2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
43 int migrate_prep(void)
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
57 * Add isolated pages on the list back to the LRU under page lock
58 * to avoid leaking evictable pages back onto unevictable list.
60 * returns the number of pages put back.
62 int putback_lru_pages(struct list_head *l)
68 list_for_each_entry_safe(page, page2, l, lru) {
70 putback_lru_page(page);
77 * Restore a potential migration pte to a working pte entry
79 static void remove_migration_pte(struct vm_area_struct *vma,
80 struct page *old, struct page *new)
82 struct mm_struct *mm = vma->vm_mm;
89 unsigned long addr = page_address_in_vma(new, vma);
94 pgd = pgd_offset(mm, addr);
95 if (!pgd_present(*pgd))
98 pud = pud_offset(pgd, addr);
99 if (!pud_present(*pud))
102 pmd = pmd_offset(pud, addr);
103 if (!pmd_present(*pmd))
106 ptep = pte_offset_map(pmd, addr);
108 if (!is_swap_pte(*ptep)) {
113 ptl = pte_lockptr(mm, pmd);
116 if (!is_swap_pte(pte))
119 entry = pte_to_swp_entry(pte);
121 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
125 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
126 * Failure is not an option here: we're now expected to remove every
127 * migration pte, and will cause crashes otherwise. Normally this
128 * is not an issue: mem_cgroup_prepare_migration bumped up the old
129 * page_cgroup count for safety, that's now attached to the new page,
130 * so this charge should just be another incrementation of the count,
131 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
132 * there's been a force_empty, those reference counts may no longer
133 * be reliable, and this charge can actually fail: oh well, we don't
134 * make the situation any worse by proceeding as if it had succeeded.
136 mem_cgroup_charge(new, mm, GFP_ATOMIC);
139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 if (is_write_migration_entry(entry))
141 pte = pte_mkwrite(pte);
142 flush_cache_page(vma, addr, pte_pfn(pte));
143 set_pte_at(mm, addr, ptep, pte);
146 page_add_anon_rmap(new, vma, addr);
148 page_add_file_rmap(new);
150 /* No need to invalidate - it was non-present before */
151 update_mmu_cache(vma, addr, pte);
154 pte_unmap_unlock(ptep, ptl);
158 * Note that remove_file_migration_ptes will only work on regular mappings,
159 * Nonlinear mappings do not use migration entries.
161 static void remove_file_migration_ptes(struct page *old, struct page *new)
163 struct vm_area_struct *vma;
164 struct address_space *mapping = page_mapping(new);
165 struct prio_tree_iter iter;
166 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
171 spin_lock(&mapping->i_mmap_lock);
173 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
174 remove_migration_pte(vma, old, new);
176 spin_unlock(&mapping->i_mmap_lock);
180 * Must hold mmap_sem lock on at least one of the vmas containing
181 * the page so that the anon_vma cannot vanish.
183 static void remove_anon_migration_ptes(struct page *old, struct page *new)
185 struct anon_vma *anon_vma;
186 struct vm_area_struct *vma;
187 unsigned long mapping;
189 mapping = (unsigned long)new->mapping;
191 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
195 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
197 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
198 spin_lock(&anon_vma->lock);
200 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
201 remove_migration_pte(vma, old, new);
203 spin_unlock(&anon_vma->lock);
207 * Get rid of all migration entries and replace them by
208 * references to the indicated page.
210 static void remove_migration_ptes(struct page *old, struct page *new)
213 remove_anon_migration_ptes(old, new);
215 remove_file_migration_ptes(old, new);
219 * Something used the pte of a page under migration. We need to
220 * get to the page and wait until migration is finished.
221 * When we return from this function the fault will be retried.
223 * This function is called from do_swap_page().
225 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
226 unsigned long address)
233 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
235 if (!is_swap_pte(pte))
238 entry = pte_to_swp_entry(pte);
239 if (!is_migration_entry(entry))
242 page = migration_entry_to_page(entry);
245 * Once radix-tree replacement of page migration started, page_count
246 * *must* be zero. And, we don't want to call wait_on_page_locked()
247 * against a page without get_page().
