ath9k: Handle channel initialization for AP mode
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
78
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
84
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
88
89 #define DRV_VERSION "2.0.26.25"
90
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
94
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
97
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
99 {
100         int ret;
101
102         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105         return ret;
106 }
107
108 /*
109  * Cards with following subsystem_id have a link state indication
110  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111  * macro below identifies these cards given the subsystem_id.
112  */
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114         (dev_type == XFRAME_I_DEVICE) ?                 \
115                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
117
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
122 {
123         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"}
230 };
231
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233         {"rmac_ttl_1519_4095_frms"},
234         {"rmac_ttl_4096_8191_frms"},
235         {"rmac_ttl_8192_max_frms"},
236         {"rmac_ttl_gt_max_frms"},
237         {"rmac_osized_alt_frms"},
238         {"rmac_jabber_alt_frms"},
239         {"rmac_gt_max_alt_frms"},
240         {"rmac_vlan_frms"},
241         {"rmac_len_discard"},
242         {"rmac_fcs_discard"},
243         {"rmac_pf_discard"},
244         {"rmac_da_discard"},
245         {"rmac_red_discard"},
246         {"rmac_rts_discard"},
247         {"rmac_ingm_full_discard"},
248         {"link_fault_cnt"}
249 };
250
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252         {"\n DRIVER STATISTICS"},
253         {"single_bit_ecc_errs"},
254         {"double_bit_ecc_errs"},
255         {"parity_err_cnt"},
256         {"serious_err_cnt"},
257         {"soft_reset_cnt"},
258         {"fifo_full_cnt"},
259         {"ring_0_full_cnt"},
260         {"ring_1_full_cnt"},
261         {"ring_2_full_cnt"},
262         {"ring_3_full_cnt"},
263         {"ring_4_full_cnt"},
264         {"ring_5_full_cnt"},
265         {"ring_6_full_cnt"},
266         {"ring_7_full_cnt"},
267         {"alarm_transceiver_temp_high"},
268         {"alarm_transceiver_temp_low"},
269         {"alarm_laser_bias_current_high"},
270         {"alarm_laser_bias_current_low"},
271         {"alarm_laser_output_power_high"},
272         {"alarm_laser_output_power_low"},
273         {"warn_transceiver_temp_high"},
274         {"warn_transceiver_temp_low"},
275         {"warn_laser_bias_current_high"},
276         {"warn_laser_bias_current_low"},
277         {"warn_laser_output_power_high"},
278         {"warn_laser_output_power_low"},
279         {"lro_aggregated_pkts"},
280         {"lro_flush_both_count"},
281         {"lro_out_of_sequence_pkts"},
282         {"lro_flush_due_to_max_pkts"},
283         {"lro_avg_aggr_pkts"},
284         {"mem_alloc_fail_cnt"},
285         {"pci_map_fail_cnt"},
286         {"watchdog_timer_cnt"},
287         {"mem_allocated"},
288         {"mem_freed"},
289         {"link_up_cnt"},
290         {"link_down_cnt"},
291         {"link_up_time"},
292         {"link_down_time"},
293         {"tx_tcode_buf_abort_cnt"},
294         {"tx_tcode_desc_abort_cnt"},
295         {"tx_tcode_parity_err_cnt"},
296         {"tx_tcode_link_loss_cnt"},
297         {"tx_tcode_list_proc_err_cnt"},
298         {"rx_tcode_parity_err_cnt"},
299         {"rx_tcode_abort_cnt"},
300         {"rx_tcode_parity_abort_cnt"},
301         {"rx_tcode_rda_fail_cnt"},
302         {"rx_tcode_unkn_prot_cnt"},
303         {"rx_tcode_fcs_err_cnt"},
304         {"rx_tcode_buf_size_err_cnt"},
305         {"rx_tcode_rxd_corrupt_cnt"},
306         {"rx_tcode_unkn_err_cnt"},
307         {"tda_err_cnt"},
308         {"pfc_err_cnt"},
309         {"pcc_err_cnt"},
310         {"tti_err_cnt"},
311         {"tpa_err_cnt"},
312         {"sm_err_cnt"},
313         {"lso_err_cnt"},
314         {"mac_tmac_err_cnt"},
315         {"mac_rmac_err_cnt"},
316         {"xgxs_txgxs_err_cnt"},
317         {"xgxs_rxgxs_err_cnt"},
318         {"rc_err_cnt"},
319         {"prc_pcix_err_cnt"},
320         {"rpa_err_cnt"},
321         {"rda_err_cnt"},
322         {"rti_err_cnt"},
323         {"mc_err_cnt"}
324 };
325
326 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
329
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
335
336 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
338
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
340                         init_timer(&timer);                     \
341                         timer.function = handle;                \
342                         timer.data = (unsigned long) arg;       \
343                         mod_timer(&timer, (jiffies + exp))      \
344
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347 {
348         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354 }
355
356 /* Add the vlan */
357 static void s2io_vlan_rx_register(struct net_device *dev,
358                                   struct vlan_group *grp)
359 {
360         int i;
361         struct s2io_nic *nic = netdev_priv(dev);
362         unsigned long flags[MAX_TX_FIFOS];
363         struct mac_info *mac_control = &nic->mac_control;
364         struct config_param *config = &nic->config;
365
366         for (i = 0; i < config->tx_fifo_num; i++)
367                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
368
369         nic->vlgrp = grp;
370         for (i = config->tx_fifo_num - 1; i >= 0; i--)
371                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
372                                 flags[i]);
373 }
374
375 /* Unregister the vlan */
376 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
377 {
378         int i;
379         struct s2io_nic *nic = netdev_priv(dev);
380         unsigned long flags[MAX_TX_FIFOS];
381         struct mac_info *mac_control = &nic->mac_control;
382         struct config_param *config = &nic->config;
383
384         for (i = 0; i < config->tx_fifo_num; i++)
385                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
386
387         if (nic->vlgrp)
388                 vlan_group_set_device(nic->vlgrp, vid, NULL);
389
390         for (i = config->tx_fifo_num - 1; i >= 0; i--)
391                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
392                         flags[i]);
393 }
394
395 /*
396  * Constants to be programmed into the Xena's registers, to configure
397  * the XAUI.
398  */
399
400 #define END_SIGN        0x0
401 static const u64 herc_act_dtx_cfg[] = {
402         /* Set address */
403         0x8000051536750000ULL, 0x80000515367500E0ULL,
404         /* Write data */
405         0x8000051536750004ULL, 0x80000515367500E4ULL,
406         /* Set address */
407         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
408         /* Write data */
409         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
410         /* Set address */
411         0x801205150D440000ULL, 0x801205150D4400E0ULL,
412         /* Write data */
413         0x801205150D440004ULL, 0x801205150D4400E4ULL,
414         /* Set address */
415         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
416         /* Write data */
417         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
418         /* Done */
419         END_SIGN
420 };
421
422 static const u64 xena_dtx_cfg[] = {
423         /* Set address */
424         0x8000051500000000ULL, 0x80000515000000E0ULL,
425         /* Write data */
426         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
427         /* Set address */
428         0x8001051500000000ULL, 0x80010515000000E0ULL,
429         /* Write data */
430         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
431         /* Set address */
432         0x8002051500000000ULL, 0x80020515000000E0ULL,
433         /* Write data */
434         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
435         END_SIGN
436 };
437
438 /*
439  * Constants for Fixing the MacAddress problem seen mostly on
440  * Alpha machines.
441  */
442 static const u64 fix_mac[] = {
443         0x0060000000000000ULL, 0x0060600000000000ULL,
444         0x0040600000000000ULL, 0x0000600000000000ULL,
445         0x0020600000000000ULL, 0x0060600000000000ULL,
446         0x0020600000000000ULL, 0x0060600000000000ULL,
447         0x0020600000000000ULL, 0x0060600000000000ULL,
448         0x0020600000000000ULL, 0x0060600000000000ULL,
449         0x0020600000000000ULL, 0x0060600000000000ULL,
450         0x0020600000000000ULL, 0x0060600000000000ULL,
451         0x0020600000000000ULL, 0x0060600000000000ULL,
452         0x0020600000000000ULL, 0x0060600000000000ULL,
453         0x0020600000000000ULL, 0x0060600000000000ULL,
454         0x0020600000000000ULL, 0x0060600000000000ULL,
455         0x0020600000000000ULL, 0x0000600000000000ULL,
456         0x0040600000000000ULL, 0x0060600000000000ULL,
457         END_SIGN
458 };
459
460 MODULE_LICENSE("GPL");
461 MODULE_VERSION(DRV_VERSION);
462
463
464 /* Module Loadable parameters. */
465 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
466 S2IO_PARM_INT(rx_ring_num, 1);
467 S2IO_PARM_INT(multiq, 0);
468 S2IO_PARM_INT(rx_ring_mode, 1);
469 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
470 S2IO_PARM_INT(rmac_pause_time, 0x100);
471 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
472 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
473 S2IO_PARM_INT(shared_splits, 0);
474 S2IO_PARM_INT(tmac_util_period, 5);
475 S2IO_PARM_INT(rmac_util_period, 5);
476 S2IO_PARM_INT(l3l4hdr_size, 128);
477 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
478 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
479 /* Frequency of Rx desc syncs expressed as power of 2 */
480 S2IO_PARM_INT(rxsync_frequency, 3);
481 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
482 S2IO_PARM_INT(intr_type, 2);
483 /* Large receive offload feature */
484 static unsigned int lro_enable;
485 module_param_named(lro, lro_enable, uint, 0);
486
487 /* Max pkts to be aggregated by LRO at one time. If not specified,
488  * aggregation happens until we hit max IP pkt size(64K)
489  */
490 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
491 S2IO_PARM_INT(indicate_max_pkts, 0);
492
493 S2IO_PARM_INT(napi, 1);
494 S2IO_PARM_INT(ufo, 0);
495 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
496
497 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
498     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
499 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
500     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
501 static unsigned int rts_frm_len[MAX_RX_RINGS] =
502     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
503
504 module_param_array(tx_fifo_len, uint, NULL, 0);
505 module_param_array(rx_ring_sz, uint, NULL, 0);
506 module_param_array(rts_frm_len, uint, NULL, 0);
507
508 /*
509  * S2IO device table.
510  * This table lists all the devices that this driver supports.
511  */
512 static struct pci_device_id s2io_tbl[] __devinitdata = {
513         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
514          PCI_ANY_ID, PCI_ANY_ID},
515         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
516          PCI_ANY_ID, PCI_ANY_ID},
517         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
518          PCI_ANY_ID, PCI_ANY_ID},
519         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
520          PCI_ANY_ID, PCI_ANY_ID},
521         {0,}
522 };
523
524 MODULE_DEVICE_TABLE(pci, s2io_tbl);
525
526 static struct pci_error_handlers s2io_err_handler = {
527         .error_detected = s2io_io_error_detected,
528         .slot_reset = s2io_io_slot_reset,
529         .resume = s2io_io_resume,
530 };
531
532 static struct pci_driver s2io_driver = {
533       .name = "S2IO",
534       .id_table = s2io_tbl,
535       .probe = s2io_init_nic,
536       .remove = __devexit_p(s2io_rem_nic),
537       .err_handler = &s2io_err_handler,
538 };
539
540 /* A simplifier macro used both by init and free shared_mem Fns(). */
541 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
542
543 /* netqueue manipulation helper functions */
544 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
545 {
546         if (!sp->config.multiq) {
547                 int i;
548
549                 for (i = 0; i < sp->config.tx_fifo_num; i++)
550                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
551         }
552         netif_tx_stop_all_queues(sp->dev);
553 }
554
555 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
556 {
557         if (!sp->config.multiq)
558                 sp->mac_control.fifos[fifo_no].queue_state =
559                         FIFO_QUEUE_STOP;
560
561         netif_tx_stop_all_queues(sp->dev);
562 }
563
564 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
565 {
566         if (!sp->config.multiq) {
567                 int i;
568
569                 for (i = 0; i < sp->config.tx_fifo_num; i++)
570                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
571         }
572         netif_tx_start_all_queues(sp->dev);
573 }
574
575 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
576 {
577         if (!sp->config.multiq)
578                 sp->mac_control.fifos[fifo_no].queue_state =
579                         FIFO_QUEUE_START;
580
581         netif_tx_start_all_queues(sp->dev);
582 }
583
584 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
585 {
586         if (!sp->config.multiq) {
587                 int i;
588
589                 for (i = 0; i < sp->config.tx_fifo_num; i++)
590                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
591         }
592         netif_tx_wake_all_queues(sp->dev);
593 }
594
595 static inline void s2io_wake_tx_queue(
596         struct fifo_info *fifo, int cnt, u8 multiq)
597 {
598
599         if (multiq) {
600                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
601                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
602         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
603                 if (netif_queue_stopped(fifo->dev)) {
604                         fifo->queue_state = FIFO_QUEUE_START;
605                         netif_wake_queue(fifo->dev);
606                 }
607         }
608 }
609
610 /**
611  * init_shared_mem - Allocation and Initialization of Memory
612  * @nic: Device private variable.
613  * Description: The function allocates all the memory areas shared
614  * between the NIC and the driver. This includes Tx descriptors,
615  * Rx descriptors and the statistics block.
616  */
617
618 static int init_shared_mem(struct s2io_nic *nic)
619 {
620         u32 size;
621         void *tmp_v_addr, *tmp_v_addr_next;
622         dma_addr_t tmp_p_addr, tmp_p_addr_next;
623         struct RxD_block *pre_rxd_blk = NULL;
624         int i, j, blk_cnt;
625         int lst_size, lst_per_page;
626         struct net_device *dev = nic->dev;
627         unsigned long tmp;
628         struct buffAdd *ba;
629
630         struct mac_info *mac_control;
631         struct config_param *config;
632         unsigned long long mem_allocated = 0;
633
634         mac_control = &nic->mac_control;
635         config = &nic->config;
636
637
638         /* Allocation and initialization of TXDLs in FIOFs */
639         size = 0;
640         for (i = 0; i < config->tx_fifo_num; i++) {
641                 size += config->tx_cfg[i].fifo_len;
642         }
643         if (size > MAX_AVAILABLE_TXDS) {
644                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
645                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
646                 return -EINVAL;
647         }
648
649         size = 0;
650         for (i = 0; i < config->tx_fifo_num; i++) {
651                 size = config->tx_cfg[i].fifo_len;
652                 /*
653                  * Legal values are from 2 to 8192
654                  */
655                 if (size < 2) {
656                         DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
657                         DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
658                         DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
659                                 "are 2 to 8192\n");
660                         return -EINVAL;
661                 }
662         }
663
664         lst_size = (sizeof(struct TxD) * config->max_txds);
665         lst_per_page = PAGE_SIZE / lst_size;
666
667         for (i = 0; i < config->tx_fifo_num; i++) {
668                 int fifo_len = config->tx_cfg[i].fifo_len;
669                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
670                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
671                                                           GFP_KERNEL);
672                 if (!mac_control->fifos[i].list_info) {
673                         DBG_PRINT(INFO_DBG,
674                                   "Malloc failed for list_info\n");
675                         return -ENOMEM;
676                 }
677                 mem_allocated += list_holder_size;
678         }
679         for (i = 0; i < config->tx_fifo_num; i++) {
680                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
681                                                 lst_per_page);
682                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
683                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
684                     config->tx_cfg[i].fifo_len - 1;
685                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
686                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
687                     config->tx_cfg[i].fifo_len - 1;
688                 mac_control->fifos[i].fifo_no = i;
689                 mac_control->fifos[i].nic = nic;
690                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
691                 mac_control->fifos[i].dev = dev;
692
693                 for (j = 0; j < page_num; j++) {
694                         int k = 0;
695                         dma_addr_t tmp_p;
696                         void *tmp_v;
697                         tmp_v = pci_alloc_consistent(nic->pdev,
698                                                      PAGE_SIZE, &tmp_p);
699                         if (!tmp_v) {
700                                 DBG_PRINT(INFO_DBG,
701                                           "pci_alloc_consistent ");
702                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
703                                 return -ENOMEM;
704                         }
705                         /* If we got a zero DMA address(can happen on
706                          * certain platforms like PPC), reallocate.
707                          * Store virtual address of page we don't want,
708                          * to be freed later.
709                          */
710                         if (!tmp_p) {
711                                 mac_control->zerodma_virt_addr = tmp_v;
712                                 DBG_PRINT(INIT_DBG,
713                                 "%s: Zero DMA address for TxDL. ", dev->name);
714                                 DBG_PRINT(INIT_DBG,
715                                 "Virtual address %p\n", tmp_v);
716                                 tmp_v = pci_alloc_consistent(nic->pdev,
717                                                      PAGE_SIZE, &tmp_p);
718                                 if (!tmp_v) {
719                                         DBG_PRINT(INFO_DBG,
720                                           "pci_alloc_consistent ");
721                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
722                                         return -ENOMEM;
723                                 }
724                                 mem_allocated += PAGE_SIZE;
725                         }
726                         while (k < lst_per_page) {
727                                 int l = (j * lst_per_page) + k;
728                                 if (l == config->tx_cfg[i].fifo_len)
729                                         break;
730                                 mac_control->fifos[i].list_info[l].list_virt_addr =
731                                     tmp_v + (k * lst_size);
732                                 mac_control->fifos[i].list_info[l].list_phy_addr =
733                                     tmp_p + (k * lst_size);
734                                 k++;
735                         }
736                 }
737         }
738
739         for (i = 0; i < config->tx_fifo_num; i++) {
740                 size = config->tx_cfg[i].fifo_len;
741                 mac_control->fifos[i].ufo_in_band_v
742                         = kcalloc(size, sizeof(u64), GFP_KERNEL);
743                 if (!mac_control->fifos[i].ufo_in_band_v)
744                         return -ENOMEM;
745                 mem_allocated += (size * sizeof(u64));
746         }
747
748         /* Allocation and initialization of RXDs in Rings */
749         size = 0;
750         for (i = 0; i < config->rx_ring_num; i++) {
751                 if (config->rx_cfg[i].num_rxd %
752                     (rxd_count[nic->rxd_mode] + 1)) {
753                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
754                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
755                                   i);
756                         DBG_PRINT(ERR_DBG, "RxDs per Block");
757                         return FAILURE;
758                 }
759                 size += config->rx_cfg[i].num_rxd;
760                 mac_control->rings[i].block_count =
761                         config->rx_cfg[i].num_rxd /
762                         (rxd_count[nic->rxd_mode] + 1 );
763                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
764                         mac_control->rings[i].block_count;
765         }
766         if (nic->rxd_mode == RXD_MODE_1)
767                 size = (size * (sizeof(struct RxD1)));
768         else
769                 size = (size * (sizeof(struct RxD3)));
770
771         for (i = 0; i < config->rx_ring_num; i++) {
772                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
773                 mac_control->rings[i].rx_curr_get_info.offset = 0;
774                 mac_control->rings[i].rx_curr_get_info.ring_len =
775                     config->rx_cfg[i].num_rxd - 1;
776                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
777                 mac_control->rings[i].rx_curr_put_info.offset = 0;
778                 mac_control->rings[i].rx_curr_put_info.ring_len =
779                     config->rx_cfg[i].num_rxd - 1;
780                 mac_control->rings[i].nic = nic;
781                 mac_control->rings[i].ring_no = i;
782                 mac_control->rings[i].lro = lro_enable;
783
784                 blk_cnt = config->rx_cfg[i].num_rxd /
785                                 (rxd_count[nic->rxd_mode] + 1);
786                 /*  Allocating all the Rx blocks */
787                 for (j = 0; j < blk_cnt; j++) {
788                         struct rx_block_info *rx_blocks;
789                         int l;
790
791                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
792                         size = SIZE_OF_BLOCK; //size is always page size
793                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
794                                                           &tmp_p_addr);
795                         if (tmp_v_addr == NULL) {
796                                 /*
797                                  * In case of failure, free_shared_mem()
798                                  * is called, which should free any
799                                  * memory that was alloced till the
800                                  * failure happened.
801                                  */
802                                 rx_blocks->block_virt_addr = tmp_v_addr;
803                                 return -ENOMEM;
804                         }
805                         mem_allocated += size;
806                         memset(tmp_v_addr, 0, size);
807                         rx_blocks->block_virt_addr = tmp_v_addr;
808                         rx_blocks->block_dma_addr = tmp_p_addr;
809                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
810                                                   rxd_count[nic->rxd_mode],
811                                                   GFP_KERNEL);
812                         if (!rx_blocks->rxds)
813                                 return -ENOMEM;
814                         mem_allocated +=
815                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
816                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
817                                 rx_blocks->rxds[l].virt_addr =
818                                         rx_blocks->block_virt_addr +
819                                         (rxd_size[nic->rxd_mode] * l);
820                                 rx_blocks->rxds[l].dma_addr =
821                                         rx_blocks->block_dma_addr +
822                                         (rxd_size[nic->rxd_mode] * l);
823                         }
824                 }
825                 /* Interlinking all Rx Blocks */
826                 for (j = 0; j < blk_cnt; j++) {
827                         tmp_v_addr =
828                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
829                         tmp_v_addr_next =
830                                 mac_control->rings[i].rx_blocks[(j + 1) %
831                                               blk_cnt].block_virt_addr;
832                         tmp_p_addr =
833                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
834                         tmp_p_addr_next =
835                                 mac_control->rings[i].rx_blocks[(j + 1) %
836                                               blk_cnt].block_dma_addr;
837
838                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
839                         pre_rxd_blk->reserved_2_pNext_RxD_block =
840                             (unsigned long) tmp_v_addr_next;
841                         pre_rxd_blk->pNext_RxD_Blk_physical =
842                             (u64) tmp_p_addr_next;
843                 }
844         }
845         if (nic->rxd_mode == RXD_MODE_3B) {
846                 /*
847                  * Allocation of Storages for buffer addresses in 2BUFF mode
848                  * and the buffers as well.
849                  */
850                 for (i = 0; i < config->rx_ring_num; i++) {
851                         blk_cnt = config->rx_cfg[i].num_rxd /
852                            (rxd_count[nic->rxd_mode]+ 1);
853                         mac_control->rings[i].ba =
854                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
855                                      GFP_KERNEL);
856                         if (!mac_control->rings[i].ba)
857                                 return -ENOMEM;
858                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
859                         for (j = 0; j < blk_cnt; j++) {
860                                 int k = 0;
861                                 mac_control->rings[i].ba[j] =
862                                         kmalloc((sizeof(struct buffAdd) *
863                                                 (rxd_count[nic->rxd_mode] + 1)),
864                                                 GFP_KERNEL);
865                                 if (!mac_control->rings[i].ba[j])
866                                         return -ENOMEM;
867                                 mem_allocated += (sizeof(struct buffAdd) *  \
868                                         (rxd_count[nic->rxd_mode] + 1));
869                                 while (k != rxd_count[nic->rxd_mode]) {
870                                         ba = &mac_control->rings[i].ba[j][k];
871
872                                         ba->ba_0_org = (void *) kmalloc
873                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
874                                         if (!ba->ba_0_org)
875                                                 return -ENOMEM;
876                                         mem_allocated +=
877                                                 (BUF0_LEN + ALIGN_SIZE);
878                                         tmp = (unsigned long)ba->ba_0_org;
879                                         tmp += ALIGN_SIZE;
880                                         tmp &= ~((unsigned long) ALIGN_SIZE);
881                                         ba->ba_0 = (void *) tmp;
882
883                                         ba->ba_1_org = (void *) kmalloc
884                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
885                                         if (!ba->ba_1_org)
886                                                 return -ENOMEM;
887                                         mem_allocated
888                                                 += (BUF1_LEN + ALIGN_SIZE);
889                                         tmp = (unsigned long) ba->ba_1_org;
890                                         tmp += ALIGN_SIZE;
891                                         tmp &= ~((unsigned long) ALIGN_SIZE);
892                                         ba->ba_1 = (void *) tmp;
893                                         k++;
894                                 }
895                         }
896                 }
897         }
898
899         /* Allocation and initialization of Statistics block */
900         size = sizeof(struct stat_block);
901         mac_control->stats_mem = pci_alloc_consistent
902             (nic->pdev, size, &mac_control->stats_mem_phy);
903
904         if (!mac_control->stats_mem) {
905                 /*
906                  * In case of failure, free_shared_mem() is called, which
907                  * should free any memory that was alloced till the
908                  * failure happened.
909                  */
910                 return -ENOMEM;
911         }
912         mem_allocated += size;
913         mac_control->stats_mem_sz = size;
914
915         tmp_v_addr = mac_control->stats_mem;
916         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
917         memset(tmp_v_addr, 0, size);
918         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
919                   (unsigned long long) tmp_p_addr);
920         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
921         return SUCCESS;
922 }
923
924 /**
925  * free_shared_mem - Free the allocated Memory
926  * @nic:  Device private variable.
927  * Description: This function is to free all memory locations allocated by
928  * the init_shared_mem() function and return it to the kernel.
929  */
930
931 static void free_shared_mem(struct s2io_nic *nic)
932 {
933         int i, j, blk_cnt, size;
934         void *tmp_v_addr;
935         dma_addr_t tmp_p_addr;
936         struct mac_info *mac_control;
937         struct config_param *config;
938         int lst_size, lst_per_page;
939         struct net_device *dev;
940         int page_num = 0;
941
942         if (!nic)
943                 return;
944
945         dev = nic->dev;
946
947         mac_control = &nic->mac_control;
948         config = &nic->config;
949
950         lst_size = (sizeof(struct TxD) * config->max_txds);
951         lst_per_page = PAGE_SIZE / lst_size;
952
953         for (i = 0; i < config->tx_fifo_num; i++) {
954                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
955                                                         lst_per_page);
956                 for (j = 0; j < page_num; j++) {
957                         int mem_blks = (j * lst_per_page);
958                         if (!mac_control->fifos[i].list_info)
959                                 return;
960                         if (!mac_control->fifos[i].list_info[mem_blks].
961                                  list_virt_addr)
962                                 break;
963                         pci_free_consistent(nic->pdev, PAGE_SIZE,
964                                             mac_control->fifos[i].
965                                             list_info[mem_blks].
966                                             list_virt_addr,
967                                             mac_control->fifos[i].
968                                             list_info[mem_blks].
