
1199 reiserfs_panic(inode->i_sb,
1200 "green-9002: Allocated but absent buffer for a page?");
1201 /* Find where this buffer ends */
1202 block_end = block_start + inode->i_sb->s_blocksize;
1203 if (block_start >= to)
1204 /* if this buffer is after requested data to map, skip it */
1206 if (block_end > to) { /* Aha, our partial buffer */
1207 if (buffer_mapped(bh)) { /* If it is mapped, we need to
1208 issue READ request for it to
1210 ll_rw_block(READ, 1, &bh);
1212 } else { /* Not mapped, zero it */
1214 kmap_atomic(prepared_pages
1217 memset(kaddr + to, 0, block_end - to);
1218 kunmap_atomic(kaddr, KM_USER0);
1219 set_buffer_uptodate(bh);
1225 /* Wait for read requests we made to happen, if necessary */
1226 while (wait_bh > wait) {
1227 wait_on_buffer(*--wait_bh);
1228 if (!buffer_uptodate(*wait_bh)) {
1235 failed_page_grabbing:
1238 reiserfs_unprepare_pages(prepared_pages, num_pages);
1242 /* Write @count bytes at position @ppos in a file indicated by @file
1243 from the buffer @buf.
1245 generic_file_write() is only appropriate for filesystems that are not seeking to optimize performance and want
1246 something simple that works. It is not for serious use by general purpose filesystems, excepting the one that it was
1247 written for (ext2/3). This is for several reasons:
1249 * It has no understanding of any filesystem specific optimizations.
1251 * It enters the filesystem repeatedly for each page that is written.
1253 * It depends on reiserfs_get_block() function which if implemented by reiserfs performs costly search_by_key
1254 * operation for each page it is supplied with. By contrast reiserfs_file_write() feeds as much as possible at a time
1255 * to reiserfs which allows for fewer tree traversals.
1257 * Each indirect pointer insertion takes a lot of cpu, because it involves memory moves inside of blocks.
1259 * Asking the block allocation code for blocks one at a time is slightly less efficient.
1261 All of these reasons for not using only generic file write were understood back when reiserfs was first miscoded to
1262 use it, but we were in a hurry to make code freeze, and so it couldn't be revised then. This new code should make
1263 things right finally.
1265 Future Features: providing search_by_key with hints.
1268 static ssize_t reiserfs_file_write(struct file *file, /* the file we are going to write into */
1269 const char __user * buf, /* pointer to user supplied data
1271 size_t count, /* amount of bytes to write */
1272 loff_t * ppos /* pointer to position in file that we start writing at. Should be updated to
1273 * new current position before returning. */
1276 size_t already_written = 0; // Number of bytes already written to the file.
1277 loff_t pos; // Current position in the file.
1278 ssize_t res; // return value of various functions that we call.
1280 struct inode *inode = file->f_dentry->d_inode; // Inode of the file that we are writing to.
1281 /* To simplify coding at this time, we store
1282 locked pages in array for now */
1283 struct page *prepared_pages[REISERFS_WRITE_PAGES_AT_A_TIME];
1284 struct reiserfs_transaction_handle th;
1287 if (file->f_flags & O_DIRECT) { // Direct IO needs treatment
1288 ssize_t result, after_file_end = 0;
1289 if ((*ppos + count >= inode->i_size)
1290 || (file->f_flags & O_APPEND)) {
1291 /* If we are appending a file, we need to put this savelink in here.