248 * So, we use get_page_unless_zero(), here. Even failed, page fault
251 if (!get_page_unless_zero(page))
253 pte_unmap_unlock(ptep, ptl);
254 wait_on_page_locked(page);
258 pte_unmap_unlock(ptep, ptl);
262 * Replace the page in the mapping.
264 * The number of remaining references must be:
265 * 1 for anonymous pages without a mapping
266 * 2 for pages with a mapping
267 * 3 for pages with a mapping and PagePrivate set.
269 static int migrate_page_move_mapping(struct address_space *mapping,
270 struct page *newpage, struct page *page)
276 /* Anonymous page without mapping */
277 if (page_count(page) != 1)
282 spin_lock_irq(&mapping->tree_lock);
284 pslot = radix_tree_lookup_slot(&mapping->page_tree,
287 expected_count = 2 + !!PagePrivate(page);
288 if (page_count(page) != expected_count ||
289 (struct page *)radix_tree_deref_slot(pslot) != page) {
290 spin_unlock_irq(&mapping->tree_lock);
294 if (!page_freeze_refs(page, expected_count)) {
295 spin_unlock_irq(&mapping->tree_lock);
300 * Now we know that no one else is looking at the page.
302 get_page(newpage); /* add cache reference */
304 if (PageSwapCache(page)) {
305 SetPageSwapCache(newpage);
306 set_page_private(newpage, page_private(page));
310 radix_tree_replace_slot(pslot, newpage);
312 page_unfreeze_refs(page, expected_count);
314 * Drop cache reference from old page.
315 * We know this isn't the last reference.
320 * If moved to a different zone then also account
321 * the page for that zone. Other VM counters will be
322 * taken care of when we establish references to the
323 * new page and drop references to the old page.
325 * Note that anonymous pages are accounted for
326 * via NR_FILE_PAGES and NR_ANON_PAGES if they
327 * are mapped to swap space.
329 __dec_zone_page_state(page, NR_FILE_PAGES);
330 __inc_zone_page_state(newpage, NR_FILE_PAGES);
332 spin_unlock_irq(&mapping->tree_lock);
333 if (!PageSwapCache(newpage))
334 mem_cgroup_uncharge_cache_page(page);
340 * Copy the page to its new location
342 static void migrate_page_copy(struct page *newpage, struct page *page)
344 copy_highpage(newpage, page);
347 SetPageError(newpage);
348 if (PageReferenced(page))
349 SetPageReferenced(newpage);
350 if (PageUptodate(page))
351 SetPageUptodate(newpage);
352 if (TestClearPageActive(page)) {
353 VM_BUG_ON(PageUnevictable(page));
354 SetPageActive(newpage);
356 unevictable_migrate_page(newpage, page);
357 if (PageChecked(page))
358 SetPageChecked(newpage);
359 if (PageMappedToDisk(page))
360 SetPageMappedToDisk(newpage);
362 if (PageDirty(page)) {
363 clear_page_dirty_for_io(page);
365 * Want to mark the page and the radix tree as dirty, and
366 * redo the accounting that clear_page_dirty_for_io undid,
367 * but we can't use set_page_dirty because that function
368 * is actually a signal that all of the page has become dirty.
369 * Wheras only part of our page may be dirty.
371 __set_page_dirty_nobuffers(newpage);
374 mlock_migrate_page(newpage, page);
377 ClearPageSwapCache(page);
379 ClearPagePrivate(page);
380 set_page_private(page, 0);
381 page->mapping = NULL;
384 * If any waiters have accumulated on the new page then
387 if (PageWriteback(newpage))
388 end_page_writeback(newpage);
391 /************************************************************
392 * Migration functions
393 ***********************************************************/
395 /* Always fail migration. Used for mappings that are not movable */
396 int fail_migrate_page(struct address_space *mapping,
397 struct page *newpage, struct page *page)
401 EXPORT_SYMBOL(fail_migrate_page);
404 * Common logic to directly migrate a single page suitable for
405 * pages that do not use PagePrivate.