969                                             list_phy_addr);
970                         nic->mac_control.stats_info->sw_stat.mem_freed
971                                                 += PAGE_SIZE;
972                 }
973                 /* If we got a zero DMA address during allocation,
974                  * free the page now
975                  */
976                 if (mac_control->zerodma_virt_addr) {
977                         pci_free_consistent(nic->pdev, PAGE_SIZE,
978                                             mac_control->zerodma_virt_addr,
979                                             (dma_addr_t)0);
980                         DBG_PRINT(INIT_DBG,
981                                 "%s: Freeing TxDL with zero DMA addr. ",
982                                 dev->name);
983                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
984                                 mac_control->zerodma_virt_addr);
985                         nic->mac_control.stats_info->sw_stat.mem_freed
986                                                 += PAGE_SIZE;
987                 }
988                 kfree(mac_control->fifos[i].list_info);
989                 nic->mac_control.stats_info->sw_stat.mem_freed +=
990                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
991         }
992
993         size = SIZE_OF_BLOCK;
994         for (i = 0; i < config->rx_ring_num; i++) {
995                 blk_cnt = mac_control->rings[i].block_count;
996                 for (j = 0; j < blk_cnt; j++) {
997                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
998                                 block_virt_addr;
999                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1000                                 block_dma_addr;
1001                         if (tmp_v_addr == NULL)
1002                                 break;
1003                         pci_free_consistent(nic->pdev, size,
1004                                             tmp_v_addr, tmp_p_addr);
1005                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
1006                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
1007                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1008                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1009                 }
1010         }
1011
1012         if (nic->rxd_mode == RXD_MODE_3B) {
1013                 /* Freeing buffer storage addresses in 2BUFF mode. */
1014                 for (i = 0; i < config->rx_ring_num; i++) {
1015                         blk_cnt = config->rx_cfg[i].num_rxd /
1016                             (rxd_count[nic->rxd_mode] + 1);
1017                         for (j = 0; j < blk_cnt; j++) {
1018                                 int k = 0;
1019                                 if (!mac_control->rings[i].ba[j])
1020                                         continue;
1021                                 while (k != rxd_count[nic->rxd_mode]) {
1022                                         struct buffAdd *ba =
1023                                                 &mac_control->rings[i].ba[j][k];
1024                                         kfree(ba->ba_0_org);
1025                                         nic->mac_control.stats_info->sw_stat.\
1026                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
1027                                         kfree(ba->ba_1_org);
1028                                         nic->mac_control.stats_info->sw_stat.\
1029                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
1030                                         k++;
1031                                 }
1032                                 kfree(mac_control->rings[i].ba[j]);
1033                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1034                                         (sizeof(struct buffAdd) *
1035                                         (rxd_count[nic->rxd_mode] + 1));
1036                         }
1037                         kfree(mac_control->rings[i].ba);
1038                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1039                         (sizeof(struct buffAdd *) * blk_cnt);
1040                 }
1041         }
1042
1043         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1044                 if (mac_control->fifos[i].ufo_in_band_v) {
1045                         nic->mac_control.stats_info->sw_stat.mem_freed
1046                                 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1047                         kfree(mac_control->fifos[i].ufo_in_band_v);
1048                 }
1049         }
1050
1051         if (mac_control->stats_mem) {
1052                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1053                         mac_control->stats_mem_sz;
1054                 pci_free_consistent(nic->pdev,
1055                                     mac_control->stats_mem_sz,
1056                                     mac_control->stats_mem,
1057                                     mac_control->stats_mem_phy);
1058         }
1059 }
1060
1061 /**
1062  * s2io_verify_pci_mode -
1063  */
1064
1065 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1066 {
1067         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1068         register u64 val64 = 0;
1069         int     mode;
1070
1071         val64 = readq(&bar0->pci_mode);
1072         mode = (u8)GET_PCI_MODE(val64);
1073
1074         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1075                 return -1;      /* Unknown PCI mode */
1076         return mode;
1077 }
1078
1079 #define NEC_VENID   0x1033
1080 #define NEC_DEVID   0x0125
1081 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1082 {
1083         struct pci_dev *tdev = NULL;
1084         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1085                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1086                         if (tdev->bus == s2io_pdev->bus->parent) {
1087                                 pci_dev_put(tdev);
1088                                 return 1;
1089                         }
1090                 }
1091         }
1092         return 0;
1093 }
1094
1095 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1096 /**
1097  * s2io_print_pci_mode -
1098  */
1099 static int s2io_print_pci_mode(struct s2io_nic *nic)
1100 {
1101         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1102         register u64 val64 = 0;
1103         int     mode;
1104         struct config_param *config = &nic->config;
1105
1106         val64 = readq(&bar0->pci_mode);
1107         mode = (u8)GET_PCI_MODE(val64);
1108
1109         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1110                 return -1;      /* Unknown PCI mode */
1111
1112         config->bus_speed = bus_speed[mode];
1113
1114         if (s2io_on_nec_bridge(nic->pdev)) {
1115                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1116                                                         nic->dev->name);
1117                 return mode;
1118         }
1119
1120         if (val64 & PCI_MODE_32_BITS) {
1121                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1122         } else {
1123                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1124         }
1125
1126         switch(mode) {
1127                 case PCI_MODE_PCI_33:
1128                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1129                         break;
1130                 case PCI_MODE_PCI_66:
1131                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1132                         break;
1133                 case PCI_MODE_PCIX_M1_66:
1134                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1135                         break;
1136                 case PCI_MODE_PCIX_M1_100:
1137                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1138                         break;
1139                 case PCI_MODE_PCIX_M1_133:
1140                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1141                         break;
1142                 case PCI_MODE_PCIX_M2_66:
1143                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1144                         break;
1145                 case PCI_MODE_PCIX_M2_100:
1146                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1147                         break;
1148                 case PCI_MODE_PCIX_M2_133:
1149                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1150                         break;
1151                 default:
1152                         return -1;      /* Unsupported bus speed */
1153         }
1154
1155         return mode;
1156 }
1157
1158 /**
1159  *  init_tti - Initialization transmit traffic interrupt scheme
1160  *  @nic: device private variable
1161  *  @link: link status (UP/DOWN) used to enable/disable continuous
1162  *  transmit interrupts
1163  *  Description: The function configures transmit traffic interrupts
1164  *  Return Value:  SUCCESS on success and
1165  *  '-1' on failure
1166  */
1167
1168 static int init_tti(struct s2io_nic *nic, int link)
1169 {
1170         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1171         register u64 val64 = 0;
1172         int i;
1173         struct config_param *config;
1174
1175         config = &nic->config;
1176
1177         for (i = 0; i < config->tx_fifo_num; i++) {
1178                 /*
1179                  * TTI Initialization. Default Tx timer gets us about
1180                  * 250 interrupts per sec. Continuous interrupts are enabled
1181                  * by default.
1182                  */
1183                 if (nic->device_type == XFRAME_II_DEVICE) {
1184                         int count = (nic->config.bus_speed * 125)/2;
1185                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1186                 } else
1187                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1188
1189                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1190                                 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1191                                 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1192                                 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1193                 if (i == 0)
1194                         if (use_continuous_tx_intrs && (link == LINK_UP))
1195                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1196                 writeq(val64, &bar0->tti_data1_mem);
1197
1198                 if (nic->config.intr_type == MSI_X) {
1199                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1200                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1201                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1202                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1203                 } else {
1204                         if ((nic->config.tx_steering_type ==
1205                                 TX_DEFAULT_STEERING) &&
1206                                 (config->tx_fifo_num > 1) &&
1207                                 (i >= nic->udp_fifo_idx) &&
1208                                 (i < (nic->udp_fifo_idx +
1209                                 nic->total_udp_fifos)))
1210                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1211                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1212                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1213                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1214                         else
1215                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1216                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1217                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1218                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1219                 }
1220
1221                 writeq(val64, &bar0->tti_data2_mem);
1222
1223                 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1224                                 TTI_CMD_MEM_OFFSET(i);
1225                 writeq(val64, &bar0->tti_command_mem);
1226
1227                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1228                         TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1229                         return FAILURE;
1230         }
1231
1232         return SUCCESS;
1233 }
1234
1235 /**
1236  *  init_nic - Initialization of hardware
1237  *  @nic: device private variable
1238  *  Description: The function sequentially configures every block
1239  *  of the H/W from their reset values.
1240  *  Return Value:  SUCCESS on success and
1241  *  '-1' on failure (endian settings incorrect).
1242  */
1243
1244 static int init_nic(struct s2io_nic *nic)
1245 {
1246         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1247         struct net_device *dev = nic->dev;
1248         register u64 val64 = 0;
1249         void __iomem *add;
1250         u32 time;
1251         int i, j;
1252         struct mac_info *mac_control;
1253         struct config_param *config;
1254         int dtx_cnt = 0;
1255         unsigned long long mem_share;
1256         int mem_size;
1257
1258         mac_control = &nic->mac_control;
1259         config = &nic->config;
1260
1261         /* to set the swapper controle on the card */
1262         if(s2io_set_swapper(nic)) {
1263                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1264                 return -EIO;
1265         }
1266
1267         /*
1268          * Herc requires EOI to be removed from reset before XGXS, so..
1269          */
1270         if (nic->device_type & XFRAME_II_DEVICE) {
1271                 val64 = 0xA500000000ULL;
1272                 writeq(val64, &bar0->sw_reset);
1273                 msleep(500);
1274                 val64 = readq(&bar0->sw_reset);
1275         }
1276
1277         /* Remove XGXS from reset state */
1278         val64 = 0;
1279         writeq(val64, &bar0->sw_reset);
1280         msleep(500);
1281         val64 = readq(&bar0->sw_reset);
1282
1283         /* Ensure that it's safe to access registers by checking
1284          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1285          */
1286         if (nic->device_type == XFRAME_II_DEVICE) {
1287                 for (i = 0; i < 50; i++) {
1288                         val64 = readq(&bar0->adapter_status);
1289                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1290                                 break;
1291                         msleep(10);
1292                 }
1293                 if (i == 50)
1294                         return -ENODEV;
1295         }
1296
1297         /*  Enable Receiving broadcasts */
1298         add = &bar0->mac_cfg;
1299         val64 = readq(&bar0->mac_cfg);
1300         val64 |= MAC_RMAC_BCAST_ENABLE;
1301         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1302         writel((u32) val64, add);
1303         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1304         writel((u32) (val64 >> 32), (add + 4));
1305
1306         /* Read registers in all blocks */
1307         val64 = readq(&bar0->mac_int_mask);
1308         val64 = readq(&bar0->mc_int_mask);
1309         val64 = readq(&bar0->xgxs_int_mask);
1310
1311         /*  Set MTU */
1312         val64 = dev->mtu;
1313         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1314
1315         if (nic->device_type & XFRAME_II_DEVICE) {
1316                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1317                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1318                                           &bar0->dtx_control, UF);
1319                         if (dtx_cnt & 0x1)
1320                                 msleep(1); /* Necessary!! */
1321                         dtx_cnt++;
1322                 }
1323         } else {
1324                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1325                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1326                                           &bar0->dtx_control, UF);
1327                         val64 = readq(&bar0->dtx_control);
1328                         dtx_cnt++;
1329                 }
1330         }
1331
1332         /*  Tx DMA Initialization */
1333         val64 = 0;
1334         writeq(val64, &bar0->tx_fifo_partition_0);
1335         writeq(val64, &bar0->tx_fifo_partition_1);
1336         writeq(val64, &bar0->tx_fifo_partition_2);
1337         writeq(val64, &bar0->tx_fifo_partition_3);
1338
1339
1340         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1341                 val64 |=
1342                     vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1343                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1344                                     ((j * 32) + 5), 3);
1345
1346                 if (i == (config->tx_fifo_num - 1)) {
1347                         if (i % 2 == 0)
1348                                 i++;
1349                 }
1350
1351                 switch (i) {
1352                 case 1:
1353                         writeq(val64, &bar0->tx_fifo_partition_0);
1354                         val64 = 0;
1355                         j = 0;
1356                         break;
1357                 case 3:
1358                         writeq(val64, &bar0->tx_fifo_partition_1);
1359                         val64 = 0;
1360                         j = 0;
1361                         break;
1362                 case 5:
1363                         writeq(val64, &bar0->tx_fifo_partition_2);
1364                         val64 = 0;
1365                         j = 0;
1366                         break;
1367                 case 7:
1368                         writeq(val64, &bar0->tx_fifo_partition_3);
1369                         val64 = 0;
1370                         j = 0;
1371                         break;
1372                 default:
1373                         j++;
1374                         break;
1375                 }
1376         }
1377
1378         /*
1379          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1380          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1381          */
1382         if ((nic->device_type == XFRAME_I_DEVICE) &&
1383                 (nic->pdev->revision < 4))
1384                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1385
1386         val64 = readq(&bar0->tx_fifo_partition_0);
1387         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1388                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1389
1390         /*
1391          * Initialization of Tx_PA_CONFIG register to ignore packet
1392          * integrity checking.
1393          */
1394         val64 = readq(&bar0->tx_pa_cfg);
1395         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1396             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1397         writeq(val64, &bar0->tx_pa_cfg);
1398
1399         /* Rx DMA intialization. */
1400         val64 = 0;
1401         for (i = 0; i < config->rx_ring_num; i++) {
1402                 val64 |=
1403                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1404                          3);
1405         }
1406         writeq(val64, &bar0->rx_queue_priority);
1407
1408         /*
1409          * Allocating equal share of memory to all the
1410          * configured Rings.
1411          */
1412         val64 = 0;
1413         if (nic->device_type & XFRAME_II_DEVICE)
1414                 mem_size = 32;
1415         else
1416                 mem_size = 64;
1417
1418         for (i = 0; i < config->rx_ring_num; i++) {
1419                 switch (i) {
1420                 case 0:
1421                         mem_share = (mem_size / config->rx_ring_num +
1422                                      mem_size % config->rx_ring_num);
1423                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1424                         continue;
1425                 case 1:
1426                         mem_share = (mem_size / config->rx_ring_num);
1427                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1428                         continue;
1429                 case 2:
1430                         mem_share = (mem_size / config->rx_ring_num);
1431                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1432                         continue;
1433                 case 3:
1434                         mem_share = (mem_size / config->rx_ring_num);
1435                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1436                         continue;
1437                 case 4:
1438                         mem_share = (mem_size / config->rx_ring_num);
1439                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1440                         continue;
1441                 case 5:
1442                         mem_share = (mem_size / config->rx_ring_num);
1443                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1444                         continue;
1445                 case 6:
1446                         mem_share = (mem_size / config->rx_ring_num);
1447                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1448                         continue;
1449                 case 7:
1450                         mem_share = (mem_size / config->rx_ring_num);
1451                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1452                         continue;
1453                 }
1454         }
1455         writeq(val64, &bar0->rx_queue_cfg);
1456
1457         /*
1458          * Filling Tx round robin registers
1459          * as per the number of FIFOs for equal scheduling priority
1460          */
1461         switch (config->tx_fifo_num) {
1462         case 1:
1463                 val64 = 0x0;
1464                 writeq(val64, &bar0->tx_w_round_robin_0);
1465                 writeq(val64, &bar0->tx_w_round_robin_1);
1466                 writeq(val64, &bar0->tx_w_round_robin_2);
1467                 writeq(val64, &bar0->tx_w_round_robin_3);
1468                 writeq(val64, &bar0->tx_w_round_robin_4);
1469                 break;
1470         case 2:
1471                 val64 = 0x0001000100010001ULL;
1472                 writeq(val64, &bar0->tx_w_round_robin_0);
1473                 writeq(val64, &bar0->tx_w_round_robin_1);
1474                 writeq(val64, &bar0->tx_w_round_robin_2);
1475                 writeq(val64, &bar0->tx_w_round_robin_3);
1476                 val64 = 0x0001000100000000ULL;
1477                 writeq(val64, &bar0->tx_w_round_robin_4);
1478                 break;
1479         case 3:
1480                 val64 = 0x0001020001020001ULL;
1481                 writeq(val64, &bar0->tx_w_round_robin_0);
1482                 val64 = 0x0200010200010200ULL;
1483                 writeq(val64, &bar0->tx_w_round_robin_1);
1484                 val64 = 0x0102000102000102ULL;
1485                 writeq(val64, &bar0->tx_w_round_robin_2);
1486                 val64 = 0x0001020001020001ULL;
1487                 writeq(val64, &bar0->tx_w_round_robin_3);
1488                 val64 = 0x0200010200000000ULL;
1489                 writeq(val64, &bar0->tx_w_round_robin_4);
1490                 break;
1491         case 4:
1492                 val64 = 0x0001020300010203ULL;
1493                 writeq(val64, &bar0->tx_w_round_robin_0);
1494                 writeq(val64, &bar0->tx_w_round_robin_1);
1495                 writeq(val64, &bar0->tx_w_round_robin_2);
1496                 writeq(val64, &bar0->tx_w_round_robin_3);
1497                 val64 = 0x0001020300000000ULL;
1498                 writeq(val64, &bar0->tx_w_round_robin_4);
1499                 break;
1500         case 5:
1501                 val64 = 0x0001020304000102ULL;
1502                 writeq(val64, &bar0->tx_w_round_robin_0);
1503                 val64 = 0x0304000102030400ULL;
1504                 writeq(val64, &bar0->tx_w_round_robin_1);
1505                 val64 = 0x0102030400010203ULL;
1506                 writeq(val64, &bar0->tx_w_round_robin_2);
1507                 val64 = 0x0400010203040001ULL;
1508                 writeq(val64, &bar0->tx_w_round_robin_3);
1509                 val64 = 0x0203040000000000ULL;
1510                 writeq(val64, &bar0->tx_w_round_robin_4);
1511                 break;
1512         case 6:
1513                 val64 = 0x0001020304050001ULL;
1514                 writeq(val64, &bar0->tx_w_round_robin_0);
1515                 val64 = 0x0203040500010203ULL;
1516                 writeq(val64, &bar0->tx_w_round_robin_1);
1517                 val64 = 0x0405000102030405ULL;
1518                 writeq(val64, &bar0->tx_w_round_robin_2);
1519                 val64 = 0x0001020304050001ULL;
1520                 writeq(val64, &bar0->tx_w_round_robin_3);
1521                 val64 = 0x0203040500000000ULL;
1522                 writeq(val64, &bar0->tx_w_round_robin_4);
1523                 break;
1524         case 7:
1525                 val64 = 0x0001020304050600ULL;
1526                 writeq(val64, &bar0->tx_w_round_robin_0);
1527                 val64 = 0x0102030405060001ULL;
1528                 writeq(val64, &bar0->tx_w_round_robin_1);
1529                 val64 = 0x0203040506000102ULL;
1530                 writeq(val64, &bar0->tx_w_round_robin_2);
1531                 val64 = 0x0304050600010203ULL;
1532                 writeq(val64, &bar0->tx_w_round_robin_3);
1533                 val64 = 0x0405060000000000ULL;
1534                 writeq(val64, &bar0->tx_w_round_robin_4);
1535                 break;
1536         case 8:
1537                 val64 = 0x0001020304050607ULL;
1538                 writeq(val64, &bar0->tx_w_round_robin_0);
1539                 writeq(val64, &bar0->tx_w_round_robin_1);
1540                 writeq(val64, &bar0->tx_w_round_robin_2);
1541                 writeq(val64, &bar0->tx_w_round_robin_3);
1542                 val64 = 0x0001020300000000ULL;
1543                 writeq(val64, &bar0->tx_w_round_robin_4);
1544                 break;
1545         }
1546
1547         /* Enable all configured Tx FIFO partitions */
1548         val64 = readq(&bar0->tx_fifo_partition_0);
1549         val64 |= (TX_FIFO_PARTITION_EN);
1550         writeq(val64, &bar0->tx_fifo_partition_0);
1551
1552         /* Filling the Rx round robin registers as per the
1553          * number of Rings and steering based on QoS with
1554          * equal priority.
1555          */
1556         switch (config->rx_ring_num) {
1557         case 1:
1558                 val64 = 0x0;
1559                 writeq(val64, &bar0->rx_w_round_robin_0);
1560                 writeq(val64, &bar0->rx_w_round_robin_1);
1561                 writeq(val64, &bar0->rx_w_round_robin_2);
1562                 writeq(val64, &bar0->rx_w_round_robin_3);
1563                 writeq(val64, &bar0->rx_w_round_robin_4);
1564
1565                 val64 = 0x8080808080808080ULL;
1566                 writeq(val64, &bar0->rts_qos_steering);
1567                 break;
1568         case 2:
1569                 val64 = 0x0001000100010001ULL;
1570                 writeq(val64, &bar0->rx_w_round_robin_0);
1571                 writeq(val64, &bar0->rx_w_round_robin_1);
1572                 writeq(val64, &bar0->rx_w_round_robin_2);
1573                 writeq(val64, &bar0->rx_w_round_robin_3);
1574                 val64 = 0x0001000100000000ULL;
1575                 writeq(val64, &bar0->rx_w_round_robin_4);
1576
1577                 val64 = 0x8080808040404040ULL;
1578                 writeq(val64, &bar0->rts_qos_steering);
1579                 break;
1580         case 3:
1581                 val64 = 0x0001020001020001ULL;
1582                 writeq(val64, &bar0->rx_w_round_robin_0);
1583                 val64 = 0x0200010200010200ULL;
1584                 writeq(val64, &bar0->rx_w_round_robin_1);
1585                 val64 = 0x0102000102000102ULL;
1586                 writeq(val64, &bar0->rx_w_round_robin_2);
1587                 val64 = 0x0001020001020001ULL;
1588                 writeq(val64, &bar0->rx_w_round_robin_3);
1589                 val64 = 0x0200010200000000ULL;
1590                 writeq(val64, &bar0->rx_w_round_robin_4);
1591
1592                 val64 = 0x8080804040402020ULL;
1593                 writeq(val64, &bar0->rts_qos_steering);
1594                 break;
1595         case 4:
1596                 val64 = 0x0001020300010203ULL;
1597                 writeq(val64, &bar0->rx_w_round_robin_0);
1598                 writeq(val64, &bar0->rx_w_round_robin_1);
1599                 writeq(val64, &bar0->rx_w_round_robin_2);
1600                 writeq(val64, &bar0->rx_w_round_robin_3);
1601                 val64 = 0x0001020300000000ULL;
1602                 writeq(val64, &bar0->rx_w_round_robin_4);
1603
1604                 val64 = 0x8080404020201010ULL;
1605                 writeq(val64, &bar0->rts_qos_steering);
1606                 break;
1607         case 5:
1608                 val64 = 0x0001020304000102ULL;
1609                 writeq(val64, &bar0->rx_w_round_robin_0);
1610                 val64 = 0x0304000102030400ULL;
1611                 writeq(val64, &bar0->rx_w_round_robin_1);
1612                 val64 = 0x0102030400010203ULL;
1613                 writeq(val64, &bar0->rx_w_round_robin_2);
1614                 val64 = 0x0400010203040001ULL;
1615                 writeq(val64, &bar0->rx_w_round_robin_3);
1616                 val64 = 0x0203040000000000ULL;
1617                 writeq(val64, &bar0->rx_w_round_robin_4);
1618
1619                 val64 = 0x8080404020201008ULL;
1620                 writeq(val64, &bar0->rts_qos_steering);
1621                 break;
1622         case 6:
1623                 val64 = 0x0001020304050001ULL;
1624                 writeq(val64, &bar0->rx_w_round_robin_0);
1625                 val64 = 0x0203040500010203ULL;
1626                 writeq(val64, &bar0->rx_w_round_robin_1);
1627                 val64 = 0x0405000102030405ULL;
1628                 writeq(val64, &bar0->rx_w_round_robin_2);
1629                 val64 = 0x0001020304050001ULL;
1630                 writeq(val64, &bar0->rx_w_round_robin_3);
1631                 val64 = 0x0203040500000000ULL;
1632                 writeq(val64, &bar0->rx_w_round_robin_4);
1633
1634                 val64 = 0x8080404020100804ULL;
1635                 writeq(val64, &bar0->rts_qos_steering);
1636                 break;
1637         case 7:
1638                 val64 = 0x0001020304050600ULL;
1639                 writeq(val64, &bar0->rx_w_round_robin_0);
1640                 val64 = 0x0102030405060001ULL;
1641                 writeq(val64, &bar0->rx_w_round_robin_1);
1642                 val64 = 0x0203040506000102ULL;
1643                 writeq(val64, &bar0->rx_w_round_robin_2);
1644                 val64 = 0x0304050600010203ULL;
1645                 writeq(val64, &bar0->rx_w_round_robin_3);
1646                 val64 = 0x0405060000000000ULL;
1647                 writeq(val64, &bar0->rx_w_round_robin_4);
1648
1649                 val64 = 0x8080402010080402ULL;
1650                 writeq(val64, &bar0->rts_qos_steering);
1651                 break;
1652         case 8:
1653                 val64 = 0x0001020304050607ULL;
1654                 writeq(val64, &bar0->rx_w_round_robin_0);
1655                 writeq(val64, &bar0->rx_w_round_robin_1);
1656                 writeq(val64, &bar0->rx_w_round_robin_2);
1657                 writeq(val64, &bar0->rx_w_round_robin_3);
1658                 val64 = 0x0001020300000000ULL;
1659                 writeq(val64, &bar0->rx_w_round_robin_4);
1660
1661                 val64 = 0x8040201008040201ULL;
1662                 writeq(val64, &bar0->rts_qos_steering);
1663                 break;
1664         }
1665
1666         /* UDP Fix */
1667         val64 = 0;
1668         for (i = 0; i < 8; i++)
1669                 writeq(val64, &bar0->rts_frm_len_n[i]);
1670
1671         /* Set the default rts frame length for the rings configured */
1672         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1673         for (i = 0 ; i < config->rx_ring_num ; i++)
1674                 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676         /* Set the frame length for the configured rings
1677          * desired by the user
1678          */
1679         for (i = 0; i < config->rx_ring_num; i++) {
1680                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1681                  * specified frame length steering.
1682                  * If the user provides the frame length then program
1683                  * the rts_frm_len register for those values or else
1684                  * leave it as it is.
1685                  */
1686                 if (rts_frm_len[i] != 0) {
1687                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1688                                 &bar0->rts_frm_len_n[i]);
1689                 }
1690         }
1691
1692         /* Disable differentiated services steering logic */
1693         for (i = 0; i < 64; i++) {
1694                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1695                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1696                                 dev->name);
1697                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1698                         return -ENODEV;
1699                 }
1700         }
1701
1702         /* Program statistics memory */
1703         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1704
1705         if (nic->device_type == XFRAME_II_DEVICE) {
1706                 val64 = STAT_BC(0x320);
1707                 writeq(val64, &bar0->stat_byte_cnt);
1708         }
1709
1710         /*
1711          * Initializing the sampling rate for the device to calculate the
1712          * bandwidth utilization.
1713          */
1714         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1715             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1716         writeq(val64, &bar0->mac_link_util);
1717
1718         /*
1719          * Initializing the Transmit and Receive Traffic Interrupt
1720          * Scheme.
1721          */
1722
1723         /* Initialize TTI */
1724         if (SUCCESS != init_tti(nic, nic->last_link_state))
1725                 return -ENODEV;
1726
1727         /* RTI Initialization */
1728         if (nic->device_type == XFRAME_II_DEVICE) {
1729                 /*
1730                  * Programmed to generate Apprx 500 Intrs per
1731                  * second
1732                  */
1733                 int count = (nic->config.bus_speed * 125)/4;
1734                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1735         } else
1736                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1737         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1738                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1739                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1740
1741         writeq(val64, &bar0->rti_data1_mem);
1742
1743         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1744                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1745         if (nic->config.intr_type == MSI_X)
1746             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1747                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1748         else
1749             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1750                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1751         writeq(val64, &bar0->rti_data2_mem);
1752
1753         for (i = 0; i < config->rx_ring_num; i++) {
1754                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1755                                 | RTI_CMD_MEM_OFFSET(i);
1756                 writeq(val64, &bar0->rti_command_mem);
1757
1758                 /*
1759                  * Once the operation completes, the Strobe bit of the
1760                  * command register will be reset. We poll for this
1761                  * particular condition. We wait for a maximum of 500ms
1762                  * for the operation to complete, if it's not complete
1763                  * by then we return error.
1764                  */
1765                 time = 0;
1766                 while (TRUE) {
1767                         val64 = readq(&bar0->rti_command_mem);
1768                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1769                                 break;
1770
1771                         if (time > 10) {
1772                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1773                                           dev->name);
1774                                 return -ENODEV;
1775                         }
1776                         time++;
1777                         msleep(50);
1778                 }
1779         }
1780
1781         /*
1782          * Initializing proper values as Pause threshold into all
1783          * the 8 Queues on Rx side.
