ni5010: kill unused variable
[linux-2.6] / fs / udf / balloc.c
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *      Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *      This file is distributed under the terms of the GNU General Public
9  *      License (GPL). Copies of the GPL can be obtained from:
10  *              ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *      Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21
22 #include "udfdecl.h"
23
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27
28 #include "udf_i.h"
29 #include "udf_sb.h"
30
31 #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
32 #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
36
37 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
38 #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
39 #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
40 #define uintBPL_t uint(BITS_PER_LONG)
41 #define uint(x) xuint(x)
42 #define xuint(x) __le ## x
43
44 static inline int find_next_one_bit(void *addr, int size, int offset)
45 {
46         uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
47         int result = offset & ~(BITS_PER_LONG - 1);
48         unsigned long tmp;
49
50         if (offset >= size)
51                 return size;
52         size -= result;
53         offset &= (BITS_PER_LONG - 1);
54         if (offset) {
55                 tmp = leBPL_to_cpup(p++);
56                 tmp &= ~0UL << offset;
57                 if (size < BITS_PER_LONG)
58                         goto found_first;
59                 if (tmp)
60                         goto found_middle;
61                 size -= BITS_PER_LONG;
62                 result += BITS_PER_LONG;
63         }
64         while (size & ~(BITS_PER_LONG - 1)) {
65                 if ((tmp = leBPL_to_cpup(p++)))
66                         goto found_middle;
67                 result += BITS_PER_LONG;
68                 size -= BITS_PER_LONG;
69         }
70         if (!size)
71                 return result;
72         tmp = leBPL_to_cpup(p);
73 found_first:
74         tmp &= ~0UL >> (BITS_PER_LONG - size);
75 found_middle:
76         return result + ffz(~tmp);
77 }
78
79 #define find_first_one_bit(addr, size)\
80         find_next_one_bit((addr), (size), 0)
81
82 static int read_block_bitmap(struct super_block *sb,
83                              struct udf_bitmap *bitmap, unsigned int block,
84                              unsigned long bitmap_nr)
85 {
86         struct buffer_head *bh = NULL;
87         int retval = 0;
88         kernel_lb_addr loc;
89
90         loc.logicalBlockNum = bitmap->s_extPosition;
91         loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
92
93         bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
94         if (!bh) {
95                 retval = -EIO;
96         }
97         bitmap->s_block_bitmap[bitmap_nr] = bh;
98         return retval;
99 }
100
101 static int __load_block_bitmap(struct super_block *sb,
102                                struct udf_bitmap *bitmap,
103                                unsigned int block_group)
104 {
105         int retval = 0;
106         int nr_groups = bitmap->s_nr_groups;
107
108         if (block_group >= nr_groups) {
109                 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
110                           nr_groups);
111         }
112
113         if (bitmap->s_block_bitmap[block_group]) {
114                 return block_group;
115         } else {
116                 retval = read_block_bitmap(sb, bitmap, block_group,
117                                            block_group);
118                 if (retval < 0)
119                         return retval;
120                 return block_group;
121         }
122 }
123
124 static inline int load_block_bitmap(struct super_block *sb,
125                                     struct udf_bitmap *bitmap,
126                                     unsigned int block_group)
127 {
128         int slot;
129
130         slot = __load_block_bitmap(sb, bitmap, block_group);
131
132         if (slot < 0)
133                 return slot;
134
135         if (!bitmap->s_block_bitmap[slot])
136                 return -EIO;
137
138         return slot;
139 }
140
141 static void udf_bitmap_free_blocks(struct super_block *sb,
142                                    struct inode *inode,
143                                    struct udf_bitmap *bitmap,
144                                    kernel_lb_addr bloc, uint32_t offset,
145                                    uint32_t count)
146 {
147         struct udf_sb_info *sbi = UDF_SB(sb);
148         struct buffer_head *bh = NULL;
149         unsigned long block;
150         unsigned long block_group;
151         unsigned long bit;
152         unsigned long i;
153         int bitmap_nr;
154         unsigned long overflow;
155
156         mutex_lock(&sbi->s_alloc_mutex);
157         if (bloc.logicalBlockNum < 0 ||
158             (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) {
159                 udf_debug("%d < %d || %d + %d > %d\n",
160                           bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
161                           UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
162                 goto error_return;
163         }
164
165         block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
166
167 do_more:
168         overflow = 0;
169         block_group = block >> (sb->s_blocksize_bits + 3);
170         bit = block % (sb->s_blocksize << 3);
171
172         /*
173          * Check to see if we are freeing blocks across a group boundary.