407 * Pages are locked upon entry and exit.
409 int migrate_page(struct address_space *mapping,
410 struct page *newpage, struct page *page)
414 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
416 rc = migrate_page_move_mapping(mapping, newpage, page);
421 migrate_page_copy(newpage, page);
424 EXPORT_SYMBOL(migrate_page);
428 * Migration function for pages with buffers. This function can only be used
429 * if the underlying filesystem guarantees that no other references to "page"
432 int buffer_migrate_page(struct address_space *mapping,
433 struct page *newpage, struct page *page)
435 struct buffer_head *bh, *head;
438 if (!page_has_buffers(page))
439 return migrate_page(mapping, newpage, page);
441 head = page_buffers(page);
443 rc = migrate_page_move_mapping(mapping, newpage, page);
452 bh = bh->b_this_page;
454 } while (bh != head);
456 ClearPagePrivate(page);
457 set_page_private(newpage, page_private(page));
458 set_page_private(page, 0);
464 set_bh_page(bh, newpage, bh_offset(bh));
465 bh = bh->b_this_page;
467 } while (bh != head);
469 SetPagePrivate(newpage);
471 migrate_page_copy(newpage, page);
477 bh = bh->b_this_page;
479 } while (bh != head);
483 EXPORT_SYMBOL(buffer_migrate_page);
487 * Writeback a page to clean the dirty state
489 static int writeout(struct address_space *mapping, struct page *page)
491 struct writeback_control wbc = {
492 .sync_mode = WB_SYNC_NONE,
495 .range_end = LLONG_MAX,
501 if (!mapping->a_ops->writepage)
502 /* No write method for the address space */
505 if (!clear_page_dirty_for_io(page))
506 /* Someone else already triggered a write */
510 * A dirty page may imply that the underlying filesystem has
511 * the page on some queue. So the page must be clean for
512 * migration. Writeout may mean we loose the lock and the
513 * page state is no longer what we checked for earlier.
514 * At this point we know that the migration attempt cannot
517 remove_migration_ptes(page, page);
519 rc = mapping->a_ops->writepage(page, &wbc);
521 /* I/O Error writing */
524 if (rc != AOP_WRITEPAGE_ACTIVATE)
525 /* unlocked. Relock */
532 * Default handling if a filesystem does not provide a migration function.
534 static int fallback_migrate_page(struct address_space *mapping,
535 struct page *newpage, struct page *page)
538 return writeout(mapping, page);
541 * Buffers may be managed in a filesystem specific way.
542 * We must have no buffers or drop them.
544 if (PagePrivate(page) &&
545 !try_to_release_page(page, GFP_KERNEL))
548 return migrate_page(mapping, newpage, page);
552 * Move a page to a newly allocated page
553 * The page is locked and all ptes have been successfully removed.
555 * The new page will have replaced the old page if this function
562 static int move_to_new_page(struct page *newpage, struct page *page)
564 struct address_space *mapping;
568 * Block others from accessing the page when we get around to
569 * establishing additional references. We are the only one
570 * holding a reference to the new page at this point.
572 if (!trylock_page(newpage))
575 /* Prepare mapping for the new page.*/
576 newpage->index = page->index;
577 newpage->mapping = page->mapping;
578 if (PageSwapBacked(page))
579 SetPageSwapBacked(newpage);
581 mapping = page_mapping(page);
583 rc = migrate_page(mapping, newpage, page);
584 else if (mapping->a_ops->migratepage)
586 * Most pages have a mapping and most filesystems
587 * should provide a migration function. Anonymous
588 * pages are part of swap space which also has its
589 * own migration function. This is the most common
590 * path for page migration.