1784          */
1785         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1786         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1787
1788         /* Disable RMAC PAD STRIPPING */
1789         add = &bar0->mac_cfg;
1790         val64 = readq(&bar0->mac_cfg);
1791         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1792         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1793         writel((u32) (val64), add);
1794         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1795         writel((u32) (val64 >> 32), (add + 4));
1796         val64 = readq(&bar0->mac_cfg);
1797
1798         /* Enable FCS stripping by adapter */
1799         add = &bar0->mac_cfg;
1800         val64 = readq(&bar0->mac_cfg);
1801         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1802         if (nic->device_type == XFRAME_II_DEVICE)
1803                 writeq(val64, &bar0->mac_cfg);
1804         else {
1805                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806                 writel((u32) (val64), add);
1807                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1808                 writel((u32) (val64 >> 32), (add + 4));
1809         }
1810
1811         /*
1812          * Set the time value to be inserted in the pause frame
1813          * generated by xena.
1814          */
1815         val64 = readq(&bar0->rmac_pause_cfg);
1816         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1817         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1818         writeq(val64, &bar0->rmac_pause_cfg);
1819
1820         /*
1821          * Set the Threshold Limit for Generating the pause frame
1822          * If the amount of data in any Queue exceeds ratio of
1823          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1824          * pause frame is generated
1825          */
1826         val64 = 0;
1827         for (i = 0; i < 4; i++) {
1828                 val64 |=
1829                     (((u64) 0xFF00 | nic->mac_control.
1830                       mc_pause_threshold_q0q3)
1831                      << (i * 2 * 8));
1832         }
1833         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1834
1835         val64 = 0;
1836         for (i = 0; i < 4; i++) {
1837                 val64 |=
1838                     (((u64) 0xFF00 | nic->mac_control.
1839                       mc_pause_threshold_q4q7)
1840                      << (i * 2 * 8));
1841         }
1842         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1843
1844         /*
1845          * TxDMA will stop Read request if the number of read split has
1846          * exceeded the limit pointed by shared_splits
1847          */
1848         val64 = readq(&bar0->pic_control);
1849         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1850         writeq(val64, &bar0->pic_control);
1851
1852         if (nic->config.bus_speed == 266) {
1853                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1854                 writeq(0x0, &bar0->read_retry_delay);
1855                 writeq(0x0, &bar0->write_retry_delay);
1856         }
1857
1858         /*
1859          * Programming the Herc to split every write transaction
1860          * that does not start on an ADB to reduce disconnects.
1861          */
1862         if (nic->device_type == XFRAME_II_DEVICE) {
1863                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1864                         MISC_LINK_STABILITY_PRD(3);
1865                 writeq(val64, &bar0->misc_control);
1866                 val64 = readq(&bar0->pic_control2);
1867                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1868                 writeq(val64, &bar0->pic_control2);
1869         }
1870         if (strstr(nic->product_name, "CX4")) {
1871                 val64 = TMAC_AVG_IPG(0x17);
1872                 writeq(val64, &bar0->tmac_avg_ipg);
1873         }
1874
1875         return SUCCESS;
1876 }
1877 #define LINK_UP_DOWN_INTERRUPT          1
1878 #define MAC_RMAC_ERR_TIMER              2
1879
1880 static int s2io_link_fault_indication(struct s2io_nic *nic)
1881 {
1882         if (nic->device_type == XFRAME_II_DEVICE)
1883                 return LINK_UP_DOWN_INTERRUPT;
1884         else
1885                 return MAC_RMAC_ERR_TIMER;
1886 }
1887
1888 /**
1889  *  do_s2io_write_bits -  update alarm bits in alarm register
1890  *  @value: alarm bits
1891  *  @flag: interrupt status
1892  *  @addr: address value
1893  *  Description: update alarm bits in alarm register
1894  *  Return Value:
1895  *  NONE.
1896  */
1897 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1898 {
1899         u64 temp64;
1900
1901         temp64 = readq(addr);
1902
1903         if(flag == ENABLE_INTRS)
1904                 temp64 &= ~((u64) value);
1905         else
1906                 temp64 |= ((u64) value);
1907         writeq(temp64, addr);
1908 }
1909
1910 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1911 {
1912         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1913         register u64 gen_int_mask = 0;
1914         u64 interruptible;
1915
1916         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1917         if (mask & TX_DMA_INTR) {
1918
1919                 gen_int_mask |= TXDMA_INT_M;
1920
1921                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1922                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1923                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1924                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1925
1926                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1927                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1928                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1929                                 &bar0->pfc_err_mask);
1930
1931                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1932                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1933                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1934
1935                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1936                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1937                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1938                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1939                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1940                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1941
1942                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1943                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1944
1945                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1946                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1947                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1948                                 flag, &bar0->lso_err_mask);
1949
1950                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1951                                 flag, &bar0->tpa_err_mask);
1952
1953                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1954
1955         }
1956
1957         if (mask & TX_MAC_INTR) {
1958                 gen_int_mask |= TXMAC_INT_M;
1959                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1960                                 &bar0->mac_int_mask);
1961                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1962                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1963                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1964                                 flag, &bar0->mac_tmac_err_mask);
1965         }
1966
1967         if (mask & TX_XGXS_INTR) {
1968                 gen_int_mask |= TXXGXS_INT_M;
1969                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1970                                 &bar0->xgxs_int_mask);
1971                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1972                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1973                                 flag, &bar0->xgxs_txgxs_err_mask);
1974         }
1975
1976         if (mask & RX_DMA_INTR) {
1977                 gen_int_mask |= RXDMA_INT_M;
1978                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1979                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1980                                 flag, &bar0->rxdma_int_mask);
1981                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1982                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1983                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1984                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1985                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1986                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1987                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1988                                 &bar0->prc_pcix_err_mask);
1989                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1990                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1991                                 &bar0->rpa_err_mask);
1992                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1993                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1994                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1995                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1996                                 flag, &bar0->rda_err_mask);
1997                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1998                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1999                                 flag, &bar0->rti_err_mask);
2000         }
2001
2002         if (mask & RX_MAC_INTR) {
2003                 gen_int_mask |= RXMAC_INT_M;
2004                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2005                                 &bar0->mac_int_mask);
2006                 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2007                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2008                                 RMAC_DOUBLE_ECC_ERR;
2009                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2010                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2011                 do_s2io_write_bits(interruptible,
2012                                 flag, &bar0->mac_rmac_err_mask);
2013         }
2014
2015         if (mask & RX_XGXS_INTR)
2016         {
2017                 gen_int_mask |= RXXGXS_INT_M;
2018                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2019                                 &bar0->xgxs_int_mask);
2020                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2021                                 &bar0->xgxs_rxgxs_err_mask);
2022         }
2023
2024         if (mask & MC_INTR) {
2025                 gen_int_mask |= MC_INT_M;
2026                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2027                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2028                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2029                                 &bar0->mc_err_mask);
2030         }
2031         nic->general_int_mask = gen_int_mask;
2032
2033         /* Remove this line when alarm interrupts are enabled */
2034         nic->general_int_mask = 0;
2035 }
2036 /**
2037  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2038  *  @nic: device private variable,
2039  *  @mask: A mask indicating which Intr block must be modified and,
2040  *  @flag: A flag indicating whether to enable or disable the Intrs.
2041  *  Description: This function will either disable or enable the interrupts
2042  *  depending on the flag argument. The mask argument can be used to
2043  *  enable/disable any Intr block.
2044  *  Return Value: NONE.
2045  */
2046
2047 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2048 {
2049         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2050         register u64 temp64 = 0, intr_mask = 0;
2051
2052         intr_mask = nic->general_int_mask;
2053
2054         /*  Top level interrupt classification */
2055         /*  PIC Interrupts */
2056         if (mask & TX_PIC_INTR) {
2057                 /*  Enable PIC Intrs in the general intr mask register */
2058                 intr_mask |= TXPIC_INT_M;
2059                 if (flag == ENABLE_INTRS) {
2060                         /*
2061                          * If Hercules adapter enable GPIO otherwise
2062                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2063                          * interrupts for now.
2064                          * TODO
2065                          */
2066                         if (s2io_link_fault_indication(nic) ==
2067                                         LINK_UP_DOWN_INTERRUPT ) {
2068                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2069                                                 &bar0->pic_int_mask);
2070                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2071                                                 &bar0->gpio_int_mask);
2072                         } else
2073                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2074                 } else if (flag == DISABLE_INTRS) {
2075                         /*
2076                          * Disable PIC Intrs in the general
2077                          * intr mask register
2078                          */
2079                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080                 }
2081         }
2082
2083         /*  Tx traffic interrupts */
2084         if (mask & TX_TRAFFIC_INTR) {
2085                 intr_mask |= TXTRAFFIC_INT_M;
2086                 if (flag == ENABLE_INTRS) {
2087                         /*
2088                          * Enable all the Tx side interrupts
2089                          * writing 0 Enables all 64 TX interrupt levels
2090                          */
2091                         writeq(0x0, &bar0->tx_traffic_mask);
2092                 } else if (flag == DISABLE_INTRS) {
2093                         /*
2094                          * Disable Tx Traffic Intrs in the general intr mask
2095                          * register.
2096                          */
2097                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2098                 }
2099         }
2100
2101         /*  Rx traffic interrupts */
2102         if (mask & RX_TRAFFIC_INTR) {
2103                 intr_mask |= RXTRAFFIC_INT_M;
2104                 if (flag == ENABLE_INTRS) {
2105                         /* writing 0 Enables all 8 RX interrupt levels */
2106                         writeq(0x0, &bar0->rx_traffic_mask);
2107                 } else if (flag == DISABLE_INTRS) {
2108                         /*
2109                          * Disable Rx Traffic Intrs in the general intr mask
2110                          * register.
2111                          */
2112                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2113                 }
2114         }
2115
2116         temp64 = readq(&bar0->general_int_mask);
2117         if (flag == ENABLE_INTRS)
2118                 temp64 &= ~((u64) intr_mask);
2119         else
2120                 temp64 = DISABLE_ALL_INTRS;
2121         writeq(temp64, &bar0->general_int_mask);
2122
2123         nic->general_int_mask = readq(&bar0->general_int_mask);
2124 }
2125
2126 /**
2127  *  verify_pcc_quiescent- Checks for PCC quiescent state
2128  *  Return: 1 If PCC is quiescence
2129  *          0 If PCC is not quiescence
2130  */
2131 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2132 {
2133         int ret = 0, herc;
2134         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2135         u64 val64 = readq(&bar0->adapter_status);
2136
2137         herc = (sp->device_type == XFRAME_II_DEVICE);
2138
2139         if (flag == FALSE) {
2140                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2141                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2142                                 ret = 1;
2143                 } else {
2144                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2145                                 ret = 1;
2146                 }
2147         } else {
2148                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2149                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2150                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2151                                 ret = 1;
2152                 } else {
2153                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2154                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155                                 ret = 1;
2156                 }
2157         }
2158
2159         return ret;
2160 }
2161 /**
2162  *  verify_xena_quiescence - Checks whether the H/W is ready
2163  *  Description: Returns whether the H/W is ready to go or not. Depending
2164  *  on whether adapter enable bit was written or not the comparison
2165  *  differs and the calling function passes the input argument flag to
2166  *  indicate this.
2167  *  Return: 1 If xena is quiescence
2168  *          0 If Xena is not quiescence
2169  */
2170
2171 static int verify_xena_quiescence(struct s2io_nic *sp)
2172 {
2173         int  mode;
2174         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2175         u64 val64 = readq(&bar0->adapter_status);
2176         mode = s2io_verify_pci_mode(sp);
2177
2178         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2179                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2180                 return 0;
2181         }
2182         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2183         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2184                 return 0;
2185         }
2186         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2187                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2188                 return 0;
2189         }
2190         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2191                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2192                 return 0;
2193         }
2194         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2195                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2196                 return 0;
2197         }
2198         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2199                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2200                 return 0;
2201         }
2202         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2203                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2204                 return 0;
2205         }
2206         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2207                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2208                 return 0;
2209         }
2210
2211         /*
2212          * In PCI 33 mode, the P_PLL is not used, and therefore,
2213          * the the P_PLL_LOCK bit in the adapter_status register will
2214          * not be asserted.
2215          */
2216         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2217                 sp->device_type == XFRAME_II_DEVICE && mode !=
2218                 PCI_MODE_PCI_33) {
2219                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2220                 return 0;
2221         }
2222         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2223                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2224                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2225                 return 0;
2226         }
2227         return 1;
2228 }
2229
2230 /**
2231  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2232  * @sp: Pointer to device specifc structure
2233  * Description :
2234  * New procedure to clear mac address reading  problems on Alpha platforms
2235  *
2236  */
2237
2238 static void fix_mac_address(struct s2io_nic * sp)
2239 {
2240         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2241         u64 val64;
2242         int i = 0;
2243
2244         while (fix_mac[i] != END_SIGN) {
2245                 writeq(fix_mac[i++], &bar0->gpio_control);
2246                 udelay(10);
2247                 val64 = readq(&bar0->gpio_control);
2248         }
2249 }
2250
2251 /**
2252  *  start_nic - Turns the device on
2253  *  @nic : device private variable.
2254  *  Description:
2255  *  This function actually turns the device on. Before this  function is
2256  *  called,all Registers are configured from their reset states
2257  *  and shared memory is allocated but the NIC is still quiescent. On
2258  *  calling this function, the device interrupts are cleared and the NIC is
2259  *  literally switched on by writing into the adapter control register.
2260  *  Return Value:
2261  *  SUCCESS on success and -1 on failure.
2262  */
2263
2264 static int start_nic(struct s2io_nic *nic)
2265 {
2266         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2267         struct net_device *dev = nic->dev;
2268         register u64 val64 = 0;
2269         u16 subid, i;
2270         struct mac_info *mac_control;
2271         struct config_param *config;
2272
2273         mac_control = &nic->mac_control;
2274         config = &nic->config;
2275
2276         /*  PRC Initialization and configuration */
2277         for (i = 0; i < config->rx_ring_num; i++) {
2278                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2279                        &bar0->prc_rxd0_n[i]);
2280
2281                 val64 = readq(&bar0->prc_ctrl_n[i]);
2282                 if (nic->rxd_mode == RXD_MODE_1)
2283                         val64 |= PRC_CTRL_RC_ENABLED;
2284                 else
2285                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2286                 if (nic->device_type == XFRAME_II_DEVICE)
2287                         val64 |= PRC_CTRL_GROUP_READS;
2288                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2289                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2290                 writeq(val64, &bar0->prc_ctrl_n[i]);
2291         }
2292
2293         if (nic->rxd_mode == RXD_MODE_3B) {
2294                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2295                 val64 = readq(&bar0->rx_pa_cfg);
2296                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2297                 writeq(val64, &bar0->rx_pa_cfg);
2298         }
2299
2300         if (vlan_tag_strip == 0) {
2301                 val64 = readq(&bar0->rx_pa_cfg);
2302                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2303                 writeq(val64, &bar0->rx_pa_cfg);
2304                 nic->vlan_strip_flag = 0;
2305         }
2306
2307         /*
2308          * Enabling MC-RLDRAM. After enabling the device, we timeout
2309          * for around 100ms, which is approximately the time required
2310          * for the device to be ready for operation.
2311          */
2312         val64 = readq(&bar0->mc_rldram_mrs);
2313         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2314         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2315         val64 = readq(&bar0->mc_rldram_mrs);
2316
2317         msleep(100);    /* Delay by around 100 ms. */
2318
2319         /* Enabling ECC Protection. */
2320         val64 = readq(&bar0->adapter_control);
2321         val64 &= ~ADAPTER_ECC_EN;
2322         writeq(val64, &bar0->adapter_control);
2323
2324         /*
2325          * Verify if the device is ready to be enabled, if so enable
2326          * it.
2327          */
2328         val64 = readq(&bar0->adapter_status);
2329         if (!verify_xena_quiescence(nic)) {
2330                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2331                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2332                           (unsigned long long) val64);
2333                 return FAILURE;
2334         }
2335
2336         /*
2337          * With some switches, link might be already up at this point.
2338          * Because of this weird behavior, when we enable laser,
2339          * we may not get link. We need to handle this. We cannot
2340          * figure out which switch is misbehaving. So we are forced to
2341          * make a global change.
2342          */
2343
2344         /* Enabling Laser. */
2345         val64 = readq(&bar0->adapter_control);
2346         val64 |= ADAPTER_EOI_TX_ON;
2347         writeq(val64, &bar0->adapter_control);
2348
2349         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2350                 /*
2351                  * Dont see link state interrupts initally on some switches,
2352                  * so directly scheduling the link state task here.
2353                  */
2354                 schedule_work(&nic->set_link_task);
2355         }
2356         /* SXE-002: Initialize link and activity LED */
2357         subid = nic->pdev->subsystem_device;
2358         if (((subid & 0xFF) >= 0x07) &&
2359             (nic->device_type == XFRAME_I_DEVICE)) {
2360                 val64 = readq(&bar0->gpio_control);
2361                 val64 |= 0x0000800000000000ULL;
2362                 writeq(val64, &bar0->gpio_control);
2363                 val64 = 0x0411040400000000ULL;
2364                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2365         }
2366
2367         return SUCCESS;
2368 }
2369 /**
2370  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2371  */
2372 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2373                                         TxD *txdlp, int get_off)
2374 {
2375         struct s2io_nic *nic = fifo_data->nic;
2376         struct sk_buff *skb;
2377         struct TxD *txds;
2378         u16 j, frg_cnt;
2379
2380         txds = txdlp;
2381         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2382                 pci_unmap_single(nic->pdev, (dma_addr_t)
2383                         txds->Buffer_Pointer, sizeof(u64),
2384                         PCI_DMA_TODEVICE);
2385                 txds++;
2386         }
2387
2388         skb = (struct sk_buff *) ((unsigned long)
2389                         txds->Host_Control);
2390         if (!skb) {
2391                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2392                 return NULL;
2393         }
2394         pci_unmap_single(nic->pdev, (dma_addr_t)
2395                          txds->Buffer_Pointer,
2396                          skb->len - skb->data_len,
2397                          PCI_DMA_TODEVICE);
2398         frg_cnt = skb_shinfo(skb)->nr_frags;
2399         if (frg_cnt) {
2400                 txds++;
2401                 for (j = 0; j < frg_cnt; j++, txds++) {
2402                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2403                         if (!txds->Buffer_Pointer)
2404                                 break;
2405                         pci_unmap_page(nic->pdev, (dma_addr_t)
2406                                         txds->Buffer_Pointer,
2407                                        frag->size, PCI_DMA_TODEVICE);
2408                 }
2409         }
2410         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2411         return(skb);
2412 }
2413
2414 /**
2415  *  free_tx_buffers - Free all queued Tx buffers
2416  *  @nic : device private variable.
2417  *  Description:
2418  *  Free all queued Tx buffers.
2419  *  Return Value: void
2420 */
2421
2422 static void free_tx_buffers(struct s2io_nic *nic)
2423 {
2424         struct net_device *dev = nic->dev;
2425         struct sk_buff *skb;
2426         struct TxD *txdp;
2427         int i, j;
2428         struct mac_info *mac_control;
2429         struct config_param *config;
2430         int cnt = 0;
2431
2432         mac_control = &nic->mac_control;
2433         config = &nic->config;
2434
2435         for (i = 0; i < config->tx_fifo_num; i++) {
2436                 unsigned long flags;
2437                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2438                 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2439                         txdp = (struct TxD *) \
2440                         mac_control->fifos[i].list_info[j].list_virt_addr;
2441                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2442                         if (skb) {
2443                                 nic->mac_control.stats_info->sw_stat.mem_freed
2444                                         += skb->truesize;
2445                                 dev_kfree_skb(skb);
2446                                 cnt++;
2447                         }
2448                 }
2449                 DBG_PRINT(INTR_DBG,
2450                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2451                           dev->name, cnt, i);
2452                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2453                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2454                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2455         }
2456 }
2457
2458 /**
2459  *   stop_nic -  To stop the nic
2460  *   @nic ; device private variable.
2461  *   Description:
2462  *   This function does exactly the opposite of what the start_nic()
2463  *   function does. This function is called to stop the device.
2464  *   Return Value:
2465  *   void.
2466  */
2467
2468 static void stop_nic(struct s2io_nic *nic)
2469 {
2470         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2471         register u64 val64 = 0;
2472         u16 interruptible;
2473         struct mac_info *mac_control;
2474         struct config_param *config;
2475
2476         mac_control = &nic->mac_control;
2477         config = &nic->config;
2478
2479         /*  Disable all interrupts */
2480         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482         interruptible |= TX_PIC_INTR;
2483         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486         val64 = readq(&bar0->adapter_control);
2487         val64 &= ~(ADAPTER_CNTL_EN);
2488         writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492  *  fill_rx_buffers - Allocates the Rx side skbs
2493  *  @ring_info: per ring structure
2494  *  @from_card_up: If this is true, we will map the buffer to get
2495  *     the dma address for buf0 and buf1 to give it to the card.
2496  *     Else we will sync the already mapped buffer to give it to the card.
2497  *  Description:
2498  *  The function allocates Rx side skbs and puts the physical
2499  *  address of these buffers into the RxD buffer pointers, so that the NIC
2500  *  can DMA the received frame into these locations.
2501  *  The NIC supports 3 receive modes, viz
2502  *  1. single buffer,
2503  *  2. three buffer and
2504  *  3. Five buffer modes.
2505  *  Each mode defines how many fragments the received frame will be split
2506  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2507  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508  *  is split into 3 fragments. As of now only single buffer mode is
2509  *  supported.
2510  *   Return Value:
2511  *  SUCCESS on success or an appropriate -ve value on failure.
2512  */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514                                 int from_card_up)
2515 {
2516         struct sk_buff *skb;
2517         struct RxD_t *rxdp;
2518         int off, size, block_no, block_no1;
2519         u32 alloc_tab = 0;
2520         u32 alloc_cnt;
2521         u64 tmp;
2522         struct buffAdd *ba;
2523         struct RxD_t *first_rxdp = NULL;
2524         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525         int rxd_index = 0;
2526         struct RxD1 *rxdp1;
2527         struct RxD3 *rxdp3;
2528         struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532         block_no1 = ring->rx_curr_get_info.block_index;
2533         while (alloc_tab < alloc_cnt) {
2534                 block_no = ring->rx_curr_put_info.block_index;
2535
2536                 off = ring->rx_curr_put_info.offset;
2537
2538                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540                 rxd_index = off + 1;
2541                 if (block_no)
2542                         rxd_index += (block_no * ring->rxd_count);
2543
2544                 if ((block_no == block_no1) &&
2545                         (off == ring->rx_curr_get_info.offset) &&
2546                         (rxdp->Host_Control)) {
2547                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2548                                 ring->dev->name);
2549                         DBG_PRINT(INTR_DBG, " info equated\n");
2550                         goto end;
2551                 }
2552                 if (off && (off == ring->rxd_count)) {
2553                         ring->rx_curr_put_info.block_index++;
2554                         if (ring->rx_curr_put_info.block_index ==
2555                                                         ring->block_count)
2556                                 ring->rx_curr_put_info.block_index = 0;
2557                         block_no = ring->rx_curr_put_info.block_index;
2558                         off = 0;
2559                         ring->rx_curr_put_info.offset = off;
2560                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2561                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2562                                   ring->dev->name, rxdp);
2563
2564                 }
2565
2566                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2567                         ((ring->rxd_mode == RXD_MODE_3B) &&
2568                                 (rxdp->Control_2 & s2BIT(0)))) {
2569                         ring->rx_curr_put_info.offset = off;
2570                         goto end;
2571                 }
2572                 /* calculate size of skb based on ring mode */
2573                 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2574                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575                 if (ring->rxd_mode == RXD_MODE_1)
2576                         size += NET_IP_ALIGN;
2577                 else
2578                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580                 /* allocate skb */
2581                 skb = dev_alloc_skb(size);
2582                 if(!skb) {
2583                         DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2584                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2585                         if (first_rxdp) {
2586                                 wmb();
2587                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588                         }
2589                         stats->mem_alloc_fail_cnt++;
2590
2591                         return -ENOMEM ;
2592                 }
2593                 stats->mem_allocated += skb->truesize;
2594
2595                 if (ring->rxd_mode == RXD_MODE_1) {
2596                         /* 1 buffer mode - normal operation mode */
2597                         rxdp1 = (struct RxD1*)rxdp;
2598                         memset(rxdp, 0, sizeof(struct RxD1));
2599                         skb_reserve(skb, NET_IP_ALIGN);
2600                         rxdp1->Buffer0_ptr = pci_map_single
2601                             (ring->pdev, skb->data, size - NET_IP_ALIGN,
2602                                 PCI_DMA_FROMDEVICE);
2603                         if (pci_dma_mapping_error(nic->pdev,
2604                                                 rxdp1->Buffer0_ptr))
2605                                 goto pci_map_failed;
2606
2607                         rxdp->Control_2 =
2608                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2609                         rxdp->Host_Control = (unsigned long) (skb);
2610                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2611                         /*
2612                          * 2 buffer mode -
2613                          * 2 buffer mode provides 128
2614                          * byte aligned receive buffers.
2615                          */
2616
2617                         rxdp3 = (struct RxD3*)rxdp;
2618                         /* save buffer pointers to avoid frequent dma mapping */
2619                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2620                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2621                         memset(rxdp, 0, sizeof(struct RxD3));
2622                         /* restore the buffer pointers for dma sync*/
2623                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2624                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2625
2626                         ba = &ring->ba[block_no][off];
2627                         skb_reserve(skb, BUF0_LEN);
2628                         tmp = (u64)(unsigned long) skb->data;
2629                         tmp += ALIGN_SIZE;
2630                         tmp &= ~ALIGN_SIZE;
2631                         skb->data = (void *) (unsigned long)tmp;
2632                         skb_reset_tail_pointer(skb);
2633
2634                         if (from_card_up) {
2635                                 rxdp3->Buffer0_ptr =
2636                                    pci_map_single(ring->pdev, ba->ba_0,
2637                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
2638                         if (pci_dma_mapping_error(nic->pdev,
2639                                                 rxdp3->Buffer0_ptr))
2640                                         goto pci_map_failed;
2641                         } else
2642                                 pci_dma_sync_single_for_device(ring->pdev,
2643                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2644                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2645
2646                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2647                         if (ring->rxd_mode == RXD_MODE_3B) {
2648                                 /* Two buffer mode */
2649
2650                                 /*
2651                                  * Buffer2 will have L3/L4 header plus
2652                                  * L4 payload
2653                                  */
2654                                 rxdp3->Buffer2_ptr = pci_map_single
2655                                 (ring->pdev, skb->data, ring->mtu + 4,
2656                                                 PCI_DMA_FROMDEVICE);
2657
2658                                 if (pci_dma_mapping_error(nic->pdev,
2659                                                         rxdp3->Buffer2_ptr))
2660                                         goto pci_map_failed;
2661
2662                                 if (from_card_up) {
2663                                         rxdp3->Buffer1_ptr =
2664                                                 pci_map_single(ring->pdev,
2665                                                 ba->ba_1, BUF1_LEN,
2666                                                 PCI_DMA_FROMDEVICE);
2667
2668                                         if (pci_dma_mapping_error(nic->pdev,
2669                                                 rxdp3->Buffer1_ptr)) {
2670                                                 pci_unmap_single
2671                                                         (ring->pdev,
2672                                                     (dma_addr_t)(unsigned long)
2673                                                         skb->data,
2674                                                         ring->mtu + 4,
2675                                                         PCI_DMA_FROMDEVICE);
2676                                                 goto pci_map_failed;
2677                                         }
2678                                 }
2679                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681                                                                 (ring->mtu + 4);
2682                         }
2683                         rxdp->Control_2 |= s2BIT(0);
2684                         rxdp->Host_Control = (unsigned long) (skb);
2685                 }
2686                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687                         rxdp->Control_1 |= RXD_OWN_XENA;
2688                 off++;
2689                 if (off == (ring->rxd_count + 1))
2690                         off = 0;
2691                 ring->rx_curr_put_info.offset = off;
2692
2693                 rxdp->Control_2 |= SET_RXD_MARKER;
2694                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695                         if (first_rxdp) {
2696                                 wmb();
2697                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698                         }
2699                         first_rxdp = rxdp;
2700                 }
2701                 ring->rx_bufs_left += 1;
2702                 alloc_tab++;
2703         }
2704
2705       end:
2706         /* Transfer ownership of first descriptor to adapter just before
2707          * exiting. Before that, use memory barrier so that ownership
2708          * and other fields are seen by adapter correctly.