174          */
175         if (bit + count > (sb->s_blocksize << 3)) {
176                 overflow = bit + count - (sb->s_blocksize << 3);
177                 count -= overflow;
178         }
179         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
180         if (bitmap_nr < 0)
181                 goto error_return;
182
183         bh = bitmap->s_block_bitmap[bitmap_nr];
184         for (i = 0; i < count; i++) {
185                 if (udf_set_bit(bit + i, bh->b_data)) {
186                         udf_debug("bit %ld already set\n", bit + i);
187                         udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
188                 } else {
189                         if (inode)
190                                 DQUOT_FREE_BLOCK(inode, 1);
191                         if (UDF_SB_LVIDBH(sb)) {
192                                 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
193                                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]) + 1);
194                         }
195                 }
196         }
197         mark_buffer_dirty(bh);
198         if (overflow) {
199                 block += count;
200                 count = overflow;
201                 goto do_more;
202         }
203 error_return:
204         sb->s_dirt = 1;
205         if (UDF_SB_LVIDBH(sb))
206                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
207         mutex_unlock(&sbi->s_alloc_mutex);
208         return;
209 }
210
211 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
212                                       struct inode *inode,
213                                       struct udf_bitmap *bitmap,
214                                       uint16_t partition, uint32_t first_block,
215                                       uint32_t block_count)
216 {
217         struct udf_sb_info *sbi = UDF_SB(sb);
218         int alloc_count = 0;
219         int bit, block, block_group, group_start;
220         int nr_groups, bitmap_nr;
221         struct buffer_head *bh;
222
223         mutex_lock(&sbi->s_alloc_mutex);
224         if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
225                 goto out;
226
227         if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
228                 block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
229
230 repeat:
231         nr_groups = (UDF_SB_PARTLEN(sb, partition) +
232                      (sizeof(struct spaceBitmapDesc) << 3) +
233                      (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
234         block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
235         block_group = block >> (sb->s_blocksize_bits + 3);
236         group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
237
238         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
239         if (bitmap_nr < 0)
240                 goto out;
241         bh = bitmap->s_block_bitmap[bitmap_nr];
242
243         bit = block % (sb->s_blocksize << 3);
244
245         while (bit < (sb->s_blocksize << 3) && block_count > 0) {
246                 if (!udf_test_bit(bit, bh->b_data)) {
247                         goto out;
248                 } else if (DQUOT_PREALLOC_BLOCK(inode, 1)) {
249                         goto out;
250                 } else if (!udf_clear_bit(bit, bh->b_data)) {
251                         udf_debug("bit already cleared for block %d\n", bit);
252                         DQUOT_FREE_BLOCK(inode, 1);
253                         goto out;
254                 }
255                 block_count--;
256                 alloc_count++;
257                 bit++;
258                 block++;
259         }
260         mark_buffer_dirty(bh);
261         if (block_count > 0)
262                 goto repeat;
263 out:
264         if (UDF_SB_LVIDBH(sb)) {
265                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
266                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - alloc_count);
267                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
268         }
269         sb->s_dirt = 1;
270         mutex_unlock(&sbi->s_alloc_mutex);
271         return alloc_count;
272 }
273
274 static int udf_bitmap_new_block(struct super_block *sb,