592 rc = mapping->a_ops->migratepage(mapping,
595 rc = fallback_migrate_page(mapping, newpage, page);
598 remove_migration_ptes(page, newpage);
600 newpage->mapping = NULL;
602 unlock_page(newpage);
608 * Obtain the lock on page, remove all ptes and migrate the page
609 * to the newly allocated page in newpage.
611 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
612 struct page *page, int force)
616 struct page *newpage = get_new_page(page, private, &result);
623 if (page_count(page) == 1) {
624 /* page was freed from under us. So we are done. */
628 charge = mem_cgroup_prepare_migration(page, newpage);
629 if (charge == -ENOMEM) {
633 /* prepare cgroup just returns 0 or -ENOMEM */
637 if (!trylock_page(page)) {
643 if (PageWriteback(page)) {
646 wait_on_page_writeback(page);
649 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
650 * we cannot notice that anon_vma is freed while we migrates a page.
651 * This rcu_read_lock() delays freeing anon_vma pointer until the end
652 * of migration. File cache pages are no problem because of page_lock()
653 * File Caches may use write_page() or lock_page() in migration, then,
654 * just care Anon page here.
656 if (PageAnon(page)) {
662 * Corner case handling:
663 * 1. When a new swap-cache page is read into, it is added to the LRU
664 * and treated as swapcache but it has no rmap yet.
665 * Calling try_to_unmap() against a page->mapping==NULL page will
666 * trigger a BUG. So handle it here.
667 * 2. An orphaned page (see truncate_complete_page) might have
668 * fs-private metadata. The page can be picked up due to memory
669 * offlining. Everywhere else except page reclaim, the page is
670 * invisible to the vm, so the page can not be migrated. So try to
671 * free the metadata, so the page can be freed.
673 if (!page->mapping) {
674 if (!PageAnon(page) && PagePrivate(page)) {
676 * Go direct to try_to_free_buffers() here because
677 * a) that's what try_to_release_page() would do anyway
678 * b) we may be under rcu_read_lock() here, so we can't
679 * use GFP_KERNEL which is what try_to_release_page()
680 * needs to be effective.
682 try_to_free_buffers(page);
687 /* Establish migration ptes or remove ptes */
688 try_to_unmap(page, 1);
690 if (!page_mapped(page))
691 rc = move_to_new_page(newpage, page);
694 remove_migration_ptes(page, page);
704 * A page that has been migrated has all references
705 * removed and will be freed. A page that has not been
706 * migrated will have kepts its references and be
709 list_del(&page->lru);
710 putback_lru_page(page);
715 mem_cgroup_end_migration(newpage);
718 * Move the new page to the LRU. If migration was not successful
719 * then this will free the page.
721 putback_lru_page(newpage);
727 *result = page_to_nid(newpage);
735 * The function takes one list of pages to migrate and a function
736 * that determines from the page to be migrated and the private data
737 * the target of the move and allocates the page.
739 * The function returns after 10 attempts or if no pages
740 * are movable anymore because to has become empty
741 * or no retryable pages exist anymore. All pages will be
742 * returned to the LRU or freed.
744 * Return: Number of pages not migrated or error code.
746 int migrate_pages(struct list_head *from,
747 new_page_t get_new_page, unsigned long private)
754 int swapwrite = current->flags & PF_SWAPWRITE;
758 current->flags |= PF_SWAPWRITE;
760 for(pass = 0; pass < 10 && retry; pass++) {
763 list_for_each_entry_safe(page, page2, from, lru) {
766 rc = unmap_and_move(get_new_page, private,
778 /* Permanent failure */
787 current->flags &= ~PF_SWAPWRITE;
789 putback_lru_pages(from);
794 return nr_failed + retry;
799 * Move a list of individual pages
801 struct page_to_node {
808 static struct page *new_page_node(struct page *p, unsigned long private,
811 struct page_to_node *pm = (struct page_to_node *)private;
813 while (pm->node != MAX_NUMNODES && pm->page != p)
816 if (pm->node == MAX_NUMNODES)
819 *result = &pm->status;
821 return alloc_pages_node(pm->node,
822 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
826 * Move a set of pages as indicated in the pm array. The addr
827 * field must be set to the virtual address of the page to be moved
828 * and the node number must contain a valid target node.