2709          */
2710         if (first_rxdp) {
2711                 wmb();
2712                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713         }
2714
2715         return SUCCESS;
2716 pci_map_failed:
2717         stats->pci_map_fail_cnt++;
2718         stats->mem_freed += skb->truesize;
2719         dev_kfree_skb_irq(skb);
2720         return -ENOMEM;
2721 }
2722
2723 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2724 {
2725         struct net_device *dev = sp->dev;
2726         int j;
2727         struct sk_buff *skb;
2728         struct RxD_t *rxdp;
2729         struct mac_info *mac_control;
2730         struct buffAdd *ba;
2731         struct RxD1 *rxdp1;
2732         struct RxD3 *rxdp3;
2733
2734         mac_control = &sp->mac_control;
2735         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2736                 rxdp = mac_control->rings[ring_no].
2737                                 rx_blocks[blk].rxds[j].virt_addr;
2738                 skb = (struct sk_buff *)
2739                         ((unsigned long) rxdp->Host_Control);
2740                 if (!skb) {
2741                         continue;
2742                 }
2743                 if (sp->rxd_mode == RXD_MODE_1) {
2744                         rxdp1 = (struct RxD1*)rxdp;
2745                         pci_unmap_single(sp->pdev, (dma_addr_t)
2746                                 rxdp1->Buffer0_ptr,
2747                                 dev->mtu +
2748                                 HEADER_ETHERNET_II_802_3_SIZE
2749                                 + HEADER_802_2_SIZE +
2750                                 HEADER_SNAP_SIZE,
2751                                 PCI_DMA_FROMDEVICE);
2752                         memset(rxdp, 0, sizeof(struct RxD1));
2753                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2754                         rxdp3 = (struct RxD3*)rxdp;
2755                         ba = &mac_control->rings[ring_no].
2756                                 ba[blk][j];
2757                         pci_unmap_single(sp->pdev, (dma_addr_t)
2758                                 rxdp3->Buffer0_ptr,
2759                                 BUF0_LEN,
2760                                 PCI_DMA_FROMDEVICE);
2761                         pci_unmap_single(sp->pdev, (dma_addr_t)
2762                                 rxdp3->Buffer1_ptr,
2763                                 BUF1_LEN,
2764                                 PCI_DMA_FROMDEVICE);
2765                         pci_unmap_single(sp->pdev, (dma_addr_t)
2766                                 rxdp3->Buffer2_ptr,
2767                                 dev->mtu + 4,
2768                                 PCI_DMA_FROMDEVICE);
2769                         memset(rxdp, 0, sizeof(struct RxD3));
2770                 }
2771                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2772                 dev_kfree_skb(skb);
2773                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2774         }
2775 }
2776
2777 /**
2778  *  free_rx_buffers - Frees all Rx buffers
2779  *  @sp: device private variable.
2780  *  Description:
2781  *  This function will free all Rx buffers allocated by host.
2782  *  Return Value:
2783  *  NONE.
2784  */
2785
2786 static void free_rx_buffers(struct s2io_nic *sp)
2787 {
2788         struct net_device *dev = sp->dev;
2789         int i, blk = 0, buf_cnt = 0;
2790         struct mac_info *mac_control;
2791         struct config_param *config;
2792
2793         mac_control = &sp->mac_control;
2794         config = &sp->config;
2795
2796         for (i = 0; i < config->rx_ring_num; i++) {
2797                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2798                         free_rxd_blk(sp,i,blk);
2799
2800                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2801                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2802                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2803                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2804                 mac_control->rings[i].rx_bufs_left = 0;
2805                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2806                           dev->name, buf_cnt, i);
2807         }
2808 }
2809
2810 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2811 {
2812         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2813                 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2814                 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2815         }
2816         return 0;
2817 }
2818
2819 /**
2820  * s2io_poll - Rx interrupt handler for NAPI support
2821  * @napi : pointer to the napi structure.
2822  * @budget : The number of packets that were budgeted to be processed
2823  * during  one pass through the 'Poll" function.
2824  * Description:
2825  * Comes into picture only if NAPI support has been incorporated. It does
2826  * the same thing that rx_intr_handler does, but not in a interrupt context
2827  * also It will process only a given number of packets.
2828  * Return value:
2829  * 0 on success and 1 if there are No Rx packets to be processed.
2830  */
2831
2832 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2833 {
2834         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2835         struct net_device *dev = ring->dev;
2836         struct config_param *config;
2837         struct mac_info *mac_control;
2838         int pkts_processed = 0;
2839         u8 __iomem *addr = NULL;
2840         u8 val8 = 0;
2841         struct s2io_nic *nic = netdev_priv(dev);
2842         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843         int budget_org = budget;
2844
2845         config = &nic->config;
2846         mac_control = &nic->mac_control;
2847
2848         if (unlikely(!is_s2io_card_up(nic)))
2849                 return 0;
2850
2851         pkts_processed = rx_intr_handler(ring, budget);
2852         s2io_chk_rx_buffers(nic, ring);
2853
2854         if (pkts_processed < budget_org) {
2855                 netif_rx_complete(dev, napi);
2856                 /*Re Enable MSI-Rx Vector*/
2857                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2858                 addr += 7 - ring->ring_no;
2859                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2860                 writeb(val8, addr);
2861                 val8 = readb(addr);
2862         }
2863         return pkts_processed;
2864 }
2865 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2866 {
2867         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2868         struct ring_info *ring;
2869         struct net_device *dev = nic->dev;
2870         struct config_param *config;
2871         struct mac_info *mac_control;
2872         int pkts_processed = 0;
2873         int ring_pkts_processed, i;
2874         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2875         int budget_org = budget;
2876
2877         config = &nic->config;
2878         mac_control = &nic->mac_control;
2879
2880         if (unlikely(!is_s2io_card_up(nic)))
2881                 return 0;
2882
2883         for (i = 0; i < config->rx_ring_num; i++) {
2884                 ring = &mac_control->rings[i];
2885                 ring_pkts_processed = rx_intr_handler(ring, budget);
2886                 s2io_chk_rx_buffers(nic, ring);
2887                 pkts_processed += ring_pkts_processed;
2888                 budget -= ring_pkts_processed;
2889                 if (budget <= 0)
2890                         break;
2891         }
2892         if (pkts_processed < budget_org) {
2893                 netif_rx_complete(dev, napi);
2894                 /* Re enable the Rx interrupts for the ring */
2895                 writeq(0, &bar0->rx_traffic_mask);
2896                 readl(&bar0->rx_traffic_mask);
2897         }
2898         return pkts_processed;
2899 }
2900
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 /**
2903  * s2io_netpoll - netpoll event handler entry point
2904  * @dev : pointer to the device structure.
2905  * Description:
2906  *      This function will be called by upper layer to check for events on the
2907  * interface in situations where interrupts are disabled. It is used for
2908  * specific in-kernel networking tasks, such as remote consoles and kernel
2909  * debugging over the network (example netdump in RedHat).
2910  */
2911 static void s2io_netpoll(struct net_device *dev)
2912 {
2913         struct s2io_nic *nic = netdev_priv(dev);
2914         struct mac_info *mac_control;
2915         struct config_param *config;
2916         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2917         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2918         int i;
2919
2920         if (pci_channel_offline(nic->pdev))
2921                 return;
2922
2923         disable_irq(dev->irq);
2924
2925         mac_control = &nic->mac_control;
2926         config = &nic->config;
2927
2928         writeq(val64, &bar0->rx_traffic_int);
2929         writeq(val64, &bar0->tx_traffic_int);
2930
2931         /* we need to free up the transmitted skbufs or else netpoll will
2932          * run out of skbs and will fail and eventually netpoll application such
2933          * as netdump will fail.
2934          */
2935         for (i = 0; i < config->tx_fifo_num; i++)
2936                 tx_intr_handler(&mac_control->fifos[i]);
2937
2938         /* check for received packet and indicate up to network */
2939         for (i = 0; i < config->rx_ring_num; i++)
2940                 rx_intr_handler(&mac_control->rings[i], 0);
2941
2942         for (i = 0; i < config->rx_ring_num; i++) {
2943                 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2944                                 -ENOMEM) {
2945                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2946                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2947                         break;
2948                 }
2949         }
2950         enable_irq(dev->irq);
2951         return;
2952 }
2953 #endif
2954
2955 /**
2956  *  rx_intr_handler - Rx interrupt handler
2957  *  @ring_info: per ring structure.
2958  *  @budget: budget for napi processing.
2959  *  Description:
2960  *  If the interrupt is because of a received frame or if the
2961  *  receive ring contains fresh as yet un-processed frames,this function is
2962  *  called. It picks out the RxD at which place the last Rx processing had
2963  *  stopped and sends the skb to the OSM's Rx handler and then increments
2964  *  the offset.
2965  *  Return Value:
2966  *  No. of napi packets processed.
2967  */
2968 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2969 {
2970         int get_block, put_block;
2971         struct rx_curr_get_info get_info, put_info;
2972         struct RxD_t *rxdp;
2973         struct sk_buff *skb;
2974         int pkt_cnt = 0, napi_pkts = 0;
2975         int i;
2976         struct RxD1* rxdp1;
2977         struct RxD3* rxdp3;
2978
2979         get_info = ring_data->rx_curr_get_info;
2980         get_block = get_info.block_index;
2981         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2982         put_block = put_info.block_index;
2983         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2984
2985         while (RXD_IS_UP2DT(rxdp)) {
2986                 /*
2987                  * If your are next to put index then it's
2988                  * FIFO full condition
2989                  */
2990                 if ((get_block == put_block) &&
2991                     (get_info.offset + 1) == put_info.offset) {
2992                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2993                                 ring_data->dev->name);
2994                         break;
2995                 }
2996                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2997                 if (skb == NULL) {
2998                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2999                                   ring_data->dev->name);
3000                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3001                         return 0;
3002                 }
3003                 if (ring_data->rxd_mode == RXD_MODE_1) {
3004                         rxdp1 = (struct RxD1*)rxdp;
3005                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3006                                 rxdp1->Buffer0_ptr,
3007                                 ring_data->mtu +
3008                                 HEADER_ETHERNET_II_802_3_SIZE +
3009                                 HEADER_802_2_SIZE +
3010                                 HEADER_SNAP_SIZE,
3011                                 PCI_DMA_FROMDEVICE);
3012                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3013                         rxdp3 = (struct RxD3*)rxdp;
3014                         pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3015                                 rxdp3->Buffer0_ptr,
3016                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
3017                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3018                                 rxdp3->Buffer2_ptr,
3019                                 ring_data->mtu + 4,
3020                                 PCI_DMA_FROMDEVICE);
3021                 }
3022                 prefetch(skb->data);
3023                 rx_osm_handler(ring_data, rxdp);
3024                 get_info.offset++;
3025                 ring_data->rx_curr_get_info.offset = get_info.offset;
3026                 rxdp = ring_data->rx_blocks[get_block].
3027                                 rxds[get_info.offset].virt_addr;
3028                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3029                         get_info.offset = 0;
3030                         ring_data->rx_curr_get_info.offset = get_info.offset;
3031                         get_block++;
3032                         if (get_block == ring_data->block_count)
3033                                 get_block = 0;
3034                         ring_data->rx_curr_get_info.block_index = get_block;
3035                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3036                 }
3037
3038                 if (ring_data->nic->config.napi) {
3039                         budget--;
3040                         napi_pkts++;
3041                         if (!budget)
3042                                 break;
3043                 }
3044                 pkt_cnt++;
3045                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3046                         break;
3047         }
3048         if (ring_data->lro) {
3049                 /* Clear all LRO sessions before exiting */
3050                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3051                         struct lro *lro = &ring_data->lro0_n[i];
3052                         if (lro->in_use) {
3053                                 update_L3L4_header(ring_data->nic, lro);
3054                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3055                                 clear_lro_session(lro);
3056                         }
3057                 }
3058         }
3059         return(napi_pkts);
3060 }
3061
3062 /**
3063  *  tx_intr_handler - Transmit interrupt handler
3064  *  @nic : device private variable
3065  *  Description:
3066  *  If an interrupt was raised to indicate DMA complete of the
3067  *  Tx packet, this function is called. It identifies the last TxD
3068  *  whose buffer was freed and frees all skbs whose data have already
3069  *  DMA'ed into the NICs internal memory.
3070  *  Return Value:
3071  *  NONE
3072  */
3073
3074 static void tx_intr_handler(struct fifo_info *fifo_data)
3075 {
3076         struct s2io_nic *nic = fifo_data->nic;
3077         struct tx_curr_get_info get_info, put_info;
3078         struct sk_buff *skb = NULL;
3079         struct TxD *txdlp;
3080         int pkt_cnt = 0;
3081         unsigned long flags = 0;
3082         u8 err_mask;
3083
3084         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3085                         return;
3086
3087         get_info = fifo_data->tx_curr_get_info;
3088         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3089         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3090             list_virt_addr;
3091         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3092                (get_info.offset != put_info.offset) &&
3093                (txdlp->Host_Control)) {
3094                 /* Check for TxD errors */
3095                 if (txdlp->Control_1 & TXD_T_CODE) {
3096                         unsigned long long err;
3097                         err = txdlp->Control_1 & TXD_T_CODE;
3098                         if (err & 0x1) {
3099                                 nic->mac_control.stats_info->sw_stat.
3100                                                 parity_err_cnt++;
3101                         }
3102
3103                         /* update t_code statistics */
3104                         err_mask = err >> 48;
3105                         switch(err_mask) {
3106                                 case 2:
3107                                         nic->mac_control.stats_info->sw_stat.
3108                                                         tx_buf_abort_cnt++;
3109                                 break;
3110
3111                                 case 3:
3112                                         nic->mac_control.stats_info->sw_stat.
3113                                                         tx_desc_abort_cnt++;
3114                                 break;
3115
3116                                 case 7:
3117                                         nic->mac_control.stats_info->sw_stat.
3118                                                         tx_parity_err_cnt++;
3119                                 break;
3120
3121                                 case 10:
3122                                         nic->mac_control.stats_info->sw_stat.
3123                                                         tx_link_loss_cnt++;
3124                                 break;
3125
3126                                 case 15:
3127                                         nic->mac_control.stats_info->sw_stat.
3128                                                         tx_list_proc_err_cnt++;
3129                                 break;
3130                         }
3131                 }
3132
3133                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3134                 if (skb == NULL) {
3135                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3136                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
3137                         __func__);
3138                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3139                         return;
3140                 }
3141                 pkt_cnt++;
3142
3143                 /* Updating the statistics block */
3144                 nic->dev->stats.tx_bytes += skb->len;
3145                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3146                 dev_kfree_skb_irq(skb);
3147
3148                 get_info.offset++;
3149                 if (get_info.offset == get_info.fifo_len + 1)
3150                         get_info.offset = 0;
3151                 txdlp = (struct TxD *) fifo_data->list_info
3152                     [get_info.offset].list_virt_addr;
3153                 fifo_data->tx_curr_get_info.offset =
3154                     get_info.offset;
3155         }
3156
3157         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3158
3159         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3160 }
3161
3162 /**
3163  *  s2io_mdio_write - Function to write in to MDIO registers
3164  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3165  *  @addr     : address value
3166  *  @value    : data value
3167  *  @dev      : pointer to net_device structure
3168  *  Description:
3169  *  This function is used to write values to the MDIO registers
3170  *  NONE
3171  */
3172 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3173 {
3174         u64 val64 = 0x0;
3175         struct s2io_nic *sp = netdev_priv(dev);
3176         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3177
3178         //address transaction
3179         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3180                         | MDIO_MMD_DEV_ADDR(mmd_type)
3181                         | MDIO_MMS_PRT_ADDR(0x0);
3182         writeq(val64, &bar0->mdio_control);
3183         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184         writeq(val64, &bar0->mdio_control);
3185         udelay(100);
3186
3187         //Data transaction
3188         val64 = 0x0;
3189         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3190                         | MDIO_MMD_DEV_ADDR(mmd_type)
3191                         | MDIO_MMS_PRT_ADDR(0x0)
3192                         | MDIO_MDIO_DATA(value)
3193                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3194         writeq(val64, &bar0->mdio_control);
3195         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196         writeq(val64, &bar0->mdio_control);
3197         udelay(100);
3198
3199         val64 = 0x0;
3200         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3201         | MDIO_MMD_DEV_ADDR(mmd_type)
3202         | MDIO_MMS_PRT_ADDR(0x0)
3203         | MDIO_OP(MDIO_OP_READ_TRANS);
3204         writeq(val64, &bar0->mdio_control);
3205         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3206         writeq(val64, &bar0->mdio_control);
3207         udelay(100);
3208
3209 }
3210
3211 /**
3212  *  s2io_mdio_read - Function to write in to MDIO registers
3213  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3214  *  @addr     : address value
3215  *  @dev      : pointer to net_device structure
3216  *  Description:
3217  *  This function is used to read values to the MDIO registers
3218  *  NONE
3219  */
3220 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3221 {
3222         u64 val64 = 0x0;
3223         u64 rval64 = 0x0;
3224         struct s2io_nic *sp = netdev_priv(dev);
3225         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3226
3227         /* address transaction */
3228         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3229                         | MDIO_MMD_DEV_ADDR(mmd_type)
3230                         | MDIO_MMS_PRT_ADDR(0x0);
3231         writeq(val64, &bar0->mdio_control);
3232         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233         writeq(val64, &bar0->mdio_control);
3234         udelay(100);
3235
3236         /* Data transaction */
3237         val64 = 0x0;
3238         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3239                         | MDIO_MMD_DEV_ADDR(mmd_type)
3240                         | MDIO_MMS_PRT_ADDR(0x0)
3241                         | MDIO_OP(MDIO_OP_READ_TRANS);
3242         writeq(val64, &bar0->mdio_control);
3243         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3244         writeq(val64, &bar0->mdio_control);
3245         udelay(100);
3246
3247         /* Read the value from regs */
3248         rval64 = readq(&bar0->mdio_control);
3249         rval64 = rval64 & 0xFFFF0000;
3250         rval64 = rval64 >> 16;
3251         return rval64;
3252 }
3253 /**
3254  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3255  *  @counter      : couter value to be updated
3256  *  @flag         : flag to indicate the status
3257  *  @type         : counter type
3258  *  Description:
3259  *  This function is to check the status of the xpak counters value
3260  *  NONE
3261  */
3262
3263 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3264 {
3265         u64 mask = 0x3;
3266         u64 val64;
3267         int i;
3268         for(i = 0; i <index; i++)
3269                 mask = mask << 0x2;
3270
3271         if(flag > 0)
3272         {
3273                 *counter = *counter + 1;
3274                 val64 = *regs_stat & mask;
3275                 val64 = val64 >> (index * 0x2);
3276                 val64 = val64 + 1;
3277                 if(val64 == 3)
3278                 {
3279                         switch(type)
3280                         {
3281                         case 1:
3282                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3283                                           "service. Excessive temperatures may "
3284                                           "result in premature transceiver "
3285                                           "failure \n");
3286                         break;
3287                         case 2:
3288                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3289                                           "service Excessive bias currents may "
3290                                           "indicate imminent laser diode "
3291                                           "failure \n");
3292                         break;
3293                         case 3:
3294                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3295                                           "service Excessive laser output "
3296                                           "power may saturate far-end "
3297                                           "receiver\n");
3298                         break;
3299                         default:
3300                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3301                                           "type \n");
3302                         }
3303                         val64 = 0x0;
3304                 }
3305                 val64 = val64 << (index * 0x2);
3306                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3307
3308         } else {
3309                 *regs_stat = *regs_stat & (~mask);
3310         }
3311 }
3312
3313 /**
3314  *  s2io_updt_xpak_counter - Function to update the xpak counters
3315  *  @dev         : pointer to net_device struct
3316  *  Description:
3317  *  This function is to upate the status of the xpak counters value
3318  *  NONE
3319  */
3320 static void s2io_updt_xpak_counter(struct net_device *dev)
3321 {
3322         u16 flag  = 0x0;
3323         u16 type  = 0x0;
3324         u16 val16 = 0x0;
3325         u64 val64 = 0x0;
3326         u64 addr  = 0x0;
3327
3328         struct s2io_nic *sp = netdev_priv(dev);
3329         struct stat_block *stat_info = sp->mac_control.stats_info;
3330
3331         /* Check the communication with the MDIO slave */
3332         addr = 0x0000;
3333         val64 = 0x0;
3334         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3335         if((val64 == 0xFFFF) || (val64 == 0x0000))
3336         {
3337                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3338                           "Returned %llx\n", (unsigned long long)val64);
3339                 return;
3340         }
3341
3342         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3343         if(val64 != 0x2040)
3344         {
3345                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3346                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3347                           (unsigned long long)val64);
3348                 return;
3349         }
3350
3351         /* Loading the DOM register to MDIO register */
3352         addr = 0xA100;
3353         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3354         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3355
3356         /* Reading the Alarm flags */
3357         addr = 0xA070;
3358         val64 = 0x0;
3359         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3360
3361         flag = CHECKBIT(val64, 0x7);
3362         type = 1;
3363         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3364                                 &stat_info->xpak_stat.xpak_regs_stat,
3365                                 0x0, flag, type);
3366
3367         if(CHECKBIT(val64, 0x6))
3368                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3369
3370         flag = CHECKBIT(val64, 0x3);
3371         type = 2;
3372         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3373                                 &stat_info->xpak_stat.xpak_regs_stat,
3374                                 0x2, flag, type);
3375
3376         if(CHECKBIT(val64, 0x2))
3377                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3378
3379         flag = CHECKBIT(val64, 0x1);
3380         type = 3;
3381         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3382                                 &stat_info->xpak_stat.xpak_regs_stat,
3383                                 0x4, flag, type);
3384
3385         if(CHECKBIT(val64, 0x0))
3386                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3387
3388         /* Reading the Warning flags */
3389         addr = 0xA074;
3390         val64 = 0x0;
3391         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3392
3393         if(CHECKBIT(val64, 0x7))
3394                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3395
3396         if(CHECKBIT(val64, 0x6))
3397                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3398
3399         if(CHECKBIT(val64, 0x3))
3400                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3401
3402         if(CHECKBIT(val64, 0x2))
3403                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3404
3405         if(CHECKBIT(val64, 0x1))
3406                 stat_info->xpak_stat.warn_laser_output_power_high++;
3407
3408         if(CHECKBIT(val64, 0x0))
3409                 stat_info->xpak_stat.warn_laser_output_power_low++;
3410 }
3411
3412 /**
3413  *  wait_for_cmd_complete - waits for a command to complete.
3414  *  @sp : private member of the device structure, which is a pointer to the
3415  *  s2io_nic structure.
3416  *  Description: Function that waits for a command to Write into RMAC
3417  *  ADDR DATA registers to be completed and returns either success or
3418  *  error depending on whether the command was complete or not.
3419  *  Return value:
3420  *   SUCCESS on success and FAILURE on failure.
3421  */
3422
3423 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3424                                 int bit_state)
3425 {
3426         int ret = FAILURE, cnt = 0, delay = 1;
3427         u64 val64;
3428
3429         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3430                 return FAILURE;
3431
3432         do {
3433                 val64 = readq(addr);
3434                 if (bit_state == S2IO_BIT_RESET) {
3435                         if (!(val64 & busy_bit)) {
3436                                 ret = SUCCESS;
3437                                 break;
3438                         }
3439                 } else {
3440                         if (!(val64 & busy_bit)) {
3441                                 ret = SUCCESS;
3442                                 break;
3443                         }
3444                 }
3445
3446                 if(in_interrupt())
3447                         mdelay(delay);
3448                 else
3449                         msleep(delay);
3450
3451                 if (++cnt >= 10)
3452                         delay = 50;
3453         } while (cnt < 20);
3454         return ret;
3455 }
3456 /*
3457  * check_pci_device_id - Checks if the device id is supported
3458  * @id : device id
3459  * Description: Function to check if the pci device id is supported by driver.
3460  * Return value: Actual device id if supported else PCI_ANY_ID
3461  */
3462 static u16 check_pci_device_id(u16 id)
3463 {
3464         switch (id) {
3465         case PCI_DEVICE_ID_HERC_WIN:
3466         case PCI_DEVICE_ID_HERC_UNI:
3467                 return XFRAME_II_DEVICE;
3468         case PCI_DEVICE_ID_S2IO_UNI:
3469         case PCI_DEVICE_ID_S2IO_WIN:
3470                 return XFRAME_I_DEVICE;
3471         default:
3472                 return PCI_ANY_ID;
3473         }
3474 }
3475
3476 /**
3477  *  s2io_reset - Resets the card.
3478  *  @sp : private member of the device structure.
3479  *  Description: Function to Reset the card. This function then also
3480  *  restores the previously saved PCI configuration space registers as
3481  *  the card reset also resets the configuration space.
3482  *  Return value:
3483  *  void.
3484  */
3485
3486 static void s2io_reset(struct s2io_nic * sp)
3487 {
3488         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3489         u64 val64;
3490         u16 subid, pci_cmd;
3491         int i;
3492         u16 val16;
3493         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3494         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3495
3496         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3497                         __func__, sp->dev->name);
3498
3499         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3500         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3501
3502         val64 = SW_RESET_ALL;
3503         writeq(val64, &bar0->sw_reset);
3504         if (strstr(sp->product_name, "CX4")) {
3505                 msleep(750);
3506         }
3507         msleep(250);
3508         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3509
3510                 /* Restore the PCI state saved during initialization. */
3511                 pci_restore_state(sp->pdev);
3512                 pci_read_config_word(sp->pdev, 0x2, &val16);
3513                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3514                         break;
3515                 msleep(200);
3516         }
3517
3518         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3519                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3520         }
3521
3522         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3523
3524         s2io_init_pci(sp);
3525
3526         /* Set swapper to enable I/O register access */
3527         s2io_set_swapper(sp);
3528
3529         /* restore mac_addr entries */
3530         do_s2io_restore_unicast_mc(sp);
3531
3532         /* Restore the MSIX table entries from local variables */
3533         restore_xmsi_data(sp);
3534
3535         /* Clear certain PCI/PCI-X fields after reset */
3536         if (sp->device_type == XFRAME_II_DEVICE) {
3537                 /* Clear "detected parity error" bit */
3538                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3539
3540                 /* Clearing PCIX Ecc status register */
3541                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3542
3543                 /* Clearing PCI_STATUS error reflected here */
3544                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3545         }
3546
3547         /* Reset device statistics maintained by OS */
3548         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3549
3550         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3551         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3552         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3553         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3554         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3555         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3556         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3557         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3558         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3559         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3560         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3561         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3562         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3563         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3564         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3565         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3566         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3567         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3568         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3569
3570         /* SXE-002: Configure link and activity LED to turn it off */
3571         subid = sp->pdev->subsystem_device;
3572         if (((subid & 0xFF) >= 0x07) &&
3573             (sp->device_type == XFRAME_I_DEVICE)) {
3574                 val64 = readq(&bar0->gpio_control);
3575                 val64 |= 0x0000800000000000ULL;
3576                 writeq(val64, &bar0->gpio_control);
3577                 val64 = 0x0411040400000000ULL;
3578                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3579         }
3580
3581         /*
3582          * Clear spurious ECC interrupts that would have occured on
3583          * XFRAME II cards after reset.