275                                 struct inode *inode,
276                                 struct udf_bitmap *bitmap, uint16_t partition,
277                                 uint32_t goal, int *err)
278 {
279         struct udf_sb_info *sbi = UDF_SB(sb);
280         int newbit, bit = 0, block, block_group, group_start;
281         int end_goal, nr_groups, bitmap_nr, i;
282         struct buffer_head *bh = NULL;
283         char *ptr;
284         int newblock = 0;
285
286         *err = -ENOSPC;
287         mutex_lock(&sbi->s_alloc_mutex);
288
289 repeat:
290         if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
291                 goal = 0;
292
293         nr_groups = bitmap->s_nr_groups;
294         block = goal + (sizeof(struct spaceBitmapDesc) << 3);
295         block_group = block >> (sb->s_blocksize_bits + 3);
296         group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
297
298         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
299         if (bitmap_nr < 0)
300                 goto error_return;
301         bh = bitmap->s_block_bitmap[bitmap_nr];
302         ptr = memscan((char *)bh->b_data + group_start, 0xFF,
303                       sb->s_blocksize - group_start);
304
305         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
306                 bit = block % (sb->s_blocksize << 3);
307                 if (udf_test_bit(bit, bh->b_data))
308                         goto got_block;
309
310                 end_goal = (bit + 63) & ~63;
311                 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
312                 if (bit < end_goal)
313                         goto got_block;
314
315                 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
316                 newbit = (ptr - ((char *)bh->b_data)) << 3;
317                 if (newbit < sb->s_blocksize << 3) {
318                         bit = newbit;
319                         goto search_back;
320                 }
321
322                 newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
323                 if (newbit < sb->s_blocksize << 3) {
324                         bit = newbit;
325                         goto got_block;
326                 }
327         }
328
329         for (i = 0; i < (nr_groups * 2); i++) {
330                 block_group++;
331                 if (block_group >= nr_groups)
332                         block_group = 0;
333                 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
334
335                 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
336                 if (bitmap_nr < 0)
337                         goto error_return;
338                 bh = bitmap->s_block_bitmap[bitmap_nr];
339                 if (i < nr_groups) {
340                         ptr = memscan((char *)bh->b_data + group_start, 0xFF,
341                                       sb->s_blocksize - group_start);
342                         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
343                                 bit = (ptr - ((char *)bh->b_data)) << 3;
344                                 break;
345                         }
346                 } else {
347                         bit = udf_find_next_one_bit((char *)bh->b_data,
348                                                     sb->s_blocksize << 3,
349                                                     group_start << 3);
350                         if (bit < sb->s_blocksize << 3)
351                                 break;
352                 }
353         }
354         if (i >= (nr_groups * 2)) {
355                 mutex_unlock(&sbi->s_alloc_mutex);
356                 return newblock;
357         }
358         if (bit < sb->s_blocksize << 3)
359                 goto search_back;
360         else
361                 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
362         if (bit >= sb->s_blocksize << 3) {
363                 mutex_unlock(&sbi->s_alloc_mutex);
364                 return 0;
365         }
366
367 search_back:
368         for (i = 0; i < 7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--)
369                 ; /* empty loop */
370
371 got_block:
372
373         /*
374          * Check quota for allocation of this block.