830 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
834 struct page_to_node *pp;
837 down_read(&mm->mmap_sem);
840 * Build a list of pages to migrate
843 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
844 struct vm_area_struct *vma;
848 * A valid page pointer that will not match any of the
849 * pages that will be moved.
851 pp->page = ZERO_PAGE(0);
854 vma = find_vma(mm, pp->addr);
855 if (!vma || !vma_migratable(vma))
858 page = follow_page(vma, pp->addr, FOLL_GET);
868 if (PageReserved(page)) /* Check for zero page */
872 err = page_to_nid(page);
876 * Node already in the right place
881 if (page_mapcount(page) > 1 &&
885 err = isolate_lru_page(page);
887 list_add_tail(&page->lru, &pagelist);
890 * Either remove the duplicate refcount from
891 * isolate_lru_page() or drop the page ref if it was
899 if (!list_empty(&pagelist))
900 err = migrate_pages(&pagelist, new_page_node,
905 up_read(&mm->mmap_sem);
910 * Determine the nodes of a list of pages. The addr in the pm array
911 * must have been set to the virtual address of which we want to determine
914 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
916 down_read(&mm->mmap_sem);
918 for ( ; pm->node != MAX_NUMNODES; pm++) {
919 struct vm_area_struct *vma;
924 vma = find_vma(mm, pm->addr);
928 page = follow_page(vma, pm->addr, 0);
935 /* Use PageReserved to check for zero page */
936 if (!page || PageReserved(page))
939 err = page_to_nid(page);
944 up_read(&mm->mmap_sem);
949 * Move a list of pages in the address space of the currently executing
952 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
953 const void __user * __user *pages,
954 const int __user *nodes,
955 int __user *status, int flags)
959 struct task_struct *task;
960 nodemask_t task_nodes;
961 struct mm_struct *mm;
962 struct page_to_node *pm = NULL;
965 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
968 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
971 /* Find the mm_struct */
972 read_lock(&tasklist_lock);
973 task = pid ? find_task_by_vpid(pid) : current;
975 read_unlock(&tasklist_lock);
978 mm = get_task_mm(task);
979 read_unlock(&tasklist_lock);
985 * Check if this process has the right to modify the specified
986 * process. The right exists if the process has administrative
987 * capabilities, superuser privileges or the same
988 * userid as the target process.
990 if ((current->euid != task->suid) && (current->euid != task->uid) &&
991 (current->uid != task->suid) && (current->uid != task->uid) &&
992 !capable(CAP_SYS_NICE)) {
997 err = security_task_movememory(task);
1002 task_nodes = cpuset_mems_allowed(task);
1004 /* Limit nr_pages so that the multiplication may not overflow */
1005 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1010 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1017 * Get parameters from user space and initialize the pm
1018 * array. Return various errors if the user did something wrong.
1020 for (i = 0; i < nr_pages; i++) {
1021 const void __user *p;
1024 if (get_user(p, pages + i))
1027 pm[i].addr = (unsigned long)p;
1031 if (get_user(node, nodes + i))
1035 if (!node_state(node, N_HIGH_MEMORY))
1039 if (!node_isset(node, task_nodes))
1044 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
1047 pm[nr_pages].node = MAX_NUMNODES;
1050 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1052 err = do_pages_stat(mm, pm);
1055 /* Return status information */
1056 for (i = 0; i < nr_pages; i++)
1057 if (put_user(pm[i].status, status + i))
1068 * Call migration functions in the vma_ops that may prepare
1069 * memory in a vm for migration. migration functions may perform
1070 * the migration for vmas that do not have an underlying page struct.
1072 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1073 const nodemask_t *from, unsigned long flags)
1075 struct vm_area_struct *vma;
1078 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1079 if (vma->vm_ops && vma->vm_ops->migrate) {
1080 err = vma->vm_ops->migrate(vma, to, from, flags);