3584          */
3585         if (sp->device_type == XFRAME_II_DEVICE) {
3586                 val64 = readq(&bar0->pcc_err_reg);
3587                 writeq(val64, &bar0->pcc_err_reg);
3588         }
3589
3590         sp->device_enabled_once = FALSE;
3591 }
3592
3593 /**
3594  *  s2io_set_swapper - to set the swapper controle on the card
3595  *  @sp : private member of the device structure,
3596  *  pointer to the s2io_nic structure.
3597  *  Description: Function to set the swapper control on the card
3598  *  correctly depending on the 'endianness' of the system.
3599  *  Return value:
3600  *  SUCCESS on success and FAILURE on failure.
3601  */
3602
3603 static int s2io_set_swapper(struct s2io_nic * sp)
3604 {
3605         struct net_device *dev = sp->dev;
3606         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3607         u64 val64, valt, valr;
3608
3609         /*
3610          * Set proper endian settings and verify the same by reading
3611          * the PIF Feed-back register.
3612          */
3613
3614         val64 = readq(&bar0->pif_rd_swapper_fb);
3615         if (val64 != 0x0123456789ABCDEFULL) {
3616                 int i = 0;
3617                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3618                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3619                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3620                                 0};                     /* FE=0, SE=0 */
3621
3622                 while(i<4) {
3623                         writeq(value[i], &bar0->swapper_ctrl);
3624                         val64 = readq(&bar0->pif_rd_swapper_fb);
3625                         if (val64 == 0x0123456789ABCDEFULL)
3626                                 break;
3627                         i++;
3628                 }
3629                 if (i == 4) {
3630                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3631                                 dev->name);
3632                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3633                                 (unsigned long long) val64);
3634                         return FAILURE;
3635                 }
3636                 valr = value[i];
3637         } else {
3638                 valr = readq(&bar0->swapper_ctrl);
3639         }
3640
3641         valt = 0x0123456789ABCDEFULL;
3642         writeq(valt, &bar0->xmsi_address);
3643         val64 = readq(&bar0->xmsi_address);
3644
3645         if(val64 != valt) {
3646                 int i = 0;
3647                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3648                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3649                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3650                                 0};                     /* FE=0, SE=0 */
3651
3652                 while(i<4) {
3653                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3654                         writeq(valt, &bar0->xmsi_address);
3655                         val64 = readq(&bar0->xmsi_address);
3656                         if(val64 == valt)
3657                                 break;
3658                         i++;
3659                 }
3660                 if(i == 4) {
3661                         unsigned long long x = val64;
3662                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3663                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3664                         return FAILURE;
3665                 }
3666         }
3667         val64 = readq(&bar0->swapper_ctrl);
3668         val64 &= 0xFFFF000000000000ULL;
3669
3670 #ifdef  __BIG_ENDIAN
3671         /*
3672          * The device by default set to a big endian format, so a
3673          * big endian driver need not set anything.
3674          */
3675         val64 |= (SWAPPER_CTRL_TXP_FE |
3676                  SWAPPER_CTRL_TXP_SE |
3677                  SWAPPER_CTRL_TXD_R_FE |
3678                  SWAPPER_CTRL_TXD_W_FE |
3679                  SWAPPER_CTRL_TXF_R_FE |
3680                  SWAPPER_CTRL_RXD_R_FE |
3681                  SWAPPER_CTRL_RXD_W_FE |
3682                  SWAPPER_CTRL_RXF_W_FE |
3683                  SWAPPER_CTRL_XMSI_FE |
3684                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3685         if (sp->config.intr_type == INTA)
3686                 val64 |= SWAPPER_CTRL_XMSI_SE;
3687         writeq(val64, &bar0->swapper_ctrl);
3688 #else
3689         /*
3690          * Initially we enable all bits to make it accessible by the
3691          * driver, then we selectively enable only those bits that
3692          * we want to set.
3693          */
3694         val64 |= (SWAPPER_CTRL_TXP_FE |
3695                  SWAPPER_CTRL_TXP_SE |
3696                  SWAPPER_CTRL_TXD_R_FE |
3697                  SWAPPER_CTRL_TXD_R_SE |
3698                  SWAPPER_CTRL_TXD_W_FE |
3699                  SWAPPER_CTRL_TXD_W_SE |
3700                  SWAPPER_CTRL_TXF_R_FE |
3701                  SWAPPER_CTRL_RXD_R_FE |
3702                  SWAPPER_CTRL_RXD_R_SE |
3703                  SWAPPER_CTRL_RXD_W_FE |
3704                  SWAPPER_CTRL_RXD_W_SE |
3705                  SWAPPER_CTRL_RXF_W_FE |
3706                  SWAPPER_CTRL_XMSI_FE |
3707                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3708         if (sp->config.intr_type == INTA)
3709                 val64 |= SWAPPER_CTRL_XMSI_SE;
3710         writeq(val64, &bar0->swapper_ctrl);
3711 #endif
3712         val64 = readq(&bar0->swapper_ctrl);
3713
3714         /*
3715          * Verifying if endian settings are accurate by reading a
3716          * feedback register.
3717          */
3718         val64 = readq(&bar0->pif_rd_swapper_fb);
3719         if (val64 != 0x0123456789ABCDEFULL) {
3720                 /* Endian settings are incorrect, calls for another dekko. */
3721                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3722                           dev->name);
3723                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3724                           (unsigned long long) val64);
3725                 return FAILURE;
3726         }
3727
3728         return SUCCESS;
3729 }
3730
3731 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3732 {
3733         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3734         u64 val64;
3735         int ret = 0, cnt = 0;
3736
3737         do {
3738                 val64 = readq(&bar0->xmsi_access);
3739                 if (!(val64 & s2BIT(15)))
3740                         break;
3741                 mdelay(1);
3742                 cnt++;
3743         } while(cnt < 5);
3744         if (cnt == 5) {
3745                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3746                 ret = 1;
3747         }
3748
3749         return ret;
3750 }
3751
3752 static void restore_xmsi_data(struct s2io_nic *nic)
3753 {
3754         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3755         u64 val64;
3756         int i, msix_index;
3757
3758
3759         if (nic->device_type == XFRAME_I_DEVICE)
3760                 return;
3761
3762         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3763                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3764                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3765                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3766                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3767                 writeq(val64, &bar0->xmsi_access);
3768                 if (wait_for_msix_trans(nic, msix_index)) {
3769                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3770                         continue;
3771                 }
3772         }
3773 }
3774
3775 static void store_xmsi_data(struct s2io_nic *nic)
3776 {
3777         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3778         u64 val64, addr, data;
3779         int i, msix_index;
3780
3781         if (nic->device_type == XFRAME_I_DEVICE)
3782                 return;
3783
3784         /* Store and display */
3785         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3786                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3788                 writeq(val64, &bar0->xmsi_access);
3789                 if (wait_for_msix_trans(nic, msix_index)) {
3790                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3791                         continue;
3792                 }
3793                 addr = readq(&bar0->xmsi_address);
3794                 data = readq(&bar0->xmsi_data);
3795                 if (addr && data) {
3796                         nic->msix_info[i].addr = addr;
3797                         nic->msix_info[i].data = data;
3798                 }
3799         }
3800 }
3801
3802 static int s2io_enable_msi_x(struct s2io_nic *nic)
3803 {
3804         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3805         u64 rx_mat;
3806         u16 msi_control; /* Temp variable */
3807         int ret, i, j, msix_indx = 1;
3808
3809         nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3810                                GFP_KERNEL);
3811         if (!nic->entries) {
3812                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3813                         __func__);
3814                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3815                 return -ENOMEM;
3816         }
3817         nic->mac_control.stats_info->sw_stat.mem_allocated
3818                 += (nic->num_entries * sizeof(struct msix_entry));
3819
3820         memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3821
3822         nic->s2io_entries =
3823                 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3824                                    GFP_KERNEL);
3825         if (!nic->s2io_entries) {
3826                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3827                         __func__);
3828                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3829                 kfree(nic->entries);
3830                 nic->mac_control.stats_info->sw_stat.mem_freed
3831                         += (nic->num_entries * sizeof(struct msix_entry));
3832                 return -ENOMEM;
3833         }
3834          nic->mac_control.stats_info->sw_stat.mem_allocated
3835                 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3836         memset(nic->s2io_entries, 0,
3837                 nic->num_entries * sizeof(struct s2io_msix_entry));
3838
3839         nic->entries[0].entry = 0;
3840         nic->s2io_entries[0].entry = 0;
3841         nic->s2io_entries[0].in_use = MSIX_FLG;
3842         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3843         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3844
3845         for (i = 1; i < nic->num_entries; i++) {
3846                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3847                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3848                 nic->s2io_entries[i].arg = NULL;
3849                 nic->s2io_entries[i].in_use = 0;
3850         }
3851
3852         rx_mat = readq(&bar0->rx_mat);
3853         for (j = 0; j < nic->config.rx_ring_num; j++) {
3854                 rx_mat |= RX_MAT_SET(j, msix_indx);
3855                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3856                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3857                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3858                 msix_indx += 8;
3859         }
3860         writeq(rx_mat, &bar0->rx_mat);
3861         readq(&bar0->rx_mat);
3862
3863         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3864         /* We fail init if error or we get less vectors than min required */
3865         if (ret) {
3866                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3867                 kfree(nic->entries);
3868                 nic->mac_control.stats_info->sw_stat.mem_freed
3869                         += (nic->num_entries * sizeof(struct msix_entry));
3870                 kfree(nic->s2io_entries);
3871                 nic->mac_control.stats_info->sw_stat.mem_freed
3872                         += (nic->num_entries * sizeof(struct s2io_msix_entry));
3873                 nic->entries = NULL;
3874                 nic->s2io_entries = NULL;
3875                 return -ENOMEM;
3876         }
3877
3878         /*
3879          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3880          * in the herc NIC. (Temp change, needs to be removed later)
3881          */
3882         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3883         msi_control |= 0x1; /* Enable MSI */
3884         pci_write_config_word(nic->pdev, 0x42, msi_control);
3885
3886         return 0;
3887 }
3888
3889 /* Handle software interrupt used during MSI(X) test */
3890 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3891 {
3892         struct s2io_nic *sp = dev_id;
3893
3894         sp->msi_detected = 1;
3895         wake_up(&sp->msi_wait);
3896
3897         return IRQ_HANDLED;
3898 }
3899
3900 /* Test interrupt path by forcing a a software IRQ */
3901 static int s2io_test_msi(struct s2io_nic *sp)
3902 {
3903         struct pci_dev *pdev = sp->pdev;
3904         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3905         int err;
3906         u64 val64, saved64;
3907
3908         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3909                         sp->name, sp);
3910         if (err) {
3911                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3912                        sp->dev->name, pci_name(pdev), pdev->irq);
3913                 return err;
3914         }
3915
3916         init_waitqueue_head (&sp->msi_wait);
3917         sp->msi_detected = 0;
3918
3919         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3920         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3921         val64 |= SCHED_INT_CTRL_TIMER_EN;
3922         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3923         writeq(val64, &bar0->scheduled_int_ctrl);
3924
3925         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3926
3927         if (!sp->msi_detected) {
3928                 /* MSI(X) test failed, go back to INTx mode */
3929                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3930                         "using MSI(X) during test\n", sp->dev->name,
3931                         pci_name(pdev));
3932
3933                 err = -EOPNOTSUPP;
3934         }
3935
3936         free_irq(sp->entries[1].vector, sp);
3937
3938         writeq(saved64, &bar0->scheduled_int_ctrl);
3939
3940         return err;
3941 }
3942
3943 static void remove_msix_isr(struct s2io_nic *sp)
3944 {
3945         int i;
3946         u16 msi_control;
3947
3948         for (i = 0; i < sp->num_entries; i++) {
3949                 if (sp->s2io_entries[i].in_use ==
3950                         MSIX_REGISTERED_SUCCESS) {
3951                         int vector = sp->entries[i].vector;
3952                         void *arg = sp->s2io_entries[i].arg;
3953                         free_irq(vector, arg);
3954                 }
3955         }
3956
3957         kfree(sp->entries);
3958         kfree(sp->s2io_entries);
3959         sp->entries = NULL;
3960         sp->s2io_entries = NULL;
3961
3962         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3963         msi_control &= 0xFFFE; /* Disable MSI */
3964         pci_write_config_word(sp->pdev, 0x42, msi_control);
3965
3966         pci_disable_msix(sp->pdev);
3967 }
3968
3969 static void remove_inta_isr(struct s2io_nic *sp)
3970 {
3971         struct net_device *dev = sp->dev;
3972
3973         free_irq(sp->pdev->irq, dev);
3974 }
3975
3976 /* ********************************************************* *
3977  * Functions defined below concern the OS part of the driver *
3978  * ********************************************************* */
3979
3980 /**
3981  *  s2io_open - open entry point of the driver
3982  *  @dev : pointer to the device structure.
3983  *  Description:
3984  *  This function is the open entry point of the driver. It mainly calls a
3985  *  function to allocate Rx buffers and inserts them into the buffer
3986  *  descriptors and then enables the Rx part of the NIC.
3987  *  Return value:
3988  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3989  *   file on failure.
3990  */
3991
3992 static int s2io_open(struct net_device *dev)
3993 {
3994         struct s2io_nic *sp = netdev_priv(dev);
3995         int err = 0;
3996
3997         /*
3998          * Make sure you have link off by default every time
3999          * Nic is initialized
4000          */
4001         netif_carrier_off(dev);
4002         sp->last_link_state = 0;
4003
4004         /* Initialize H/W and enable interrupts */
4005         err = s2io_card_up(sp);
4006         if (err) {
4007                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4008                           dev->name);
4009                 goto hw_init_failed;
4010         }
4011
4012         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4013                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4014                 s2io_card_down(sp);
4015                 err = -ENODEV;
4016                 goto hw_init_failed;
4017         }
4018         s2io_start_all_tx_queue(sp);
4019         return 0;
4020
4021 hw_init_failed:
4022         if (sp->config.intr_type == MSI_X) {
4023                 if (sp->entries) {
4024                         kfree(sp->entries);
4025                         sp->mac_control.stats_info->sw_stat.mem_freed
4026                         += (sp->num_entries * sizeof(struct msix_entry));
4027                 }
4028                 if (sp->s2io_entries) {
4029                         kfree(sp->s2io_entries);
4030                         sp->mac_control.stats_info->sw_stat.mem_freed
4031                         += (sp->num_entries * sizeof(struct s2io_msix_entry));
4032                 }
4033         }
4034         return err;
4035 }
4036
4037 /**
4038  *  s2io_close -close entry point of the driver
4039  *  @dev : device pointer.
4040  *  Description:
4041  *  This is the stop entry point of the driver. It needs to undo exactly
4042  *  whatever was done by the open entry point,thus it's usually referred to
4043  *  as the close function.Among other things this function mainly stops the
4044  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4045  *  Return value:
4046  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4047  *  file on failure.
4048  */
4049
4050 static int s2io_close(struct net_device *dev)
4051 {
4052         struct s2io_nic *sp = netdev_priv(dev);
4053         struct config_param *config = &sp->config;
4054         u64 tmp64;
4055         int offset;
4056
4057         /* Return if the device is already closed               *
4058         *  Can happen when s2io_card_up failed in change_mtu    *
4059         */
4060         if (!is_s2io_card_up(sp))
4061                 return 0;
4062
4063         s2io_stop_all_tx_queue(sp);
4064         /* delete all populated mac entries */
4065         for (offset = 1; offset < config->max_mc_addr; offset++) {
4066                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4067                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4068                         do_s2io_delete_unicast_mc(sp, tmp64);
4069         }
4070
4071         s2io_card_down(sp);
4072
4073         return 0;
4074 }
4075
4076 /**
4077  *  s2io_xmit - Tx entry point of te driver
4078  *  @skb : the socket buffer containing the Tx data.
4079  *  @dev : device pointer.
4080  *  Description :
4081  *  This function is the Tx entry point of the driver. S2IO NIC supports
4082  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4083  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4084  *  not be upadted.
4085  *  Return value:
4086  *  0 on success & 1 on failure.
4087  */
4088
4089 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4090 {
4091         struct s2io_nic *sp = netdev_priv(dev);
4092         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4093         register u64 val64;
4094         struct TxD *txdp;
4095         struct TxFIFO_element __iomem *tx_fifo;
4096         unsigned long flags = 0;
4097         u16 vlan_tag = 0;
4098         struct fifo_info *fifo = NULL;
4099         struct mac_info *mac_control;
4100         struct config_param *config;
4101         int do_spin_lock = 1;
4102         int offload_type;
4103         int enable_per_list_interrupt = 0;
4104         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4105
4106         mac_control = &sp->mac_control;
4107         config = &sp->config;
4108
4109         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4110
4111         if (unlikely(skb->len <= 0)) {
4112                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4113                 dev_kfree_skb_any(skb);
4114                 return 0;
4115         }
4116
4117         if (!is_s2io_card_up(sp)) {
4118                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4119                           dev->name);
4120                 dev_kfree_skb(skb);
4121                 return 0;
4122         }
4123
4124         queue = 0;
4125         if (sp->vlgrp && vlan_tx_tag_present(skb))
4126                 vlan_tag = vlan_tx_tag_get(skb);
4127         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4128                 if (skb->protocol == htons(ETH_P_IP)) {
4129                         struct iphdr *ip;
4130                         struct tcphdr *th;
4131                         ip = ip_hdr(skb);
4132
4133                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4134                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4135                                                 ip->ihl*4);
4136
4137                                 if (ip->protocol == IPPROTO_TCP) {
4138                                         queue_len = sp->total_tcp_fifos;
4139                                         queue = (ntohs(th->source) +
4140                                                         ntohs(th->dest)) &
4141                                             sp->fifo_selector[queue_len - 1];
4142                                         if (queue >= queue_len)
4143                                                 queue = queue_len - 1;
4144                                 } else if (ip->protocol == IPPROTO_UDP) {
4145                                         queue_len = sp->total_udp_fifos;
4146                                         queue = (ntohs(th->source) +
4147                                                         ntohs(th->dest)) &
4148                                             sp->fifo_selector[queue_len - 1];
4149                                         if (queue >= queue_len)
4150                                                 queue = queue_len - 1;
4151                                         queue += sp->udp_fifo_idx;
4152                                         if (skb->len > 1024)
4153                                                 enable_per_list_interrupt = 1;
4154                                         do_spin_lock = 0;
4155                                 }
4156                         }
4157                 }
4158         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4159                 /* get fifo number based on skb->priority value */
4160                 queue = config->fifo_mapping
4161                                         [skb->priority & (MAX_TX_FIFOS - 1)];
4162         fifo = &mac_control->fifos[queue];
4163
4164         if (do_spin_lock)
4165                 spin_lock_irqsave(&fifo->tx_lock, flags);
4166         else {
4167                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4168                         return NETDEV_TX_LOCKED;
4169         }
4170
4171         if (sp->config.multiq) {
4172                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4173                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174                         return NETDEV_TX_BUSY;
4175                 }
4176         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4177                 if (netif_queue_stopped(dev)) {
4178                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179                         return NETDEV_TX_BUSY;
4180                 }
4181         }
4182
4183         put_off = (u16) fifo->tx_curr_put_info.offset;
4184         get_off = (u16) fifo->tx_curr_get_info.offset;
4185         txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4186
4187         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4188         /* Avoid "put" pointer going beyond "get" pointer */
4189         if (txdp->Host_Control ||
4190                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4191                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4192                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4193                 dev_kfree_skb(skb);
4194                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4195                 return 0;
4196         }
4197
4198         offload_type = s2io_offload_type(skb);
4199         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4200                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4201                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4202         }
4203         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4204                 txdp->Control_2 |=
4205                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4206                      TXD_TX_CKO_UDP_EN);
4207         }
4208         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4209         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4210         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4211         if (enable_per_list_interrupt)
4212                 if (put_off & (queue_len >> 5))
4213                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4214         if (vlan_tag) {
4215                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4216                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4217         }
4218
4219         frg_len = skb->len - skb->data_len;
4220         if (offload_type == SKB_GSO_UDP) {
4221                 int ufo_size;
4222
4223                 ufo_size = s2io_udp_mss(skb);
4224                 ufo_size &= ~7;
4225                 txdp->Control_1 |= TXD_UFO_EN;
4226                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4227                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4228 #ifdef __BIG_ENDIAN
4229                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4230                 fifo->ufo_in_band_v[put_off] =
4231                                 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4232 #else
4233                 fifo->ufo_in_band_v[put_off] =
4234                                 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4235 #endif
4236                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4237                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4238                                         fifo->ufo_in_band_v,
4239                                         sizeof(u64), PCI_DMA_TODEVICE);
4240                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4241                         goto pci_map_failed;
4242                 txdp++;
4243         }
4244
4245         txdp->Buffer_Pointer = pci_map_single
4246             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4247         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4248                 goto pci_map_failed;
4249
4250         txdp->Host_Control = (unsigned long) skb;
4251         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4252         if (offload_type == SKB_GSO_UDP)
4253                 txdp->Control_1 |= TXD_UFO_EN;
4254
4255         frg_cnt = skb_shinfo(skb)->nr_frags;
4256         /* For fragmented SKB. */
4257         for (i = 0; i < frg_cnt; i++) {
4258                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4259                 /* A '0' length fragment will be ignored */
4260                 if (!frag->size)
4261                         continue;
4262                 txdp++;
4263                 txdp->Buffer_Pointer = (u64) pci_map_page
4264                     (sp->pdev, frag->page, frag->page_offset,
4265                      frag->size, PCI_DMA_TODEVICE);
4266                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4267                 if (offload_type == SKB_GSO_UDP)
4268                         txdp->Control_1 |= TXD_UFO_EN;
4269         }
4270         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4271
4272         if (offload_type == SKB_GSO_UDP)
4273                 frg_cnt++; /* as Txd0 was used for inband header */
4274
4275         tx_fifo = mac_control->tx_FIFO_start[queue];
4276         val64 = fifo->list_info[put_off].list_phy_addr;
4277         writeq(val64, &tx_fifo->TxDL_Pointer);
4278
4279         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4280                  TX_FIFO_LAST_LIST);
4281         if (offload_type)
4282                 val64 |= TX_FIFO_SPECIAL_FUNC;
4283
4284         writeq(val64, &tx_fifo->List_Control);
4285
4286         mmiowb();
4287
4288         put_off++;
4289         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4290                 put_off = 0;
4291         fifo->tx_curr_put_info.offset = put_off;
4292
4293         /* Avoid "put" pointer going beyond "get" pointer */
4294         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4295                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4296                 DBG_PRINT(TX_DBG,
4297                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4298                           put_off, get_off);
4299                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4300         }
4301         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4302         dev->trans_start = jiffies;
4303         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4304
4305         if (sp->config.intr_type == MSI_X)
4306                 tx_intr_handler(fifo);
4307
4308         return 0;
4309 pci_map_failed:
4310         stats->pci_map_fail_cnt++;
4311         s2io_stop_tx_queue(sp, fifo->fifo_no);
4312         stats->mem_freed += skb->truesize;
4313         dev_kfree_skb(skb);
4314         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4315         return 0;
4316 }
4317
4318 static void
4319 s2io_alarm_handle(unsigned long data)
4320 {
4321         struct s2io_nic *sp = (struct s2io_nic *)data;
4322         struct net_device *dev = sp->dev;
4323
4324         s2io_handle_errors(dev);
4325         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4326 }
4327
4328 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4329 {
4330         struct ring_info *ring = (struct ring_info *)dev_id;
4331         struct s2io_nic *sp = ring->nic;
4332         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4333         struct net_device *dev = sp->dev;
4334
4335         if (unlikely(!is_s2io_card_up(sp)))
4336                 return IRQ_HANDLED;
4337
4338         if (sp->config.napi) {
4339                 u8 __iomem *addr = NULL;
4340                 u8 val8 = 0;
4341
4342                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4343                 addr += (7 - ring->ring_no);
4344                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4345                 writeb(val8, addr);
4346                 val8 = readb(addr);
4347                 netif_rx_schedule(dev, &ring->napi);
4348         } else {
4349                 rx_intr_handler(ring, 0);
4350                 s2io_chk_rx_buffers(sp, ring);
4351         }
4352
4353         return IRQ_HANDLED;
4354 }
4355
4356 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4357 {
4358         int i;
4359         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4360         struct s2io_nic *sp = fifos->nic;
4361         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4362         struct config_param *config  = &sp->config;
4363         u64 reason;
4364
4365         if (unlikely(!is_s2io_card_up(sp)))
4366                 return IRQ_NONE;
4367
4368         reason = readq(&bar0->general_int_status);
4369         if (unlikely(reason == S2IO_MINUS_ONE))
4370                 /* Nothing much can be done. Get out */
4371                 return IRQ_HANDLED;
4372
4373         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4374                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4375
4376                 if (reason & GEN_INTR_TXPIC)
4377                         s2io_txpic_intr_handle(sp);
4378
4379                 if (reason & GEN_INTR_TXTRAFFIC)
4380                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4381
4382                 for (i = 0; i < config->tx_fifo_num; i++)
4383                         tx_intr_handler(&fifos[i]);
4384
4385                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4386                 readl(&bar0->general_int_status);
4387                 return IRQ_HANDLED;
4388         }
4389         /* The interrupt was not raised by us */
4390         return IRQ_NONE;
4391 }
4392
4393 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4394 {
4395         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4396         u64 val64;
4397
4398         val64 = readq(&bar0->pic_int_status);
4399         if (val64 & PIC_INT_GPIO) {
4400                 val64 = readq(&bar0->gpio_int_reg);
4401                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4402                     (val64 & GPIO_INT_REG_LINK_UP)) {
4403                         /*
4404                          * This is unstable state so clear both up/down
4405                          * interrupt and adapter to re-evaluate the link state.