375          */
376         if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
377                 mutex_unlock(&sbi->s_alloc_mutex);
378                 *err = -EDQUOT;
379                 return 0;
380         }
381
382         newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
383                 (sizeof(struct spaceBitmapDesc) << 3);
384
385         if (!udf_clear_bit(bit, bh->b_data)) {
386                 udf_debug("bit already cleared for block %d\n", bit);
387                 goto repeat;
388         }
389
390         mark_buffer_dirty(bh);
391
392         if (UDF_SB_LVIDBH(sb)) {
393                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
394                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - 1);
395                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
396         }
397         sb->s_dirt = 1;
398         mutex_unlock(&sbi->s_alloc_mutex);
399         *err = 0;
400         return newblock;
401
402 error_return:
403         *err = -EIO;
404         mutex_unlock(&sbi->s_alloc_mutex);
405         return 0;
406 }
407
408 static void udf_table_free_blocks(struct super_block *sb,
409                                   struct inode *inode,
410                                   struct inode *table,
411                                   kernel_lb_addr bloc, uint32_t offset,
412                                   uint32_t count)
413 {
414         struct udf_sb_info *sbi = UDF_SB(sb);
415         uint32_t start, end;
416         uint32_t elen;
417         kernel_lb_addr eloc;
418         struct extent_position oepos, epos;
419         int8_t etype;
420         int i;
421
422         mutex_lock(&sbi->s_alloc_mutex);
423         if (bloc.logicalBlockNum < 0 ||
424             (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) {
425                 udf_debug("%d < %d || %d + %d > %d\n",
426                           bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
427                           UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
428                 goto error_return;
429         }
430
431         /* We do this up front - There are some error conditions that could occure,
432            but.. oh well */
433         if (inode)
434                 DQUOT_FREE_BLOCK(inode, count);
435         if (UDF_SB_LVIDBH(sb)) {
436                 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
437                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]) + count);
438                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
439         }
440
441         start = bloc.logicalBlockNum + offset;
442         end = bloc.logicalBlockNum + offset + count - 1;
443
444         epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
445         elen = 0;
446         epos.block = oepos.block = UDF_I_LOCATION(table);
447         epos.bh = oepos.bh = NULL;
448
449         while (count &&
450                (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
451                 if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == start)) {
452                         if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) {
453                                 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
454                                 start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
455                                 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
456                         } else {
457                                 elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits));
458                                 start += count;
459                                 count = 0;
460                         }
461                         udf_write_aext(table, &oepos, eloc, elen, 1);
462                 } else if (eloc.logicalBlockNum == (end + 1)) {
463                         if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) {
464                                 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
465                                 end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
466                                 eloc.logicalBlockNum -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
467                                 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
468                         } else {
469                                 eloc.logicalBlockNum = start;
470                                 elen = (etype << 30) | (elen + (count << sb->s_blocksize_bits));
471                                 end -= count;
472                                 count = 0;
473                         }
474                         udf_write_aext(table, &oepos, eloc, elen, 1);
475                 }
476
477                 if (epos.bh != oepos.bh) {
478                         i = -1;
479                         oepos.block = epos.block;
480                         brelse(oepos.bh);
481                         get_bh(epos.bh);
482                         oepos.bh = epos.bh;
483                         oepos.offset = 0;
484                 } else {
485                         oepos.offset = epos.offset;
486                 }
487         }
488
489         if (count) {
490                 /*
491                  * NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
492                  * a new block, and since we hold the super block lock already
493                  * very bad things would happen :)
494                  *
495                  * We copy the behavior of udf_add_aext, but instead of
496                  * trying to allocate a new block close to the existing one,
497                  * we just steal a block from the extent we are trying to add.
498                  *
499                  * It would be nice if the blocks were close together, but it
500                  * isn't required.