1292 If we will crash while doing direct io, finish_unfinished will
1293 cut the garbage from the file end. */
1294 reiserfs_write_lock(inode->i_sb);
1296 journal_begin(&th, inode->i_sb,
1297 JOURNAL_PER_BALANCE_CNT);
1299 reiserfs_write_unlock(inode->i_sb);
1302 reiserfs_update_inode_transaction(inode);
1303 add_save_link(&th, inode, 1 /* Truncate */ );
1306 journal_end(&th, inode->i_sb,
1307 JOURNAL_PER_BALANCE_CNT);
1308 reiserfs_write_unlock(inode->i_sb);
1312 result = generic_file_write(file, buf, count, ppos);
1314 if (after_file_end) { /* Now update i_size and remove the savelink */
1315 struct reiserfs_transaction_handle th;
1316 reiserfs_write_lock(inode->i_sb);
1317 err = journal_begin(&th, inode->i_sb, 1);
1319 reiserfs_write_unlock(inode->i_sb);
1322 reiserfs_update_inode_transaction(inode);
1323 reiserfs_update_sd(&th, inode);
1324 err = journal_end(&th, inode->i_sb, 1);
1326 reiserfs_write_unlock(inode->i_sb);
1329 err = remove_save_link(inode, 1 /* truncate */ );
1330 reiserfs_write_unlock(inode->i_sb);
1338 if (unlikely((ssize_t) count < 0))
1341 if (unlikely(!access_ok(VERIFY_READ, buf, count)))
1344 down(&inode->i_sem); // locks the entire file for just us
1348 /* Check if we can write to specified region of file, file
1349 is not overly big and this kind of stuff. Adjust pos and
1351 res = generic_write_checks(file, &pos, &count, 0);
1358 res = remove_suid(file->f_dentry);
1362 inode_update_time(inode, 1); /* Both mtime and ctime */
1364 // Ok, we are done with all the checks.
1366 // Now we should start real work
1368 /* If we are going to write past the file's packed tail or if we are going
1369 to overwrite part of the tail, we need that tail to be converted into
1371 res = reiserfs_check_for_tail_and_convert(inode, pos, count);
1376 /* This is the main loop in which we running until some error occures
1377 or until we write all of the data. */
1378 size_t num_pages; /* amount of pages we are going to write this iteration */
1379 size_t write_bytes; /* amount of bytes to write during this iteration */
1380 size_t blocks_to_allocate; /* how much blocks we need to allocate for this iteration */
1382 /* (pos & (PAGE_CACHE_SIZE-1)) is an idiom for offset into a page of pos */
1383 num_pages = !!((pos + count) & (PAGE_CACHE_SIZE - 1)) + /* round up partial
1386 (pos & (PAGE_CACHE_SIZE - 1))) >> PAGE_CACHE_SHIFT);
1387 /* convert size to amount of
1389 reiserfs_write_lock(inode->i_sb);
1390 if (num_pages > REISERFS_WRITE_PAGES_AT_A_TIME
1391 || num_pages > reiserfs_can_fit_pages(inode->i_sb)) {
1392 /* If we were asked to write more data than we want to or if there
1393 is not that much space, then we shorten amount of data to write
1394 for this iteration. */
1396 min_t(size_t, REISERFS_WRITE_PAGES_AT_A_TIME,
1397 reiserfs_can_fit_pages(inode->i_sb));
1398 /* Also we should not forget to set size in bytes accordingly */
1399 write_bytes = (num_pages << PAGE_CACHE_SHIFT) -
1400 (pos & (PAGE_CACHE_SIZE - 1));
1401 /* If position is not on the
1402 start of the page, we need
1403 to substract the offset
1406 write_bytes = count;
1408 /* reserve the blocks to be allocated later, so that later on
1409 we still have the space to write the blocks to */
1410 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1414 reiserfs_write_unlock(inode->i_sb);
1416 if (!num_pages) { /* If we do not have enough space even for a single page... */
1418 inode->i_size + inode->i_sb->s_blocksize -
1419 (pos & (inode->i_sb->s_blocksize - 1))) {
1421 break; // In case we are writing past the end of the last file block, break.
1423 // Otherwise we are possibly overwriting the file, so
1424 // let's set write size to be equal or less than blocksize.
1425 // This way we get it correctly for file holes.
1426 // But overwriting files on absolutelly full volumes would not
1427 // be very efficient. Well, people are not supposed to fill
1428 // 100% of disk space anyway.