4406                          */
4407                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4408                         val64 |= GPIO_INT_REG_LINK_UP;
4409                         writeq(val64, &bar0->gpio_int_reg);
4410                         val64 = readq(&bar0->gpio_int_mask);
4411                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4412                                    GPIO_INT_MASK_LINK_DOWN);
4413                         writeq(val64, &bar0->gpio_int_mask);
4414                 }
4415                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4416                         val64 = readq(&bar0->adapter_status);
4417                                 /* Enable Adapter */
4418                         val64 = readq(&bar0->adapter_control);
4419                         val64 |= ADAPTER_CNTL_EN;
4420                         writeq(val64, &bar0->adapter_control);
4421                         val64 |= ADAPTER_LED_ON;
4422                         writeq(val64, &bar0->adapter_control);
4423                         if (!sp->device_enabled_once)
4424                                 sp->device_enabled_once = 1;
4425
4426                         s2io_link(sp, LINK_UP);
4427                         /*
4428                          * unmask link down interrupt and mask link-up
4429                          * intr
4430                          */
4431                         val64 = readq(&bar0->gpio_int_mask);
4432                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4433                         val64 |= GPIO_INT_MASK_LINK_UP;
4434                         writeq(val64, &bar0->gpio_int_mask);
4435
4436                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4437                         val64 = readq(&bar0->adapter_status);
4438                         s2io_link(sp, LINK_DOWN);
4439                         /* Link is down so unmaks link up interrupt */
4440                         val64 = readq(&bar0->gpio_int_mask);
4441                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4442                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4443                         writeq(val64, &bar0->gpio_int_mask);
4444
4445                         /* turn off LED */
4446                         val64 = readq(&bar0->adapter_control);
4447                         val64 = val64 &(~ADAPTER_LED_ON);
4448                         writeq(val64, &bar0->adapter_control);
4449                 }
4450         }
4451         val64 = readq(&bar0->gpio_int_mask);
4452 }
4453
4454 /**
4455  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4456  *  @value: alarm bits
4457  *  @addr: address value
4458  *  @cnt: counter variable
4459  *  Description: Check for alarm and increment the counter
4460  *  Return Value:
4461  *  1 - if alarm bit set
4462  *  0 - if alarm bit is not set
4463  */
4464 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4465                           unsigned long long *cnt)
4466 {
4467         u64 val64;
4468         val64 = readq(addr);
4469         if ( val64 & value ) {
4470                 writeq(val64, addr);
4471                 (*cnt)++;
4472                 return 1;
4473         }
4474         return 0;
4475
4476 }
4477
4478 /**
4479  *  s2io_handle_errors - Xframe error indication handler
4480  *  @nic: device private variable
4481  *  Description: Handle alarms such as loss of link, single or
4482  *  double ECC errors, critical and serious errors.
4483  *  Return Value:
4484  *  NONE
4485  */
4486 static void s2io_handle_errors(void * dev_id)
4487 {
4488         struct net_device *dev = (struct net_device *) dev_id;
4489         struct s2io_nic *sp = netdev_priv(dev);
4490         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4491         u64 temp64 = 0,val64=0;
4492         int i = 0;
4493
4494         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4495         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4496
4497         if (!is_s2io_card_up(sp))
4498                 return;
4499
4500         if (pci_channel_offline(sp->pdev))
4501                 return;
4502
4503         memset(&sw_stat->ring_full_cnt, 0,
4504                 sizeof(sw_stat->ring_full_cnt));
4505
4506         /* Handling the XPAK counters update */
4507         if(stats->xpak_timer_count < 72000) {
4508                 /* waiting for an hour */
4509                 stats->xpak_timer_count++;
4510         } else {
4511                 s2io_updt_xpak_counter(dev);
4512                 /* reset the count to zero */
4513                 stats->xpak_timer_count = 0;
4514         }
4515
4516         /* Handling link status change error Intr */
4517         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4518                 val64 = readq(&bar0->mac_rmac_err_reg);
4519                 writeq(val64, &bar0->mac_rmac_err_reg);
4520                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4521                         schedule_work(&sp->set_link_task);
4522         }
4523
4524         /* In case of a serious error, the device will be Reset. */
4525         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4526                                 &sw_stat->serious_err_cnt))
4527                 goto reset;
4528
4529         /* Check for data parity error */
4530         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4531                                 &sw_stat->parity_err_cnt))
4532                 goto reset;
4533
4534         /* Check for ring full counter */
4535         if (sp->device_type == XFRAME_II_DEVICE) {
4536                 val64 = readq(&bar0->ring_bump_counter1);
4537                 for (i=0; i<4; i++) {
4538                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4539                         temp64 >>= 64 - ((i+1)*16);
4540                         sw_stat->ring_full_cnt[i] += temp64;
4541                 }
4542
4543                 val64 = readq(&bar0->ring_bump_counter2);
4544                 for (i=0; i<4; i++) {
4545                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4546                         temp64 >>= 64 - ((i+1)*16);
4547                          sw_stat->ring_full_cnt[i+4] += temp64;
4548                 }
4549         }
4550
4551         val64 = readq(&bar0->txdma_int_status);
4552         /*check for pfc_err*/
4553         if (val64 & TXDMA_PFC_INT) {
4554                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4555                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4556                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4557                                 &sw_stat->pfc_err_cnt))
4558                         goto reset;
4559                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4560                                 &sw_stat->pfc_err_cnt);
4561         }
4562
4563         /*check for tda_err*/
4564         if (val64 & TXDMA_TDA_INT) {
4565                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4566                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4567                                 &sw_stat->tda_err_cnt))
4568                         goto reset;
4569                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4570                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4571         }
4572         /*check for pcc_err*/
4573         if (val64 & TXDMA_PCC_INT) {
4574                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4575                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4576                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4577                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4578                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4579                                 &sw_stat->pcc_err_cnt))
4580                         goto reset;
4581                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4582                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4583         }
4584
4585         /*check for tti_err*/
4586         if (val64 & TXDMA_TTI_INT) {
4587                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4588                                 &sw_stat->tti_err_cnt))
4589                         goto reset;
4590                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4591                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4592         }
4593
4594         /*check for lso_err*/
4595         if (val64 & TXDMA_LSO_INT) {
4596                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4597                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4598                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4599                         goto reset;
4600                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4601                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4602         }
4603
4604         /*check for tpa_err*/
4605         if (val64 & TXDMA_TPA_INT) {
4606                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4607                         &sw_stat->tpa_err_cnt))
4608                         goto reset;
4609                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4610                         &sw_stat->tpa_err_cnt);
4611         }
4612
4613         /*check for sm_err*/
4614         if (val64 & TXDMA_SM_INT) {
4615                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4616                         &sw_stat->sm_err_cnt))
4617                         goto reset;
4618         }
4619
4620         val64 = readq(&bar0->mac_int_status);
4621         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4622                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4623                                 &bar0->mac_tmac_err_reg,
4624                                 &sw_stat->mac_tmac_err_cnt))
4625                         goto reset;
4626                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4627                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4628                                 &bar0->mac_tmac_err_reg,
4629                                 &sw_stat->mac_tmac_err_cnt);
4630         }
4631
4632         val64 = readq(&bar0->xgxs_int_status);
4633         if (val64 & XGXS_INT_STATUS_TXGXS) {
4634                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4635                                 &bar0->xgxs_txgxs_err_reg,
4636                                 &sw_stat->xgxs_txgxs_err_cnt))
4637                         goto reset;
4638                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4639                                 &bar0->xgxs_txgxs_err_reg,
4640                                 &sw_stat->xgxs_txgxs_err_cnt);
4641         }
4642
4643         val64 = readq(&bar0->rxdma_int_status);
4644         if (val64 & RXDMA_INT_RC_INT_M) {
4645                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4646                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4647                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4648                         goto reset;
4649                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4650                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4651                                 &sw_stat->rc_err_cnt);
4652                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4653                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4654                                 &sw_stat->prc_pcix_err_cnt))
4655                         goto reset;
4656                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4657                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4658                                 &sw_stat->prc_pcix_err_cnt);
4659         }
4660
4661         if (val64 & RXDMA_INT_RPA_INT_M) {
4662                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4663                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4664                         goto reset;
4665                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4666                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4667         }
4668
4669         if (val64 & RXDMA_INT_RDA_INT_M) {
4670                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4671                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4672                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4673                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4674                         goto reset;
4675                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4676                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4677                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4678         }
4679
4680         if (val64 & RXDMA_INT_RTI_INT_M) {
4681                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4682                                 &sw_stat->rti_err_cnt))
4683                         goto reset;
4684                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4685                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4686         }
4687
4688         val64 = readq(&bar0->mac_int_status);
4689         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4690                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4691                                 &bar0->mac_rmac_err_reg,
4692                                 &sw_stat->mac_rmac_err_cnt))
4693                         goto reset;
4694                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4695                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4696                                 &sw_stat->mac_rmac_err_cnt);
4697         }
4698
4699         val64 = readq(&bar0->xgxs_int_status);
4700         if (val64 & XGXS_INT_STATUS_RXGXS) {
4701                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4702                                 &bar0->xgxs_rxgxs_err_reg,
4703                                 &sw_stat->xgxs_rxgxs_err_cnt))
4704                         goto reset;
4705         }
4706
4707         val64 = readq(&bar0->mc_int_status);
4708         if(val64 & MC_INT_STATUS_MC_INT) {
4709                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4710                                 &sw_stat->mc_err_cnt))
4711                         goto reset;
4712
4713                 /* Handling Ecc errors */
4714                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4715                         writeq(val64, &bar0->mc_err_reg);
4716                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4717                                 sw_stat->double_ecc_errs++;
4718                                 if (sp->device_type != XFRAME_II_DEVICE) {
4719                                         /*
4720                                          * Reset XframeI only if critical error
4721                                          */
4722                                         if (val64 &
4723                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4724                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4725                                                                 goto reset;
4726                                         }
4727                         } else
4728                                 sw_stat->single_ecc_errs++;
4729                 }
4730         }
4731         return;
4732
4733 reset:
4734         s2io_stop_all_tx_queue(sp);
4735         schedule_work(&sp->rst_timer_task);
4736         sw_stat->soft_reset_cnt++;
4737         return;
4738 }
4739
4740 /**
4741  *  s2io_isr - ISR handler of the device .
4742  *  @irq: the irq of the device.
4743  *  @dev_id: a void pointer to the dev structure of the NIC.
4744  *  Description:  This function is the ISR handler of the device. It
4745  *  identifies the reason for the interrupt and calls the relevant
4746  *  service routines. As a contongency measure, this ISR allocates the
4747  *  recv buffers, if their numbers are below the panic value which is
4748  *  presently set to 25% of the original number of rcv buffers allocated.
4749  *  Return value:
4750  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4751  *   IRQ_NONE: will be returned if interrupt is not from our device
4752  */
4753 static irqreturn_t s2io_isr(int irq, void *dev_id)
4754 {
4755         struct net_device *dev = (struct net_device *) dev_id;
4756         struct s2io_nic *sp = netdev_priv(dev);
4757         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4758         int i;
4759         u64 reason = 0;
4760         struct mac_info *mac_control;
4761         struct config_param *config;
4762
4763         /* Pretend we handled any irq's from a disconnected card */
4764         if (pci_channel_offline(sp->pdev))
4765                 return IRQ_NONE;
4766
4767         if (!is_s2io_card_up(sp))
4768                 return IRQ_NONE;
4769
4770         mac_control = &sp->mac_control;
4771         config = &sp->config;
4772
4773         /*
4774          * Identify the cause for interrupt and call the appropriate
4775          * interrupt handler. Causes for the interrupt could be;
4776          * 1. Rx of packet.
4777          * 2. Tx complete.
4778          * 3. Link down.
4779          */
4780         reason = readq(&bar0->general_int_status);
4781
4782         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4783                 /* Nothing much can be done. Get out */
4784                 return IRQ_HANDLED;
4785         }
4786
4787         if (reason & (GEN_INTR_RXTRAFFIC |
4788                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4789         {
4790                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4791
4792                 if (config->napi) {
4793                         if (reason & GEN_INTR_RXTRAFFIC) {
4794                                 netif_rx_schedule(dev, &sp->napi);
4795                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4796                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4797                                 readl(&bar0->rx_traffic_int);
4798                         }
4799                 } else {
4800                         /*
4801                          * rx_traffic_int reg is an R1 register, writing all 1's
4802                          * will ensure that the actual interrupt causing bit
4803                          * get's cleared and hence a read can be avoided.
4804                          */
4805                         if (reason & GEN_INTR_RXTRAFFIC)
4806                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4807
4808                         for (i = 0; i < config->rx_ring_num; i++)
4809                                 rx_intr_handler(&mac_control->rings[i], 0);
4810                 }
4811
4812                 /*
4813                  * tx_traffic_int reg is an R1 register, writing all 1's
4814                  * will ensure that the actual interrupt causing bit get's
4815                  * cleared and hence a read can be avoided.
4816                  */
4817                 if (reason & GEN_INTR_TXTRAFFIC)
4818                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4819
4820                 for (i = 0; i < config->tx_fifo_num; i++)
4821                         tx_intr_handler(&mac_control->fifos[i]);
4822
4823                 if (reason & GEN_INTR_TXPIC)
4824                         s2io_txpic_intr_handle(sp);
4825
4826                 /*
4827                  * Reallocate the buffers from the interrupt handler itself.
4828                  */
4829                 if (!config->napi) {
4830                         for (i = 0; i < config->rx_ring_num; i++)
4831                                 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4832                 }
4833                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4834                 readl(&bar0->general_int_status);
4835
4836                 return IRQ_HANDLED;
4837
4838         }
4839         else if (!reason) {
4840                 /* The interrupt was not raised by us */
4841                 return IRQ_NONE;
4842         }
4843
4844         return IRQ_HANDLED;
4845 }
4846
4847 /**
4848  * s2io_updt_stats -
4849  */
4850 static void s2io_updt_stats(struct s2io_nic *sp)
4851 {
4852         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4853         u64 val64;
4854         int cnt = 0;
4855
4856         if (is_s2io_card_up(sp)) {
4857                 /* Apprx 30us on a 133 MHz bus */
4858                 val64 = SET_UPDT_CLICKS(10) |
4859                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4860                 writeq(val64, &bar0->stat_cfg);
4861                 do {
4862                         udelay(100);
4863                         val64 = readq(&bar0->stat_cfg);
4864                         if (!(val64 & s2BIT(0)))
4865                                 break;
4866                         cnt++;
4867                         if (cnt == 5)
4868                                 break; /* Updt failed */
4869                 } while(1);
4870         }
4871 }
4872
4873 /**
4874  *  s2io_get_stats - Updates the device statistics structure.
4875  *  @dev : pointer to the device structure.
4876  *  Description:
4877  *  This function updates the device statistics structure in the s2io_nic
4878  *  structure and returns a pointer to the same.
4879  *  Return value:
4880  *  pointer to the updated net_device_stats structure.
4881  */
4882
4883 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4884 {
4885         struct s2io_nic *sp = netdev_priv(dev);
4886         struct mac_info *mac_control;
4887         struct config_param *config;
4888         int i;
4889
4890
4891         mac_control = &sp->mac_control;
4892         config = &sp->config;
4893
4894         /* Configure Stats for immediate updt */
4895         s2io_updt_stats(sp);
4896
4897         /* Using sp->stats as a staging area, because reset (due to mtu
4898            change, for example) will clear some hardware counters */
4899         dev->stats.tx_packets +=
4900                 le32_to_cpu(mac_control->stats_info->tmac_frms) - 
4901                 sp->stats.tx_packets;
4902         sp->stats.tx_packets =
4903                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4904         dev->stats.tx_errors +=
4905                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4906                 sp->stats.tx_errors;
4907         sp->stats.tx_errors =
4908                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4909         dev->stats.rx_errors +=
4910                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4911                 sp->stats.rx_errors;
4912         sp->stats.rx_errors =
4913                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4914         dev->stats.multicast =
4915                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) - 
4916                 sp->stats.multicast;
4917         sp->stats.multicast =
4918                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4919         dev->stats.rx_length_errors =
4920                 le64_to_cpu(mac_control->stats_info->rmac_long_frms) - 
4921                 sp->stats.rx_length_errors;
4922         sp->stats.rx_length_errors =
4923                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4924
4925         /* collect per-ring rx_packets and rx_bytes */
4926         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4927         for (i = 0; i < config->rx_ring_num; i++) {
4928                 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4929                 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4930         }
4931
4932         return (&dev->stats);
4933 }
4934
4935 /**
4936  *  s2io_set_multicast - entry point for multicast address enable/disable.
4937  *  @dev : pointer to the device structure
4938  *  Description:
4939  *  This function is a driver entry point which gets called by the kernel
4940  *  whenever multicast addresses must be enabled/disabled. This also gets
4941  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4942  *  determine, if multicast address must be enabled or if promiscuous mode
4943  *  is to be disabled etc.
4944  *  Return value:
4945  *  void.
4946  */
4947
4948 static void s2io_set_multicast(struct net_device *dev)
4949 {
4950         int i, j, prev_cnt;
4951         struct dev_mc_list *mclist;
4952         struct s2io_nic *sp = netdev_priv(dev);
4953         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4954         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4955             0xfeffffffffffULL;
4956         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4957         void __iomem *add;
4958         struct config_param *config = &sp->config;
4959
4960         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4961                 /*  Enable all Multicast addresses */
4962                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4963                        &bar0->rmac_addr_data0_mem);
4964                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4965                        &bar0->rmac_addr_data1_mem);
4966                 val64 = RMAC_ADDR_CMD_MEM_WE |
4967                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4968                     RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4969                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4970                 /* Wait till command completes */
4971                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4972                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4973                                         S2IO_BIT_RESET);
4974
4975                 sp->m_cast_flg = 1;
4976                 sp->all_multi_pos = config->max_mc_addr - 1;
4977         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4978                 /*  Disable all Multicast addresses */
4979                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4980                        &bar0->rmac_addr_data0_mem);
4981                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4982                        &bar0->rmac_addr_data1_mem);
4983                 val64 = RMAC_ADDR_CMD_MEM_WE |
4984                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4985                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4986                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4987                 /* Wait till command completes */
4988                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4989                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4990                                         S2IO_BIT_RESET);
4991
4992                 sp->m_cast_flg = 0;
4993                 sp->all_multi_pos = 0;
4994         }
4995
4996         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4997                 /*  Put the NIC into promiscuous mode */
4998                 add = &bar0->mac_cfg;
4999                 val64 = readq(&bar0->mac_cfg);
5000                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5001
5002                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5003                 writel((u32) val64, add);
5004                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5005                 writel((u32) (val64 >> 32), (add + 4));
5006
5007                 if (vlan_tag_strip != 1) {
5008                         val64 = readq(&bar0->rx_pa_cfg);
5009                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5010                         writeq(val64, &bar0->rx_pa_cfg);
5011                         sp->vlan_strip_flag = 0;
5012                 }
5013
5014                 val64 = readq(&bar0->mac_cfg);
5015                 sp->promisc_flg = 1;
5016                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5017                           dev->name);
5018         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5019                 /*  Remove the NIC from promiscuous mode */
5020                 add = &bar0->mac_cfg;
5021                 val64 = readq(&bar0->mac_cfg);
5022                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5023
5024                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5025                 writel((u32) val64, add);
5026                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5027                 writel((u32) (val64 >> 32), (add + 4));
5028
5029                 if (vlan_tag_strip != 0) {
5030                         val64 = readq(&bar0->rx_pa_cfg);
5031                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5032                         writeq(val64, &bar0->rx_pa_cfg);
5033                         sp->vlan_strip_flag = 1;
5034                 }
5035
5036                 val64 = readq(&bar0->mac_cfg);
5037                 sp->promisc_flg = 0;
5038                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5039                           dev->name);
5040         }
5041
5042         /*  Update individual M_CAST address list */
5043         if ((!sp->m_cast_flg) && dev->mc_count) {
5044                 if (dev->mc_count >
5045                     (config->max_mc_addr - config->max_mac_addr)) {
5046                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5047                                   dev->name);
5048                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
5049                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5050                         return;
5051                 }
5052
5053                 prev_cnt = sp->mc_addr_count;
5054                 sp->mc_addr_count = dev->mc_count;
5055
5056                 /* Clear out the previous list of Mc in the H/W. */
5057                 for (i = 0; i < prev_cnt; i++) {
5058                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5059                                &bar0->rmac_addr_data0_mem);
5060                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5061                                 &bar0->rmac_addr_data1_mem);
5062                         val64 = RMAC_ADDR_CMD_MEM_WE |
5063                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5064                             RMAC_ADDR_CMD_MEM_OFFSET
5065                             (config->mc_start_offset + i);
5066                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5067
5068                         /* Wait for command completes */
5069                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5070                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5071                                         S2IO_BIT_RESET)) {
5072                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5073                                           dev->name);
5074                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5075                                 return;
5076                         }
5077                 }
5078
5079                 /* Create the new Rx filter list and update the same in H/W. */
5080                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5081                      i++, mclist = mclist->next) {
5082                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5083                                ETH_ALEN);
5084                         mac_addr = 0;
5085                         for (j = 0; j < ETH_ALEN; j++) {
5086                                 mac_addr |= mclist->dmi_addr[j];
5087                                 mac_addr <<= 8;
5088                         }
5089                         mac_addr >>= 8;
5090                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5091                                &bar0->rmac_addr_data0_mem);
5092                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5093                                 &bar0->rmac_addr_data1_mem);
5094                         val64 = RMAC_ADDR_CMD_MEM_WE |
5095                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5096                             RMAC_ADDR_CMD_MEM_OFFSET
5097                             (i + config->mc_start_offset);
5098                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5099
5100                         /* Wait for command completes */
5101                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5102                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5103                                         S2IO_BIT_RESET)) {
5104                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5105                                           dev->name);
5106                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5107                                 return;
5108                         }
5109                 }
5110         }
5111 }
5112
5113 /* read from CAM unicast & multicast addresses and store it in
5114  * def_mac_addr structure
5115  */
5116 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5117 {
5118         int offset;
5119         u64 mac_addr = 0x0;
5120         struct config_param *config = &sp->config;
5121
5122         /* store unicast & multicast mac addresses */
5123         for (offset = 0; offset < config->max_mc_addr; offset++) {
5124                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5125                 /* if read fails disable the entry */
5126                 if (mac_addr == FAILURE)
5127                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5128                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5129         }
5130 }
5131
5132 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5133 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5134 {
5135         int offset;
5136         struct config_param *config = &sp->config;
5137         /* restore unicast mac address */
5138         for (offset = 0; offset < config->max_mac_addr; offset++)
5139                 do_s2io_prog_unicast(sp->dev,
5140                         sp->def_mac_addr[offset].mac_addr);
5141
5142         /* restore multicast mac address */
5143         for (offset = config->mc_start_offset;
5144                 offset < config->max_mc_addr; offset++)
5145                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5146 }
5147
5148 /* add a multicast MAC address to CAM */
5149 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5150 {
5151         int i;
5152         u64 mac_addr = 0;
5153         struct config_param *config = &sp->config;
5154
5155         for (i = 0; i < ETH_ALEN; i++) {
5156                 mac_addr <<= 8;
5157                 mac_addr |= addr[i];
5158         }
5159         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5160                 return SUCCESS;
5161
5162         /* check if the multicast mac already preset in CAM */
5163         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5164                 u64 tmp64;
5165                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5166                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5167                         break;
5168
5169                 if (tmp64 == mac_addr)
5170                         return SUCCESS;
5171         }
5172         if (i == config->max_mc_addr) {
5173                 DBG_PRINT(ERR_DBG,
5174                         "CAM full no space left for multicast MAC\n");
5175                 return FAILURE;
5176         }
5177         /* Update the internal structure with this new mac address */
5178         do_s2io_copy_mac_addr(sp, i, mac_addr);
5179
5180         return (do_s2io_add_mac(sp, mac_addr, i));
5181 }
5182
5183 /* add MAC address to CAM */
5184 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5185 {
5186         u64 val64;
5187         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5188
5189         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5190                 &bar0->rmac_addr_data0_mem);
5191
5192         val64 =
5193                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5194                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5195         writeq(val64, &bar0->rmac_addr_cmd_mem);
5196
5197         /* Wait till command completes */
5198         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5199                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5200                 S2IO_BIT_RESET)) {
5201                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5202                 return FAILURE;
5203         }
5204         return SUCCESS;
5205 }
5206 /* deletes a specified unicast/multicast mac entry from CAM */
5207 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5208 {
5209         int offset;
5210         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5211         struct config_param *config = &sp->config;
5212
5213         for (offset = 1;
5214                 offset < config->max_mc_addr; offset++) {
5215                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5216                 if (tmp64 == addr) {
5217                         /* disable the entry by writing  0xffffffffffffULL */
5218                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5219                                 return FAILURE;
5220                         /* store the new mac list from CAM */
5221                         do_s2io_store_unicast_mc(sp);
5222                         return SUCCESS;
5223                 }
5224         }
5225         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5226                         (unsigned long long)addr);
5227         return FAILURE;
5228 }
5229
5230 /* read mac entries from CAM */
5231 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5232 {
5233         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5234         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5235
5236         /* read mac addr */
5237         val64 =
5238                 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5239                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5240         writeq(val64, &bar0->rmac_addr_cmd_mem);
5241
5242         /* Wait till command completes */
5243         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5244                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5245                 S2IO_BIT_RESET)) {
5246                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5247                 return FAILURE;
5248         }
5249         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5250         return (tmp64 >> 16);
5251 }
5252
5253 /**
5254  * s2io_set_mac_addr driver entry point
5255  */
5256
5257 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5258 {
5259         struct sockaddr *addr = p;
5260
5261         if (!is_valid_ether_addr(addr->sa_data))
5262                 return -EINVAL;
5263
5264         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5265
5266         /* store the MAC address in CAM */
5267         return (do_s2io_prog_unicast(dev, dev->dev_addr));
5268 }
5269 /**
5270  *  do_s2io_prog_unicast - Programs the Xframe mac address
5271  *  @dev : pointer to the device structure.
5272  *  @addr: a uchar pointer to the new mac address which is to be set.
5273  *  Description : This procedure will program the Xframe to receive
5274  *  frames with new Mac Address
5275  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5276  *  as defined in errno.h file on failure.
5277  */
5278
5279 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5280 {
5281         struct s2io_nic *sp = netdev_priv(dev);
5282         register u64 mac_addr = 0, perm_addr = 0;
5283         int i;
5284         u64 tmp64;
5285         struct config_param *config = &sp->config;
5286
5287         /*
5288         * Set the new MAC address as the new unicast filter and reflect this
5289         * change on the device address registered with the OS. It will be
5290         * at offset 0.
5291         */
5292         for (i = 0; i < ETH_ALEN; i++) {
5293                 mac_addr <<= 8;
5294                 mac_addr |= addr[i];
5295                 perm_addr <<= 8;
5296                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5297         }
5298
5299         /* check if the dev_addr is different than perm_addr */
5300         if (mac_addr == perm_addr)
5301                 return SUCCESS;
5302
5303         /* check if the mac already preset in CAM */
5304         for (i = 1; i < config->max_mac_addr; i++) {
5305                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5306                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5307                         break;
5308
5309                 if (tmp64 == mac_addr) {
5310                         DBG_PRINT(INFO_DBG,
5311                         "MAC addr:0x%llx already present in CAM\n",
5312                         (unsigned long long)mac_addr);
5313                         return SUCCESS;
5314                 }
5315         }
5316         if (i == config->max_mac_addr) {
5317                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5318                 return FAILURE;
5319         }
5320         /* Update the internal structure with this new mac address */
5321         do_s2io_copy_mac_addr(sp, i, mac_addr);
5322         return (do_s2io_add_mac(sp, mac_addr, i));
5323 }
5324
5325 /**
5326  * s2io_ethtool_sset - Sets different link parameters.
5327  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5328  * @info: pointer to the structure with parameters given by ethtool to set
5329  * link information.
5330  * Description:
5331  * The function sets different link parameters provided by the user onto
5332  * the NIC.
5333  * Return value:
5334  * 0 on success.
5335 */
5336
5337 static int s2io_ethtool_sset(struct net_device *dev,
5338                              struct ethtool_cmd *info)
5339 {
5340         struct s2io_nic *sp = netdev_priv(dev);
5341         if ((info->autoneg == AUTONEG_ENABLE) ||
5342             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5343                 return -EINVAL;
5344         else {
5345                 s2io_close(sp->dev);
5346                 s2io_open(sp->dev);
5347         }
5348
5349         return 0;
5350 }
5351
5352 /**
5353  * s2io_ethtol_gset - Return link specific information.
5354  * @sp : private member of the device structure, pointer to the
5355  *      s2io_nic structure.