501                  */
502
503                 int adsize;
504                 short_ad *sad = NULL;
505                 long_ad *lad = NULL;
506                 struct allocExtDesc *aed;
507
508                 eloc.logicalBlockNum = start;
509                 elen = EXT_RECORDED_ALLOCATED |
510                         (count << sb->s_blocksize_bits);
511
512                 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) {
513                         adsize = sizeof(short_ad);
514                 } else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) {
515                         adsize = sizeof(long_ad);
516                 } else {
517                         brelse(oepos.bh);
518                         brelse(epos.bh);
519                         goto error_return;
520                 }
521
522                 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
523                         char *sptr, *dptr;
524                         int loffset;
525
526                         brelse(oepos.bh);
527                         oepos = epos;
528
529                         /* Steal a block from the extent being free'd */
530                         epos.block.logicalBlockNum = eloc.logicalBlockNum;
531                         eloc.logicalBlockNum++;
532                         elen -= sb->s_blocksize;
533
534                         if (!(epos.bh = udf_tread(sb, udf_get_lb_pblock(sb, epos.block, 0)))) {
535                                 brelse(oepos.bh);
536                                 goto error_return;
537                         }
538                         aed = (struct allocExtDesc *)(epos.bh->b_data);
539                         aed->previousAllocExtLocation = cpu_to_le32(oepos.block.logicalBlockNum);
540                         if (epos.offset + adsize > sb->s_blocksize) {
541                                 loffset = epos.offset;
542                                 aed->lengthAllocDescs = cpu_to_le32(adsize);
543                                 sptr = UDF_I_DATA(table) + epos.offset - adsize;
544                                 dptr = epos.bh->b_data + sizeof(struct allocExtDesc);
545                                 memcpy(dptr, sptr, adsize);
546                                 epos.offset = sizeof(struct allocExtDesc) + adsize;
547                         } else {
548                                 loffset = epos.offset + adsize;
549                                 aed->lengthAllocDescs = cpu_to_le32(0);
550                                 if (oepos.bh) {
551                                         sptr = oepos.bh->b_data + epos.offset;
552                                         aed = (struct allocExtDesc *)oepos.bh->b_data;
553                                         aed->lengthAllocDescs =
554                                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
555                                 } else {
556                                         sptr = UDF_I_DATA(table) + epos.offset;
557                                         UDF_I_LENALLOC(table) += adsize;
558                                         mark_inode_dirty(table);
559                                 }
560                                 epos.offset = sizeof(struct allocExtDesc);
561                         }
562                         if (UDF_SB_UDFREV(sb) >= 0x0200)
563                                 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 3, 1,
564                                             epos.block.logicalBlockNum, sizeof(tag));
565                         else
566                                 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED, 2, 1,
567                                             epos.block.logicalBlockNum, sizeof(tag));
568
569                         switch (UDF_I_ALLOCTYPE(table)) {
570                                 case ICBTAG_FLAG_AD_SHORT:
571                                         sad = (short_ad *)sptr;
572                                         sad->extLength = cpu_to_le32(
573                                                 EXT_NEXT_EXTENT_ALLOCDECS |
574                                                 sb->s_blocksize);
575                                         sad->extPosition = cpu_to_le32(epos.block.logicalBlockNum);
576                                         break;
577                                 case ICBTAG_FLAG_AD_LONG:
578                                         lad = (long_ad *)sptr;
579                                         lad->extLength = cpu_to_le32(
580                                                 EXT_NEXT_EXTENT_ALLOCDECS |
581                                                 sb->s_blocksize);
582                                         lad->extLocation = cpu_to_lelb(epos.block);
583                                         break;
584                         }
585                         if (oepos.bh) {
586                                 udf_update_tag(oepos.bh->b_data, loffset);
587                                 mark_buffer_dirty(oepos.bh);
588                         } else {
589                                 mark_inode_dirty(table);
590                         }
591                 }
592
593                 if (elen) { /* It's possible that stealing the block emptied the extent */
594                         udf_write_aext(table, &epos, eloc, elen, 1);
595
596                         if (!epos.bh) {
597                                 UDF_I_LENALLOC(table) += adsize;
598                                 mark_inode_dirty(table);
599                         } else {
600                                 aed = (struct allocExtDesc *)epos.bh->b_data;
601                                 aed->lengthAllocDescs =
602                                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
603                                 udf_update_tag(epos.bh->b_data, epos.offset);
604                                 mark_buffer_dirty(epos.bh);
605                         }
606                 }
607         }
608