1430 min_t(size_t, count,
1431 inode->i_sb->s_blocksize -
1432 (pos & (inode->i_sb->s_blocksize - 1)));
1434 // No blocks were claimed before, so do it now.
1435 reiserfs_claim_blocks_to_be_allocated(inode->i_sb,
1443 /* Prepare for writing into the region, read in all the
1444 partially overwritten pages, if needed. And lock the pages,
1445 so that nobody else can access these until we are done.
1446 We get number of actual blocks needed as a result. */
1447 blocks_to_allocate =
1448 reiserfs_prepare_file_region_for_write(inode, pos,
1452 if (blocks_to_allocate < 0) {
1453 res = blocks_to_allocate;
1454 reiserfs_release_claimed_blocks(inode->i_sb,
1461 /* First we correct our estimate of how many blocks we need */
1462 reiserfs_release_claimed_blocks(inode->i_sb,
1466 s_blocksize_bits)) -
1467 blocks_to_allocate);
1469 if (blocks_to_allocate > 0) { /*We only allocate blocks if we need to */
1470 /* Fill in all the possible holes and append the file if needed */
1472 reiserfs_allocate_blocks_for_region(&th, inode, pos,
1476 blocks_to_allocate);
1479 /* well, we have allocated the blocks, so it is time to free
1480 the reservation we made earlier. */
1481 reiserfs_release_claimed_blocks(inode->i_sb,
1482 blocks_to_allocate);
1484 reiserfs_unprepare_pages(prepared_pages, num_pages);
1488 /* NOTE that allocating blocks and filling blocks can be done in reverse order
1489 and probably we would do that just to get rid of garbage in files after a
1492 /* Copy data from user-supplied buffer to file's pages */
1494 reiserfs_copy_from_user_to_file_region(pos, num_pages,
1496 prepared_pages, buf);
1498 reiserfs_unprepare_pages(prepared_pages, num_pages);
1502 /* Send the pages to disk and unlock them. */
1504 reiserfs_submit_file_region_for_write(&th, inode, pos,
1511 already_written += write_bytes;
1513 *ppos = pos += write_bytes;
1514 count -= write_bytes;
1515 balance_dirty_pages_ratelimited(inode->i_mapping);
1518 /* this is only true on error */
1519 if (th.t_trans_id) {
1520 reiserfs_write_lock(inode->i_sb);
1521 err = journal_end(&th, th.t_super, th.t_blocks_allocated);
1522 reiserfs_write_unlock(inode->i_sb);
1529 if ((file->f_flags & O_SYNC) || IS_SYNC(inode))
1531 generic_osync_inode(inode, file->f_mapping,
1532 OSYNC_METADATA | OSYNC_DATA);
1535 reiserfs_async_progress_wait(inode->i_sb);
1536 return (already_written != 0) ? already_written : res;
1539 up(&inode->i_sem); // unlock the file on exit.
1543 static ssize_t reiserfs_aio_write(struct kiocb *iocb, const char __user * buf,
1544 size_t count, loff_t pos)
1546 return generic_file_aio_write(iocb, buf, count, pos);
1549 struct file_operations reiserfs_file_operations = {
1550 .read = generic_file_read,
1551 .write = reiserfs_file_write,
1552 .ioctl = reiserfs_ioctl,
1553 .mmap = generic_file_mmap,
1554 .release = reiserfs_file_release,
1555 .fsync = reiserfs_sync_file,
1556 .sendfile = generic_file_sendfile,
1557 .aio_read = generic_file_aio_read,
1558 .aio_write = reiserfs_aio_write,
1561 struct inode_operations reiserfs_file_inode_operations = {
1562 .truncate = reiserfs_vfs_truncate_file,
1563 .setattr = reiserfs_setattr,
1564 .setxattr = reiserfs_setxattr,
1565 .getxattr = reiserfs_getxattr,
1566 .listxattr = reiserfs_listxattr,
1567 .removexattr = reiserfs_removexattr,
1568 .permission = reiserfs_permission,