5356  * @info : pointer to the structure with parameters given by ethtool
5357  * to return link information.
5358  * Description:
5359  * Returns link specific information like speed, duplex etc.. to ethtool.
5360  * Return value :
5361  * return 0 on success.
5362  */
5363
5364 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5365 {
5366         struct s2io_nic *sp = netdev_priv(dev);
5367         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5368         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5369         info->port = PORT_FIBRE;
5370
5371         /* info->transceiver */
5372         info->transceiver = XCVR_EXTERNAL;
5373
5374         if (netif_carrier_ok(sp->dev)) {
5375                 info->speed = 10000;
5376                 info->duplex = DUPLEX_FULL;
5377         } else {
5378                 info->speed = -1;
5379                 info->duplex = -1;
5380         }
5381
5382         info->autoneg = AUTONEG_DISABLE;
5383         return 0;
5384 }
5385
5386 /**
5387  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5388  * @sp : private member of the device structure, which is a pointer to the
5389  * s2io_nic structure.
5390  * @info : pointer to the structure with parameters given by ethtool to
5391  * return driver information.
5392  * Description:
5393  * Returns driver specefic information like name, version etc.. to ethtool.
5394  * Return value:
5395  *  void
5396  */
5397
5398 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5399                                   struct ethtool_drvinfo *info)
5400 {
5401         struct s2io_nic *sp = netdev_priv(dev);
5402
5403         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5404         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5405         strncpy(info->fw_version, "", sizeof(info->fw_version));
5406         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5407         info->regdump_len = XENA_REG_SPACE;
5408         info->eedump_len = XENA_EEPROM_SPACE;
5409 }
5410
5411 /**
5412  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5413  *  @sp: private member of the device structure, which is a pointer to the
5414  *  s2io_nic structure.
5415  *  @regs : pointer to the structure with parameters given by ethtool for
5416  *  dumping the registers.
5417  *  @reg_space: The input argumnet into which all the registers are dumped.
5418  *  Description:
5419  *  Dumps the entire register space of xFrame NIC into the user given
5420  *  buffer area.
5421  * Return value :
5422  * void .
5423 */
5424
5425 static void s2io_ethtool_gregs(struct net_device *dev,
5426                                struct ethtool_regs *regs, void *space)
5427 {
5428         int i;
5429         u64 reg;
5430         u8 *reg_space = (u8 *) space;
5431         struct s2io_nic *sp = netdev_priv(dev);
5432
5433         regs->len = XENA_REG_SPACE;
5434         regs->version = sp->pdev->subsystem_device;
5435
5436         for (i = 0; i < regs->len; i += 8) {
5437                 reg = readq(sp->bar0 + i);
5438                 memcpy((reg_space + i), &reg, 8);
5439         }
5440 }
5441
5442 /**
5443  *  s2io_phy_id  - timer function that alternates adapter LED.
5444  *  @data : address of the private member of the device structure, which
5445  *  is a pointer to the s2io_nic structure, provided as an u32.
5446  * Description: This is actually the timer function that alternates the
5447  * adapter LED bit of the adapter control bit to set/reset every time on
5448  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5449  *  once every second.
5450 */
5451 static void s2io_phy_id(unsigned long data)
5452 {
5453         struct s2io_nic *sp = (struct s2io_nic *) data;
5454         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5455         u64 val64 = 0;
5456         u16 subid;
5457
5458         subid = sp->pdev->subsystem_device;
5459         if ((sp->device_type == XFRAME_II_DEVICE) ||
5460                    ((subid & 0xFF) >= 0x07)) {
5461                 val64 = readq(&bar0->gpio_control);
5462                 val64 ^= GPIO_CTRL_GPIO_0;
5463                 writeq(val64, &bar0->gpio_control);
5464         } else {
5465                 val64 = readq(&bar0->adapter_control);
5466                 val64 ^= ADAPTER_LED_ON;
5467                 writeq(val64, &bar0->adapter_control);
5468         }
5469
5470         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5471 }
5472
5473 /**
5474  * s2io_ethtool_idnic - To physically identify the nic on the system.
5475  * @sp : private member of the device structure, which is a pointer to the
5476  * s2io_nic structure.
5477  * @id : pointer to the structure with identification parameters given by
5478  * ethtool.
5479  * Description: Used to physically identify the NIC on the system.
5480  * The Link LED will blink for a time specified by the user for
5481  * identification.
5482  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5483  * identification is possible only if it's link is up.
5484  * Return value:
5485  * int , returns 0 on success
5486  */
5487
5488 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5489 {
5490         u64 val64 = 0, last_gpio_ctrl_val;
5491         struct s2io_nic *sp = netdev_priv(dev);
5492         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5493         u16 subid;
5494
5495         subid = sp->pdev->subsystem_device;
5496         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5497         if ((sp->device_type == XFRAME_I_DEVICE) &&
5498                 ((subid & 0xFF) < 0x07)) {
5499                 val64 = readq(&bar0->adapter_control);
5500                 if (!(val64 & ADAPTER_CNTL_EN)) {
5501                         printk(KERN_ERR
5502                                "Adapter Link down, cannot blink LED\n");
5503                         return -EFAULT;
5504                 }
5505         }
5506         if (sp->id_timer.function == NULL) {
5507                 init_timer(&sp->id_timer);
5508                 sp->id_timer.function = s2io_phy_id;
5509                 sp->id_timer.data = (unsigned long) sp;
5510         }
5511         mod_timer(&sp->id_timer, jiffies);
5512         if (data)
5513                 msleep_interruptible(data * HZ);
5514         else
5515                 msleep_interruptible(MAX_FLICKER_TIME);
5516         del_timer_sync(&sp->id_timer);
5517
5518         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5519                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5520                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5521         }
5522
5523         return 0;
5524 }
5525
5526 static void s2io_ethtool_gringparam(struct net_device *dev,
5527                                     struct ethtool_ringparam *ering)
5528 {
5529         struct s2io_nic *sp = netdev_priv(dev);
5530         int i,tx_desc_count=0,rx_desc_count=0;
5531
5532         if (sp->rxd_mode == RXD_MODE_1)
5533                 ering->rx_max_pending = MAX_RX_DESC_1;
5534         else if (sp->rxd_mode == RXD_MODE_3B)
5535                 ering->rx_max_pending = MAX_RX_DESC_2;
5536
5537         ering->tx_max_pending = MAX_TX_DESC;
5538         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5539                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5540
5541         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5542         ering->tx_pending = tx_desc_count;
5543         rx_desc_count = 0;
5544         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5545                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5546
5547         ering->rx_pending = rx_desc_count;
5548
5549         ering->rx_mini_max_pending = 0;
5550         ering->rx_mini_pending = 0;
5551         if(sp->rxd_mode == RXD_MODE_1)
5552                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5553         else if (sp->rxd_mode == RXD_MODE_3B)
5554                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5555         ering->rx_jumbo_pending = rx_desc_count;
5556 }
5557
5558 /**
5559  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5560  * @sp : private member of the device structure, which is a pointer to the
5561  *      s2io_nic structure.
5562  * @ep : pointer to the structure with pause parameters given by ethtool.
5563  * Description:
5564  * Returns the Pause frame generation and reception capability of the NIC.
5565  * Return value:
5566  *  void
5567  */
5568 static void s2io_ethtool_getpause_data(struct net_device *dev,
5569                                        struct ethtool_pauseparam *ep)
5570 {
5571         u64 val64;
5572         struct s2io_nic *sp = netdev_priv(dev);
5573         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5574
5575         val64 = readq(&bar0->rmac_pause_cfg);
5576         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5577                 ep->tx_pause = TRUE;
5578         if (val64 & RMAC_PAUSE_RX_ENABLE)
5579                 ep->rx_pause = TRUE;
5580         ep->autoneg = FALSE;
5581 }
5582
5583 /**
5584  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5585  * @sp : private member of the device structure, which is a pointer to the
5586  *      s2io_nic structure.
5587  * @ep : pointer to the structure with pause parameters given by ethtool.
5588  * Description:
5589  * It can be used to set or reset Pause frame generation or reception
5590  * support of the NIC.
5591  * Return value:
5592  * int, returns 0 on Success
5593  */
5594
5595 static int s2io_ethtool_setpause_data(struct net_device *dev,
5596                                struct ethtool_pauseparam *ep)
5597 {
5598         u64 val64;
5599         struct s2io_nic *sp = netdev_priv(dev);
5600         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5601
5602         val64 = readq(&bar0->rmac_pause_cfg);
5603         if (ep->tx_pause)
5604                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5605         else
5606                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5607         if (ep->rx_pause)
5608                 val64 |= RMAC_PAUSE_RX_ENABLE;
5609         else
5610                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5611         writeq(val64, &bar0->rmac_pause_cfg);
5612         return 0;
5613 }
5614
5615 /**
5616  * read_eeprom - reads 4 bytes of data from user given offset.
5617  * @sp : private member of the device structure, which is a pointer to the
5618  *      s2io_nic structure.
5619  * @off : offset at which the data must be written
5620  * @data : Its an output parameter where the data read at the given
5621  *      offset is stored.
5622  * Description:
5623  * Will read 4 bytes of data from the user given offset and return the
5624  * read data.
5625  * NOTE: Will allow to read only part of the EEPROM visible through the
5626  *   I2C bus.
5627  * Return value:
5628  *  -1 on failure and 0 on success.
5629  */
5630
5631 #define S2IO_DEV_ID             5
5632 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5633 {
5634         int ret = -1;
5635         u32 exit_cnt = 0;
5636         u64 val64;
5637         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5638
5639         if (sp->device_type == XFRAME_I_DEVICE) {
5640                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5641                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5642                     I2C_CONTROL_CNTL_START;
5643                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5644
5645                 while (exit_cnt < 5) {
5646                         val64 = readq(&bar0->i2c_control);
5647                         if (I2C_CONTROL_CNTL_END(val64)) {
5648                                 *data = I2C_CONTROL_GET_DATA(val64);
5649                                 ret = 0;
5650                                 break;
5651                         }
5652                         msleep(50);
5653                         exit_cnt++;
5654                 }
5655         }
5656
5657         if (sp->device_type == XFRAME_II_DEVICE) {
5658                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5659                         SPI_CONTROL_BYTECNT(0x3) |
5660                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5661                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662                 val64 |= SPI_CONTROL_REQ;
5663                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5664                 while (exit_cnt < 5) {
5665                         val64 = readq(&bar0->spi_control);
5666                         if (val64 & SPI_CONTROL_NACK) {
5667                                 ret = 1;
5668                                 break;
5669                         } else if (val64 & SPI_CONTROL_DONE) {
5670                                 *data = readq(&bar0->spi_data);
5671                                 *data &= 0xffffff;
5672                                 ret = 0;
5673                                 break;
5674                         }
5675                         msleep(50);
5676                         exit_cnt++;
5677                 }
5678         }
5679         return ret;
5680 }
5681
5682 /**
5683  *  write_eeprom - actually writes the relevant part of the data value.
5684  *  @sp : private member of the device structure, which is a pointer to the
5685  *       s2io_nic structure.
5686  *  @off : offset at which the data must be written
5687  *  @data : The data that is to be written
5688  *  @cnt : Number of bytes of the data that are actually to be written into
5689  *  the Eeprom. (max of 3)
5690  * Description:
5691  *  Actually writes the relevant part of the data value into the Eeprom
5692  *  through the I2C bus.
5693  * Return value:
5694  *  0 on success, -1 on failure.
5695  */
5696
5697 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5698 {
5699         int exit_cnt = 0, ret = -1;
5700         u64 val64;
5701         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5702
5703         if (sp->device_type == XFRAME_I_DEVICE) {
5704                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5705                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5706                     I2C_CONTROL_CNTL_START;
5707                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5708
5709                 while (exit_cnt < 5) {
5710                         val64 = readq(&bar0->i2c_control);
5711                         if (I2C_CONTROL_CNTL_END(val64)) {
5712                                 if (!(val64 & I2C_CONTROL_NACK))
5713                                         ret = 0;
5714                                 break;
5715                         }
5716                         msleep(50);
5717                         exit_cnt++;
5718                 }
5719         }
5720
5721         if (sp->device_type == XFRAME_II_DEVICE) {
5722                 int write_cnt = (cnt == 8) ? 0 : cnt;
5723                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5724
5725                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5726                         SPI_CONTROL_BYTECNT(write_cnt) |
5727                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5728                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5729                 val64 |= SPI_CONTROL_REQ;
5730                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5731                 while (exit_cnt < 5) {
5732                         val64 = readq(&bar0->spi_control);
5733                         if (val64 & SPI_CONTROL_NACK) {
5734                                 ret = 1;
5735                                 break;
5736                         } else if (val64 & SPI_CONTROL_DONE) {
5737                                 ret = 0;
5738                                 break;
5739                         }
5740                         msleep(50);
5741                         exit_cnt++;
5742                 }
5743         }
5744         return ret;
5745 }
5746 static void s2io_vpd_read(struct s2io_nic *nic)
5747 {
5748         u8 *vpd_data;
5749         u8 data;
5750         int i=0, cnt, fail = 0;
5751         int vpd_addr = 0x80;
5752
5753         if (nic->device_type == XFRAME_II_DEVICE) {
5754                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5755                 vpd_addr = 0x80;
5756         }
5757         else {
5758                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5759                 vpd_addr = 0x50;
5760         }
5761         strcpy(nic->serial_num, "NOT AVAILABLE");
5762
5763         vpd_data = kmalloc(256, GFP_KERNEL);
5764         if (!vpd_data) {
5765                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5766                 return;
5767         }
5768         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5769
5770         for (i = 0; i < 256; i +=4 ) {
5771                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5772                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5773                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5774                 for (cnt = 0; cnt <5; cnt++) {
5775                         msleep(2);
5776                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5777                         if (data == 0x80)
5778                                 break;
5779                 }
5780                 if (cnt >= 5) {
5781                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5782                         fail = 1;
5783                         break;
5784                 }
5785                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5786                                       (u32 *)&vpd_data[i]);
5787         }
5788
5789         if(!fail) {
5790                 /* read serial number of adapter */
5791                 for (cnt = 0; cnt < 256; cnt++) {
5792                 if ((vpd_data[cnt] == 'S') &&
5793                         (vpd_data[cnt+1] == 'N') &&
5794                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5795                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5796                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5797                                         vpd_data[cnt+2]);
5798                                 break;
5799                         }
5800                 }
5801         }
5802
5803         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5804                 memset(nic->product_name, 0, vpd_data[1]);
5805                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5806         }
5807         kfree(vpd_data);
5808         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5809 }
5810
5811 /**
5812  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5813  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5814  *  @eeprom : pointer to the user level structure provided by ethtool,
5815  *  containing all relevant information.
5816  *  @data_buf : user defined value to be written into Eeprom.
5817  *  Description: Reads the values stored in the Eeprom at given offset
5818  *  for a given length. Stores these values int the input argument data
5819  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5820  *  Return value:
5821  *  int  0 on success
5822  */
5823
5824 static int s2io_ethtool_geeprom(struct net_device *dev,
5825                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5826 {
5827         u32 i, valid;
5828         u64 data;
5829         struct s2io_nic *sp = netdev_priv(dev);
5830
5831         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5832
5833         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5834                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5835
5836         for (i = 0; i < eeprom->len; i += 4) {
5837                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5838                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5839                         return -EFAULT;
5840                 }
5841                 valid = INV(data);
5842                 memcpy((data_buf + i), &valid, 4);
5843         }
5844         return 0;
5845 }
5846
5847 /**
5848  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5849  *  @sp : private member of the device structure, which is a pointer to the
5850  *  s2io_nic structure.
5851  *  @eeprom : pointer to the user level structure provided by ethtool,
5852  *  containing all relevant information.
5853  *  @data_buf ; user defined value to be written into Eeprom.
5854  *  Description:
5855  *  Tries to write the user provided value in the Eeprom, at the offset
5856  *  given by the user.
5857  *  Return value:
5858  *  0 on success, -EFAULT on failure.
5859  */
5860
5861 static int s2io_ethtool_seeprom(struct net_device *dev,
5862                                 struct ethtool_eeprom *eeprom,
5863                                 u8 * data_buf)
5864 {
5865         int len = eeprom->len, cnt = 0;
5866         u64 valid = 0, data;
5867         struct s2io_nic *sp = netdev_priv(dev);
5868
5869         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5870                 DBG_PRINT(ERR_DBG,
5871                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5872                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5873                           eeprom->magic);
5874                 return -EFAULT;
5875         }
5876
5877         while (len) {
5878                 data = (u32) data_buf[cnt] & 0x000000FF;
5879                 if (data) {
5880                         valid = (u32) (data << 24);
5881                 } else
5882                         valid = data;
5883
5884                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5885                         DBG_PRINT(ERR_DBG,
5886                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5887                         DBG_PRINT(ERR_DBG,
5888                                   "write into the specified offset\n");
5889                         return -EFAULT;
5890                 }
5891                 cnt++;
5892                 len--;
5893         }
5894
5895         return 0;
5896 }
5897
5898 /**
5899  * s2io_register_test - reads and writes into all clock domains.
5900  * @sp : private member of the device structure, which is a pointer to the
5901  * s2io_nic structure.
5902  * @data : variable that returns the result of each of the test conducted b
5903  * by the driver.
5904  * Description:
5905  * Read and write into all clock domains. The NIC has 3 clock domains,
5906  * see that registers in all the three regions are accessible.
5907  * Return value:
5908  * 0 on success.
5909  */
5910
5911 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5912 {
5913         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5914         u64 val64 = 0, exp_val;
5915         int fail = 0;
5916
5917         val64 = readq(&bar0->pif_rd_swapper_fb);
5918         if (val64 != 0x123456789abcdefULL) {
5919                 fail = 1;
5920                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5921         }
5922
5923         val64 = readq(&bar0->rmac_pause_cfg);
5924         if (val64 != 0xc000ffff00000000ULL) {
5925                 fail = 1;
5926                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5927         }
5928
5929         val64 = readq(&bar0->rx_queue_cfg);
5930         if (sp->device_type == XFRAME_II_DEVICE)
5931                 exp_val = 0x0404040404040404ULL;
5932         else
5933                 exp_val = 0x0808080808080808ULL;
5934         if (val64 != exp_val) {
5935                 fail = 1;
5936                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5937         }
5938
5939         val64 = readq(&bar0->xgxs_efifo_cfg);
5940         if (val64 != 0x000000001923141EULL) {
5941                 fail = 1;
5942                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5943         }
5944
5945         val64 = 0x5A5A5A5A5A5A5A5AULL;
5946         writeq(val64, &bar0->xmsi_data);
5947         val64 = readq(&bar0->xmsi_data);
5948         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5949                 fail = 1;
5950                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5951         }
5952
5953         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5954         writeq(val64, &bar0->xmsi_data);
5955         val64 = readq(&bar0->xmsi_data);
5956         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5957                 fail = 1;
5958                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5959         }
5960
5961         *data = fail;
5962         return fail;
5963 }
5964
5965 /**
5966  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5967  * @sp : private member of the device structure, which is a pointer to the
5968  * s2io_nic structure.
5969  * @data:variable that returns the result of each of the test conducted by
5970  * the driver.
5971  * Description:
5972  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5973  * register.
5974  * Return value:
5975  * 0 on success.
5976  */
5977
5978 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5979 {
5980         int fail = 0;
5981         u64 ret_data, org_4F0, org_7F0;
5982         u8 saved_4F0 = 0, saved_7F0 = 0;
5983         struct net_device *dev = sp->dev;
5984
5985         /* Test Write Error at offset 0 */
5986         /* Note that SPI interface allows write access to all areas
5987          * of EEPROM. Hence doing all negative testing only for Xframe I.
5988          */
5989         if (sp->device_type == XFRAME_I_DEVICE)
5990                 if (!write_eeprom(sp, 0, 0, 3))
5991                         fail = 1;
5992
5993         /* Save current values at offsets 0x4F0 and 0x7F0 */
5994         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5995                 saved_4F0 = 1;
5996         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5997                 saved_7F0 = 1;
5998
5999         /* Test Write at offset 4f0 */
6000         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6001                 fail = 1;
6002         if (read_eeprom(sp, 0x4F0, &ret_data))
6003                 fail = 1;
6004
6005         if (ret_data != 0x012345) {
6006                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6007                         "Data written %llx Data read %llx\n",
6008                         dev->name, (unsigned long long)0x12345,
6009                         (unsigned long long)ret_data);
6010                 fail = 1;
6011         }
6012
6013         /* Reset the EEPROM data go FFFF */
6014         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6015
6016         /* Test Write Request Error at offset 0x7c */
6017         if (sp->device_type == XFRAME_I_DEVICE)
6018                 if (!write_eeprom(sp, 0x07C, 0, 3))
6019                         fail = 1;
6020
6021         /* Test Write Request at offset 0x7f0 */
6022         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6023                 fail = 1;
6024         if (read_eeprom(sp, 0x7F0, &ret_data))
6025                 fail = 1;
6026
6027         if (ret_data != 0x012345) {
6028                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6029                         "Data written %llx Data read %llx\n",
6030                         dev->name, (unsigned long long)0x12345,
6031                         (unsigned long long)ret_data);
6032                 fail = 1;
6033         }
6034
6035         /* Reset the EEPROM data go FFFF */
6036         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6037
6038         if (sp->device_type == XFRAME_I_DEVICE) {
6039                 /* Test Write Error at offset 0x80 */
6040                 if (!write_eeprom(sp, 0x080, 0, 3))
6041                         fail = 1;
6042
6043                 /* Test Write Error at offset 0xfc */
6044                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6045                         fail = 1;
6046
6047                 /* Test Write Error at offset 0x100 */
6048                 if (!write_eeprom(sp, 0x100, 0, 3))
6049                         fail = 1;
6050
6051                 /* Test Write Error at offset 4ec */
6052                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6053                         fail = 1;
6054         }
6055
6056         /* Restore values at offsets 0x4F0 and 0x7F0 */
6057         if (saved_4F0)
6058                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6059         if (saved_7F0)
6060                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6061
6062         *data = fail;
6063         return fail;
6064 }
6065
6066 /**
6067  * s2io_bist_test - invokes the MemBist test of the card .
6068  * @sp : private member of the device structure, which is a pointer to the
6069  * s2io_nic structure.
6070  * @data:variable that returns the result of each of the test conducted by
6071  * the driver.
6072  * Description:
6073  * This invokes the MemBist test of the card. We give around
6074  * 2 secs time for the Test to complete. If it's still not complete
6075  * within this peiod, we consider that the test failed.
6076  * Return value:
6077  * 0 on success and -1 on failure.
6078  */
6079
6080 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6081 {
6082         u8 bist = 0;
6083         int cnt = 0, ret = -1;
6084
6085         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6086         bist |= PCI_BIST_START;
6087         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6088
6089         while (cnt < 20) {
6090                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6091                 if (!(bist & PCI_BIST_START)) {
6092                         *data = (bist & PCI_BIST_CODE_MASK);
6093                         ret = 0;
6094                         break;
6095                 }
6096                 msleep(100);
6097                 cnt++;
6098         }
6099
6100         return ret;
6101 }
6102
6103 /**
6104  * s2io-link_test - verifies the link state of the nic
6105  * @sp ; private member of the device structure, which is a pointer to the
6106  * s2io_nic structure.
6107  * @data: variable that returns the result of each of the test conducted by
6108  * the driver.
6109  * Description:
6110  * The function verifies the link state of the NIC and updates the input
6111  * argument 'data' appropriately.
6112  * Return value:
6113  * 0 on success.
6114  */
6115
6116 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6117 {
6118         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6119         u64 val64;
6120
6121         val64 = readq(&bar0->adapter_status);
6122         if(!(LINK_IS_UP(val64)))
6123                 *data = 1;
6124         else
6125                 *data = 0;
6126
6127         return *data;
6128 }
6129
6130 /**
6131  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6132  * @sp - private member of the device structure, which is a pointer to the
6133  * s2io_nic structure.
6134  * @data - variable that returns the result of each of the test
6135  * conducted by the driver.
6136  * Description:
6137  *  This is one of the offline test that tests the read and write
6138  *  access to the RldRam chip on the NIC.
6139  * Return value:
6140  *  0 on success.
6141  */
6142
6143 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6144 {
6145         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6146         u64 val64;
6147         int cnt, iteration = 0, test_fail = 0;
6148
6149         val64 = readq(&bar0->adapter_control);
6150         val64 &= ~ADAPTER_ECC_EN;
6151         writeq(val64, &bar0->adapter_control);
6152
6153         val64 = readq(&bar0->mc_rldram_test_ctrl);
6154         val64 |= MC_RLDRAM_TEST_MODE;
6155         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6156
6157         val64 = readq(&bar0->mc_rldram_mrs);
6158         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6159         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6160
6161         val64 |= MC_RLDRAM_MRS_ENABLE;
6162         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6163
6164         while (iteration < 2) {
6165                 val64 = 0x55555555aaaa0000ULL;
6166                 if (iteration == 1) {
6167                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6168                 }
6169                 writeq(val64, &bar0->mc_rldram_test_d0);
6170
6171                 val64 = 0xaaaa5a5555550000ULL;
6172                 if (iteration == 1) {
6173                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6174                 }
6175                 writeq(val64, &bar0->mc_rldram_test_d1);
6176
6177                 val64 = 0x55aaaaaaaa5a0000ULL;
6178                 if (iteration == 1) {
6179                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6180                 }
6181                 writeq(val64, &bar0->mc_rldram_test_d2);
6182
6183                 val64 = (u64) (0x0000003ffffe0100ULL);
6184                 writeq(val64, &bar0->mc_rldram_test_add);
6185
6186                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6187                         MC_RLDRAM_TEST_GO;
6188                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6189
6190                 for (cnt = 0; cnt < 5; cnt++) {
6191                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6192                         if (val64 & MC_RLDRAM_TEST_DONE)
6193                                 break;
6194                         msleep(200);
6195                 }
6196
6197                 if (cnt == 5)
6198                         break;
6199
6200                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6201                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6202
6203                 for (cnt = 0; cnt < 5; cnt++) {
6204                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6205                         if (val64 & MC_RLDRAM_TEST_DONE)
6206                                 break;
6207                         msleep(500);
6208                 }
6209
6210                 if (cnt == 5)
6211                         break;
6212
6213                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6214                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6215                         test_fail = 1;
6216
6217                 iteration++;
6218         }
6219
6220         *data = test_fail;
6221
6222         /* Bring the adapter out of test mode */
6223         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6224
6225         return test_fail;
6226 }
6227
6228 /**
6229  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6230  *  @sp : private member of the device structure, which is a pointer to the
6231  *  s2io_nic structure.
6232  *  @ethtest : pointer to a ethtool command specific structure that will be
6233  *  returned to the user.
6234  *  @data : variable that returns the result of each of the test
6235  * conducted by the driver.
6236  * Description:
6237  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6238  *  the health of the card.