609         brelse(epos.bh);
610         brelse(oepos.bh);
611
612 error_return:
613         sb->s_dirt = 1;
614         mutex_unlock(&sbi->s_alloc_mutex);
615         return;
616 }
617
618 static int udf_table_prealloc_blocks(struct super_block *sb,
619                                      struct inode *inode,
620                                      struct inode *table, uint16_t partition,
621                                      uint32_t first_block, uint32_t block_count)
622 {
623         struct udf_sb_info *sbi = UDF_SB(sb);
624         int alloc_count = 0;
625         uint32_t elen, adsize;
626         kernel_lb_addr eloc;
627         struct extent_position epos;
628         int8_t etype = -1;
629
630         if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
631                 return 0;
632
633         if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
634                 adsize = sizeof(short_ad);
635         else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
636                 adsize = sizeof(long_ad);
637         else
638                 return 0;
639
640         mutex_lock(&sbi->s_alloc_mutex);
641         epos.offset = sizeof(struct unallocSpaceEntry);
642         epos.block = UDF_I_LOCATION(table);
643         epos.bh = NULL;
644         eloc.logicalBlockNum = 0xFFFFFFFF;
645
646         while (first_block != eloc.logicalBlockNum &&
647                (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
648                 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
649                           eloc.logicalBlockNum, elen, first_block);
650                 ; /* empty loop body */
651         }
652
653         if (first_block == eloc.logicalBlockNum) {
654                 epos.offset -= adsize;
655
656                 alloc_count = (elen >> sb->s_blocksize_bits);
657                 if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) {
658                         alloc_count = 0;
659                 } else if (alloc_count > block_count) {
660                         alloc_count = block_count;
661                         eloc.logicalBlockNum += alloc_count;
662                         elen -= (alloc_count << sb->s_blocksize_bits);
663                         udf_write_aext(table, &epos, eloc, (etype << 30) | elen, 1);
664                 } else {
665                         udf_delete_aext(table, epos, eloc, (etype << 30) | elen);
666                 }
667         } else {
668                 alloc_count = 0;
669         }
670
671         brelse(epos.bh);
672
673         if (alloc_count && UDF_SB_LVIDBH(sb)) {
674                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
675                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - alloc_count);
676                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
677                 sb->s_dirt = 1;
678         }
679         mutex_unlock(&sbi->s_alloc_mutex);
680         return alloc_count;
681 }
682
683 static int udf_table_new_block(struct super_block *sb,
684                                struct inode *inode,
685                                struct inode *table, uint16_t partition,
686                                uint32_t goal, int *err)
687 {
688         struct udf_sb_info *sbi = UDF_SB(sb);
689         uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
690         uint32_t newblock = 0, adsize;
691         uint32_t elen, goal_elen = 0;
692         kernel_lb_addr eloc, uninitialized_var(goal_eloc);
693         struct extent_position epos, goal_epos;
694         int8_t etype;
695
696         *err = -ENOSPC;
697
698         if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
699                 adsize = sizeof(short_ad);
700         else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
701                 adsize = sizeof(long_ad);
702         else
703                 return newblock;
704
705         mutex_lock(&sbi->s_alloc_mutex);
706         if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
707                 goal = 0;
708
709         /* We search for the closest matching block to goal. If we find a exact hit,
710            we stop. Otherwise we keep going till we run out of extents.
711            We store the buffer_head, bloc, and extoffset of the current closest
712            match and use that when we are done.
713          */
714         epos.offset = sizeof(struct unallocSpaceEntry);
715         epos.block = UDF_I_LOCATION(table);
716         epos.bh = goal_epos.bh = NULL;
717
718         while (spread &&
719                (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
720                 if (goal >= eloc.logicalBlockNum) {
721                         if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
722                                 nspread = 0;
723                         else
724                                 nspread = goal - eloc.logicalBlockNum -
725                                         (elen >> sb->s_blocksize_bits);
726                 } else {
727                         nspread = eloc.logicalBlockNum - goal;
728                 }
729
730                 if (nspread < spread) {
731                         spread = nspread;
732                         if (goal_epos.bh != epos.bh) {
733                                 brelse(goal_epos.bh);
734                                 goal_epos.bh = epos.bh;
735                                 get_bh(goal_epos.bh);
736                         }
737                         goal_epos.block = epos.block;
738                         goal_epos.offset = epos.offset - adsize;
739                         goal_eloc = eloc;
740                         goal_elen = (etype << 30) | elen;
741                 }
742         }
743
744         brelse(epos.bh);
745
746         if (spread == 0xFFFFFFFF) {
747                 brelse(goal_epos.bh);
748                 mutex_unlock(&sbi->s_alloc_mutex);
749                 return 0;
750         }
751
752         /* Only allocate blocks from the beginning of the extent.
753            That way, we only delete (empty) extents, never have to insert an
754            extent because of splitting */
755         /* This works, but very poorly.... */
756
757         newblock = goal_eloc.logicalBlockNum;
758         goal_eloc.logicalBlockNum++;
759         goal_elen -= sb->s_blocksize;
760
761         if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
762                 brelse(goal_epos.bh);
763                 mutex_unlock(&sbi->s_alloc_mutex);
764                 *err = -EDQUOT;
765                 return 0;
766         }
767
768         if (goal_elen)
769                 udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
770         else
771                 udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
772         brelse(goal_epos.bh);
773
774         if (UDF_SB_LVIDBH(sb)) {
775                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
776                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition]) - 1);
777                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
778         }
779
780         sb->s_dirt = 1;
781         mutex_unlock(&sbi->s_alloc_mutex);
782         *err = 0;
783         return newblock;
784 }
785
786 inline void udf_free_blocks(struct super_block *sb,
787                             struct inode *inode,
788                             kernel_lb_addr bloc, uint32_t offset,
789                             uint32_t count)
790 {
791         uint16_t partition = bloc.partitionReferenceNum;
792
793         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) {
794                 return udf_bitmap_free_blocks(sb, inode,
795                                               UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
796                                               bloc, offset, count);
797         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) {
798                 return udf_table_free_blocks(sb, inode,
799                                              UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
800                                              bloc, offset, count);
801         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) {
802                 return udf_bitmap_free_blocks(sb, inode,
803                                               UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
804                                               bloc, offset, count);
805         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) {
806                 return udf_table_free_blocks(sb, inode,
807                                              UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
808                                              bloc, offset, count);
809         } else {
810                 return;
811         }
812 }
813
814 inline int udf_prealloc_blocks(struct super_block *sb,
815                                struct inode *inode,
816                                uint16_t partition, uint32_t first_block,
817                                uint32_t block_count)
818 {
819         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) {
820                 return udf_bitmap_prealloc_blocks(sb, inode,
821                                                   UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
822                                                   partition, first_block, block_count);
823         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) {
824                 return udf_table_prealloc_blocks(sb, inode,
825                                                  UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
826                                                  partition, first_block, block_count);
827         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) {
828                 return udf_bitmap_prealloc_blocks(sb, inode,
829                                                   UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
830                                                   partition, first_block, block_count);
831         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) {
832                 return udf_table_prealloc_blocks(sb, inode,
833                                                  UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
834                                                  partition, first_block, block_count);
835         } else {
836                 return 0;
837         }
838 }
839
840 inline int udf_new_block(struct super_block *sb,
841                          struct inode *inode,
842                          uint16_t partition, uint32_t goal, int *err)
843 {
844         int ret;
845
846         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) {
847                 ret = udf_bitmap_new_block(sb, inode,
848                                            UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
849                                            partition, goal, err);
850                 return ret;
851         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) {
852                 return udf_table_new_block(sb, inode,
853                                            UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
854                                            partition, goal, err);
855         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) {
856                 return udf_bitmap_new_block(sb, inode,
857                                             UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
858                                             partition, goal, err);
859         } else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) {
860                 return udf_table_new_block(sb, inode,
861                                            UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
862                                            partition, goal, err);
863         } else {
864                 *err = -EIO;
865                 return 0;
866         }
867 }