6239  * Return value:
6240  *  void
6241  */
6242
6243 static void s2io_ethtool_test(struct net_device *dev,
6244                               struct ethtool_test *ethtest,
6245                               uint64_t * data)
6246 {
6247         struct s2io_nic *sp = netdev_priv(dev);
6248         int orig_state = netif_running(sp->dev);
6249
6250         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6251                 /* Offline Tests. */
6252                 if (orig_state)
6253                         s2io_close(sp->dev);
6254
6255                 if (s2io_register_test(sp, &data[0]))
6256                         ethtest->flags |= ETH_TEST_FL_FAILED;
6257
6258                 s2io_reset(sp);
6259
6260                 if (s2io_rldram_test(sp, &data[3]))
6261                         ethtest->flags |= ETH_TEST_FL_FAILED;
6262
6263                 s2io_reset(sp);
6264
6265                 if (s2io_eeprom_test(sp, &data[1]))
6266                         ethtest->flags |= ETH_TEST_FL_FAILED;
6267
6268                 if (s2io_bist_test(sp, &data[4]))
6269                         ethtest->flags |= ETH_TEST_FL_FAILED;
6270
6271                 if (orig_state)
6272                         s2io_open(sp->dev);
6273
6274                 data[2] = 0;
6275         } else {
6276                 /* Online Tests. */
6277                 if (!orig_state) {
6278                         DBG_PRINT(ERR_DBG,
6279                                   "%s: is not up, cannot run test\n",
6280                                   dev->name);
6281                         data[0] = -1;
6282                         data[1] = -1;
6283                         data[2] = -1;
6284                         data[3] = -1;
6285                         data[4] = -1;
6286                 }
6287
6288                 if (s2io_link_test(sp, &data[2]))
6289                         ethtest->flags |= ETH_TEST_FL_FAILED;
6290
6291                 data[0] = 0;
6292                 data[1] = 0;
6293                 data[3] = 0;
6294                 data[4] = 0;
6295         }
6296 }
6297
6298 static void s2io_get_ethtool_stats(struct net_device *dev,
6299                                    struct ethtool_stats *estats,
6300                                    u64 * tmp_stats)
6301 {
6302         int i = 0, k;
6303         struct s2io_nic *sp = netdev_priv(dev);
6304         struct stat_block *stat_info = sp->mac_control.stats_info;
6305
6306         s2io_updt_stats(sp);
6307         tmp_stats[i++] =
6308                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
6309                 le32_to_cpu(stat_info->tmac_frms);
6310         tmp_stats[i++] =
6311                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6312                 le32_to_cpu(stat_info->tmac_data_octets);
6313         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6314         tmp_stats[i++] =
6315                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6316                 le32_to_cpu(stat_info->tmac_mcst_frms);
6317         tmp_stats[i++] =
6318                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6319                 le32_to_cpu(stat_info->tmac_bcst_frms);
6320         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6321         tmp_stats[i++] =
6322                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6323                 le32_to_cpu(stat_info->tmac_ttl_octets);
6324         tmp_stats[i++] =
6325                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6326                 le32_to_cpu(stat_info->tmac_ucst_frms);
6327         tmp_stats[i++] =
6328                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6329                 le32_to_cpu(stat_info->tmac_nucst_frms);
6330         tmp_stats[i++] =
6331                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6332                 le32_to_cpu(stat_info->tmac_any_err_frms);
6333         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6334         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6335         tmp_stats[i++] =
6336                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6337                 le32_to_cpu(stat_info->tmac_vld_ip);
6338         tmp_stats[i++] =
6339                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6340                 le32_to_cpu(stat_info->tmac_drop_ip);
6341         tmp_stats[i++] =
6342                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6343                 le32_to_cpu(stat_info->tmac_icmp);
6344         tmp_stats[i++] =
6345                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6346                 le32_to_cpu(stat_info->tmac_rst_tcp);
6347         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6348         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6349                 le32_to_cpu(stat_info->tmac_udp);
6350         tmp_stats[i++] =
6351                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6352                 le32_to_cpu(stat_info->rmac_vld_frms);
6353         tmp_stats[i++] =
6354                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6355                 le32_to_cpu(stat_info->rmac_data_octets);
6356         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6357         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6358         tmp_stats[i++] =
6359                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6360                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6361         tmp_stats[i++] =
6362                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6363                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6364         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6365         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6366         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6367         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6368         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6369         tmp_stats[i++] =
6370                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6371                 le32_to_cpu(stat_info->rmac_ttl_octets);
6372         tmp_stats[i++] =
6373                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6374                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6375         tmp_stats[i++] =
6376                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6377                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6378         tmp_stats[i++] =
6379                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6380                 le32_to_cpu(stat_info->rmac_discarded_frms);
6381         tmp_stats[i++] =
6382                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6383                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6384         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6385         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6386         tmp_stats[i++] =
6387                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6388                 le32_to_cpu(stat_info->rmac_usized_frms);
6389         tmp_stats[i++] =
6390                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6391                 le32_to_cpu(stat_info->rmac_osized_frms);
6392         tmp_stats[i++] =
6393                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6394                 le32_to_cpu(stat_info->rmac_frag_frms);
6395         tmp_stats[i++] =
6396                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6397                 le32_to_cpu(stat_info->rmac_jabber_frms);
6398         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6399         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6400         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6401         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6402         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6403         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6404         tmp_stats[i++] =
6405                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6406                 le32_to_cpu(stat_info->rmac_ip);
6407         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6408         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6409         tmp_stats[i++] =
6410                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6411                 le32_to_cpu(stat_info->rmac_drop_ip);
6412         tmp_stats[i++] =
6413                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6414                 le32_to_cpu(stat_info->rmac_icmp);
6415         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6416         tmp_stats[i++] =
6417                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6418                 le32_to_cpu(stat_info->rmac_udp);
6419         tmp_stats[i++] =
6420                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6421                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6422         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6423         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6424         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6425         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6426         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6427         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6428         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6429         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6430         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6431         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6432         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6433         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6434         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6435         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6436         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6437         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6438         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6439         tmp_stats[i++] =
6440                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6441                 le32_to_cpu(stat_info->rmac_pause_cnt);
6442         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6443         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6444         tmp_stats[i++] =
6445                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6446                 le32_to_cpu(stat_info->rmac_accepted_ip);
6447         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6448         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6449         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6450         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6451         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6452         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6453         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6454         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6455         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6456         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6457         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6458         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6459         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6460         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6461         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6462         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6463         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6464         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6465         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6466
6467         /* Enhanced statistics exist only for Hercules */
6468         if(sp->device_type == XFRAME_II_DEVICE) {
6469                 tmp_stats[i++] =
6470                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6471                 tmp_stats[i++] =
6472                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6473                 tmp_stats[i++] =
6474                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6475                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6476                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6477                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6478                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6479                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6480                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6481                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6482                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6483                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6484                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6485                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6486                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6487                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6488         }
6489
6490         tmp_stats[i++] = 0;
6491         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6492         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6493         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6494         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6495         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6496         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6497         for (k = 0; k < MAX_RX_RINGS; k++)
6498                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6499         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6500         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6501         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6502         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6503         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6504         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6505         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6506         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6507         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6508         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6509         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6510         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6511         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6512         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6513         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6514         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6515         if (stat_info->sw_stat.num_aggregations) {
6516                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6517                 int count = 0;
6518                 /*
6519                  * Since 64-bit divide does not work on all platforms,
6520                  * do repeated subtraction.
6521                  */
6522                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6523                         tmp -= stat_info->sw_stat.num_aggregations;
6524                         count++;
6525                 }
6526                 tmp_stats[i++] = count;
6527         }
6528         else
6529                 tmp_stats[i++] = 0;
6530         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6531         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6532         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6533         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6534         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6535         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6536         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6537         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6538         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6539
6540         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6541         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6542         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6543         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6544         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6545
6546         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6547         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6548         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6549         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6550         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6551         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6552         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6553         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6554         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6555         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6556         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6557         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6558         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6559         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6560         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6561         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6562         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6563         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6564         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6565         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6566         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6567         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6568         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6569         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6570         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6571         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6572 }
6573
6574 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6575 {
6576         return (XENA_REG_SPACE);
6577 }
6578
6579
6580 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6581 {
6582         struct s2io_nic *sp = netdev_priv(dev);
6583
6584         return (sp->rx_csum);
6585 }
6586
6587 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6588 {
6589         struct s2io_nic *sp = netdev_priv(dev);
6590
6591         if (data)
6592                 sp->rx_csum = 1;
6593         else
6594                 sp->rx_csum = 0;
6595
6596         return 0;
6597 }
6598
6599 static int s2io_get_eeprom_len(struct net_device *dev)
6600 {
6601         return (XENA_EEPROM_SPACE);
6602 }
6603
6604 static int s2io_get_sset_count(struct net_device *dev, int sset)
6605 {
6606         struct s2io_nic *sp = netdev_priv(dev);
6607
6608         switch (sset) {
6609         case ETH_SS_TEST:
6610                 return S2IO_TEST_LEN;
6611         case ETH_SS_STATS:
6612                 switch(sp->device_type) {
6613                 case XFRAME_I_DEVICE:
6614                         return XFRAME_I_STAT_LEN;
6615                 case XFRAME_II_DEVICE:
6616                         return XFRAME_II_STAT_LEN;
6617                 default:
6618                         return 0;
6619                 }
6620         default:
6621                 return -EOPNOTSUPP;
6622         }
6623 }
6624
6625 static void s2io_ethtool_get_strings(struct net_device *dev,
6626                                      u32 stringset, u8 * data)
6627 {
6628         int stat_size = 0;
6629         struct s2io_nic *sp = netdev_priv(dev);
6630
6631         switch (stringset) {
6632         case ETH_SS_TEST:
6633                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6634                 break;
6635         case ETH_SS_STATS:
6636                 stat_size = sizeof(ethtool_xena_stats_keys);
6637                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6638                 if(sp->device_type == XFRAME_II_DEVICE) {
6639                         memcpy(data + stat_size,
6640                                 &ethtool_enhanced_stats_keys,
6641                                 sizeof(ethtool_enhanced_stats_keys));
6642                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6643                 }
6644
6645                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6646                         sizeof(ethtool_driver_stats_keys));
6647         }
6648 }
6649
6650 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6651 {
6652         if (data)
6653                 dev->features |= NETIF_F_IP_CSUM;
6654         else
6655                 dev->features &= ~NETIF_F_IP_CSUM;
6656
6657         return 0;
6658 }
6659
6660 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6661 {
6662         return (dev->features & NETIF_F_TSO) != 0;
6663 }
6664 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6665 {
6666         if (data)
6667                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6668         else
6669                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6670
6671         return 0;
6672 }
6673
6674 static const struct ethtool_ops netdev_ethtool_ops = {
6675         .get_settings = s2io_ethtool_gset,
6676         .set_settings = s2io_ethtool_sset,
6677         .get_drvinfo = s2io_ethtool_gdrvinfo,
6678         .get_regs_len = s2io_ethtool_get_regs_len,
6679         .get_regs = s2io_ethtool_gregs,
6680         .get_link = ethtool_op_get_link,
6681         .get_eeprom_len = s2io_get_eeprom_len,
6682         .get_eeprom = s2io_ethtool_geeprom,
6683         .set_eeprom = s2io_ethtool_seeprom,
6684         .get_ringparam = s2io_ethtool_gringparam,
6685         .get_pauseparam = s2io_ethtool_getpause_data,
6686         .set_pauseparam = s2io_ethtool_setpause_data,
6687         .get_rx_csum = s2io_ethtool_get_rx_csum,
6688         .set_rx_csum = s2io_ethtool_set_rx_csum,
6689         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6690         .set_sg = ethtool_op_set_sg,
6691         .get_tso = s2io_ethtool_op_get_tso,
6692         .set_tso = s2io_ethtool_op_set_tso,
6693         .set_ufo = ethtool_op_set_ufo,
6694         .self_test = s2io_ethtool_test,
6695         .get_strings = s2io_ethtool_get_strings,
6696         .phys_id = s2io_ethtool_idnic,
6697         .get_ethtool_stats = s2io_get_ethtool_stats,
6698         .get_sset_count = s2io_get_sset_count,
6699 };
6700
6701 /**
6702  *  s2io_ioctl - Entry point for the Ioctl
6703  *  @dev :  Device pointer.
6704  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6705  *  a proprietary structure used to pass information to the driver.
6706  *  @cmd :  This is used to distinguish between the different commands that
6707  *  can be passed to the IOCTL functions.
6708  *  Description:
6709  *  Currently there are no special functionality supported in IOCTL, hence
6710  *  function always return EOPNOTSUPPORTED
6711  */
6712
6713 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6714 {
6715         return -EOPNOTSUPP;
6716 }
6717
6718 /**
6719  *  s2io_change_mtu - entry point to change MTU size for the device.
6720  *   @dev : device pointer.
6721  *   @new_mtu : the new MTU size for the device.
6722  *   Description: A driver entry point to change MTU size for the device.
6723  *   Before changing the MTU the device must be stopped.
6724  *  Return value:
6725  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6726  *   file on failure.
6727  */
6728
6729 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6730 {
6731         struct s2io_nic *sp = netdev_priv(dev);
6732         int ret = 0;
6733
6734         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6735                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6736                           dev->name);
6737                 return -EPERM;
6738         }
6739
6740         dev->mtu = new_mtu;
6741         if (netif_running(dev)) {
6742                 s2io_stop_all_tx_queue(sp);
6743                 s2io_card_down(sp);
6744                 ret = s2io_card_up(sp);
6745                 if (ret) {
6746                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6747                                   __func__);
6748                         return ret;
6749                 }
6750                 s2io_wake_all_tx_queue(sp);
6751         } else { /* Device is down */
6752                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6753                 u64 val64 = new_mtu;
6754
6755                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6756         }
6757
6758         return ret;
6759 }
6760
6761 /**
6762  * s2io_set_link - Set the LInk status
6763  * @data: long pointer to device private structue
6764  * Description: Sets the link status for the adapter
6765  */
6766
6767 static void s2io_set_link(struct work_struct *work)
6768 {
6769         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6770         struct net_device *dev = nic->dev;
6771         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6772         register u64 val64;
6773         u16 subid;
6774
6775         rtnl_lock();
6776
6777         if (!netif_running(dev))
6778                 goto out_unlock;
6779
6780         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6781                 /* The card is being reset, no point doing anything */
6782                 goto out_unlock;
6783         }
6784
6785         subid = nic->pdev->subsystem_device;
6786         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6787                 /*
6788                  * Allow a small delay for the NICs self initiated
6789                  * cleanup to complete.
6790                  */
6791                 msleep(100);
6792         }
6793
6794         val64 = readq(&bar0->adapter_status);
6795         if (LINK_IS_UP(val64)) {
6796                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6797                         if (verify_xena_quiescence(nic)) {
6798                                 val64 = readq(&bar0->adapter_control);
6799                                 val64 |= ADAPTER_CNTL_EN;
6800                                 writeq(val64, &bar0->adapter_control);
6801                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6802                                         nic->device_type, subid)) {
6803                                         val64 = readq(&bar0->gpio_control);
6804                                         val64 |= GPIO_CTRL_GPIO_0;
6805                                         writeq(val64, &bar0->gpio_control);
6806                                         val64 = readq(&bar0->gpio_control);
6807                                 } else {
6808                                         val64 |= ADAPTER_LED_ON;
6809                                         writeq(val64, &bar0->adapter_control);
6810                                 }
6811                                 nic->device_enabled_once = TRUE;
6812                         } else {
6813                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6814                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6815                                 s2io_stop_all_tx_queue(nic);
6816                         }
6817                 }
6818                 val64 = readq(&bar0->adapter_control);
6819                 val64 |= ADAPTER_LED_ON;
6820                 writeq(val64, &bar0->adapter_control);
6821                 s2io_link(nic, LINK_UP);
6822         } else {
6823                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6824                                                       subid)) {
6825                         val64 = readq(&bar0->gpio_control);
6826                         val64 &= ~GPIO_CTRL_GPIO_0;
6827                         writeq(val64, &bar0->gpio_control);
6828                         val64 = readq(&bar0->gpio_control);
6829                 }
6830                 /* turn off LED */
6831                 val64 = readq(&bar0->adapter_control);
6832                 val64 = val64 &(~ADAPTER_LED_ON);
6833                 writeq(val64, &bar0->adapter_control);
6834                 s2io_link(nic, LINK_DOWN);
6835         }
6836         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6837
6838 out_unlock:
6839         rtnl_unlock();
6840 }
6841
6842 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6843                                 struct buffAdd *ba,
6844                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6845                                 u64 *temp2, int size)
6846 {
6847         struct net_device *dev = sp->dev;
6848         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6849
6850         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6851                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6852                 /* allocate skb */
6853                 if (*skb) {
6854                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6855                         /*
6856                          * As Rx frame are not going to be processed,
6857                          * using same mapped address for the Rxd
6858                          * buffer pointer
6859                          */
6860                         rxdp1->Buffer0_ptr = *temp0;
6861                 } else {
6862                         *skb = dev_alloc_skb(size);
6863                         if (!(*skb)) {
6864                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6865                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6866                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6867                                 sp->mac_control.stats_info->sw_stat. \
6868                                         mem_alloc_fail_cnt++;
6869                                 return -ENOMEM ;
6870                         }
6871                         sp->mac_control.stats_info->sw_stat.mem_allocated
6872                                 += (*skb)->truesize;
6873                         /* storing the mapped addr in a temp variable
6874                          * such it will be used for next rxd whose
6875                          * Host Control is NULL
6876                          */
6877                         rxdp1->Buffer0_ptr = *temp0 =
6878                                 pci_map_single( sp->pdev, (*skb)->data,
6879                                         size - NET_IP_ALIGN,
6880                                         PCI_DMA_FROMDEVICE);
6881                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6882                                 goto memalloc_failed;
6883                         rxdp->Host_Control = (unsigned long) (*skb);
6884                 }
6885         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6886                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6887                 /* Two buffer Mode */
6888                 if (*skb) {
6889                         rxdp3->Buffer2_ptr = *temp2;
6890                         rxdp3->Buffer0_ptr = *temp0;
6891                         rxdp3->Buffer1_ptr = *temp1;
6892                 } else {
6893                         *skb = dev_alloc_skb(size);
6894                         if (!(*skb)) {
6895                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6896                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6897                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6898                                 sp->mac_control.stats_info->sw_stat. \
6899                                         mem_alloc_fail_cnt++;
6900                                 return -ENOMEM;
6901                         }
6902                         sp->mac_control.stats_info->sw_stat.mem_allocated
6903                                 += (*skb)->truesize;
6904                         rxdp3->Buffer2_ptr = *temp2 =
6905                                 pci_map_single(sp->pdev, (*skb)->data,
6906                                                dev->mtu + 4,
6907                                                PCI_DMA_FROMDEVICE);
6908                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6909                                 goto memalloc_failed;
6910                         rxdp3->Buffer0_ptr = *temp0 =
6911                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6912                                                 PCI_DMA_FROMDEVICE);
6913                         if (pci_dma_mapping_error(sp->pdev,
6914                                                 rxdp3->Buffer0_ptr)) {
6915                                 pci_unmap_single (sp->pdev,
6916                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6917                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6918                                 goto memalloc_failed;
6919                         }
6920                         rxdp->Host_Control = (unsigned long) (*skb);
6921
6922                         /* Buffer-1 will be dummy buffer not used */
6923                         rxdp3->Buffer1_ptr = *temp1 =
6924                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6925                                                 PCI_DMA_FROMDEVICE);
6926                         if (pci_dma_mapping_error(sp->pdev,
6927                                                 rxdp3->Buffer1_ptr)) {
6928                                 pci_unmap_single (sp->pdev,
6929                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6930                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6931                                 pci_unmap_single (sp->pdev,
6932                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6933                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6934                                 goto memalloc_failed;
6935                         }
6936                 }
6937         }
6938         return 0;
6939         memalloc_failed:
6940                 stats->pci_map_fail_cnt++;
6941                 stats->mem_freed += (*skb)->truesize;
6942                 dev_kfree_skb(*skb);
6943                 return -ENOMEM;
6944 }
6945
6946 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6947                                 int size)
6948 {
6949         struct net_device *dev = sp->dev;
6950         if (sp->rxd_mode == RXD_MODE_1) {
6951                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6952         } else if (sp->rxd_mode == RXD_MODE_3B) {
6953                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6954                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6955                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6956         }
6957 }
6958
6959 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6960 {
6961         int i, j, k, blk_cnt = 0, size;
6962         struct mac_info * mac_control = &sp->mac_control;
6963         struct config_param *config = &sp->config;
6964         struct net_device *dev = sp->dev;
6965         struct RxD_t *rxdp = NULL;
6966         struct sk_buff *skb = NULL;
6967         struct buffAdd *ba = NULL;
6968         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6969
6970         /* Calculate the size based on ring mode */
6971         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6972                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6973         if (sp->rxd_mode == RXD_MODE_1)
6974                 size += NET_IP_ALIGN;
6975         else if (sp->rxd_mode == RXD_MODE_3B)
6976                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6977
6978         for (i = 0; i < config->rx_ring_num; i++) {
6979                 blk_cnt = config->rx_cfg[i].num_rxd /
6980                         (rxd_count[sp->rxd_mode] +1);
6981
6982                 for (j = 0; j < blk_cnt; j++) {
6983                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6984                                 rxdp = mac_control->rings[i].
6985                                         rx_blocks[j].rxds[k].virt_addr;
6986                                 if(sp->rxd_mode == RXD_MODE_3B)
6987                                         ba = &mac_control->rings[i].ba[j][k];
6988                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6989                                                        &skb,(u64 *)&temp0_64,
6990                                                        (u64 *)&temp1_64,
6991                                                        (u64 *)&temp2_64,
6992                                                         size) == -ENOMEM) {
6993                                         return 0;
6994                                 }
6995
6996                                 set_rxd_buffer_size(sp, rxdp, size);
6997                                 wmb();
6998                                 /* flip the Ownership bit to Hardware */
6999                                 rxdp->Control_1 |= RXD_OWN_XENA;
7000                         }
7001                 }
7002         }
7003         return 0;
7004
7005 }
7006
7007 static int s2io_add_isr(struct s2io_nic * sp)
7008 {
7009         int ret = 0;
7010         struct net_device *dev = sp->dev;
7011         int err = 0;
7012
7013         if (sp->config.intr_type == MSI_X)
7014                 ret = s2io_enable_msi_x(sp);
7015         if (ret) {
7016                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7017                 sp->config.intr_type = INTA;
7018         }
7019
7020         /* Store the values of the MSIX table in the struct s2io_nic structure */
7021         store_xmsi_data(sp);
7022
7023         /* After proper initialization of H/W, register ISR */
7024         if (sp->config.intr_type == MSI_X) {
7025                 int i, msix_rx_cnt = 0;
7026
7027                 for (i = 0; i < sp->num_entries; i++) {
7028                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7029                                 if (sp->s2io_entries[i].type ==
7030                                         MSIX_RING_TYPE) {
7031                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7032                                                 dev->name, i);
7033                                         err = request_irq(sp->entries[i].vector,
7034                                                 s2io_msix_ring_handle, 0,
7035                                                 sp->desc[i],
7036                                                 sp->s2io_entries[i].arg);
7037                                 } else if (sp->s2io_entries[i].type ==
7038                                         MSIX_ALARM_TYPE) {
7039                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7040                                         dev->name, i);
7041                                         err = request_irq(sp->entries[i].vector,
7042                                                 s2io_msix_fifo_handle, 0,
7043                                                 sp->desc[i],
7044                                                 sp->s2io_entries[i].arg);
7045
7046                                 }
7047                                 /* if either data or addr is zero print it. */
7048                                 if (!(sp->msix_info[i].addr &&
7049                                         sp->msix_info[i].data)) {
7050                                         DBG_PRINT(ERR_DBG,
7051                                                 "%s @Addr:0x%llx Data:0x%llx\n",
7052                                                 sp->desc[i],
7053                                                 (unsigned long long)
7054                                                 sp->msix_info[i].addr,
7055                                                 (unsigned long long)
7056                                                 ntohl(sp->msix_info[i].data));
7057                                 } else
7058                                         msix_rx_cnt++;
7059                                 if (err) {
7060                                         remove_msix_isr(sp);
7061
7062                                         DBG_PRINT(ERR_DBG,
7063                                                 "%s:MSI-X-%d registration "
7064                                                 "failed\n", dev->name, i);
7065
7066                                         DBG_PRINT(ERR_DBG,
7067                                                 "%s: Defaulting to INTA\n",
7068                                                 dev->name);
7069                                         sp->config.intr_type = INTA;
7070                                         break;
7071                                 }
7072                                 sp->s2io_entries[i].in_use =
7073                                         MSIX_REGISTERED_SUCCESS;
7074                         }
7075                 }
7076                 if (!err) {
7077                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7078                                 --msix_rx_cnt);
7079                         DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7080                                                 " through alarm vector\n");
7081                 }
7082         }
7083         if (sp->config.intr_type == INTA) {
7084                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7085                                 sp->name, dev);
7086                 if (err) {
7087                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7088                                   dev->name);
7089                         return -1;
7090                 }
7091         }
7092         return 0;
7093 }
7094 static void s2io_rem_isr(struct s2io_nic * sp)
7095 {
7096         if (sp->config.intr_type == MSI_X)
7097                 remove_msix_isr(sp);
7098         else
7099                 remove_inta_isr(sp);
7100 }
7101
7102 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7103 {
7104         int cnt = 0;
7105         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7106         register u64 val64 = 0;
7107         struct config_param *config;
7108         config = &sp->config;
7109
7110         if (!is_s2io_card_up(sp))
7111                 return;
7112
7113         del_timer_sync(&sp->alarm_timer);
7114         /* If s2io_set_link task is executing, wait till it completes. */
7115         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7116                 msleep(50);
7117         }
7118         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7119
7120         /* Disable napi */
7121         if (sp->config.napi) {
7122                 int off = 0;
7123                 if (config->intr_type ==  MSI_X) {
7124                         for (; off < sp->config.rx_ring_num; off++)
7125                                 napi_disable(&sp->mac_control.rings[off].napi);
7126                         }
7127                 else
7128                         napi_disable(&sp->napi);
7129         }
7130
7131         /* disable Tx and Rx traffic on the NIC */
7132         if (do_io)
7133                 stop_nic(sp);
7134
7135         s2io_rem_isr(sp);
7136
7137         /* stop the tx queue, indicate link down */
7138         s2io_link(sp, LINK_DOWN);
7139
7140         /* Check if the device is Quiescent and then Reset the NIC */
7141         while(do_io) {
7142                 /* As per the HW requirement we need to replenish the
7143                  * receive buffer to avoid the ring bump. Since there is
7144                  * no intention of processing the Rx frame at this pointwe are
7145                  * just settting the ownership bit of rxd in Each Rx
7146                  * ring to HW and set the appropriate buffer size
7147                  * based on the ring mode
7148                  */
7149                 rxd_owner_bit_reset(sp);
7150
7151                 val64 = readq(&bar0->adapter_status);
7152                 if (verify_xena_quiescence(sp)) {
7153                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7154                         break;
7155                 }
7156
7157                 msleep(50);
7158                 cnt++;
7159                 if (cnt == 10) {
7160                         DBG_PRINT(ERR_DBG,
7161                                   "s2io_close:Device not Quiescent ");
7162                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7163                                   (unsigned long long) val64);
7164                         break;
7165                 }
7166         }
7167         if (do_io)
7168                 s2io_reset(sp);
7169
7170         /* Free all Tx buffers */
7171         free_tx_buffers(sp);
7172
7173         /* Free all Rx buffers */
7174         free_rx_buffers(sp);
7175
7176         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7177 }
7178
7179 static void s2io_card_down(struct s2io_nic * sp)
7180 {
7181         do_s2io_card_down(sp, 1);
7182 }
7183
7184 static int s2io_card_up(struct s2io_nic * sp)
7185 {
7186         int i, ret = 0;
7187         struct mac_info *mac_control;
7188         struct config_param *config;
7189         struct net_device *dev = (struct net_device *) sp->dev;
7190         u16 interruptible;
7191
7192         /* Initialize the H/W I/O registers */
7193         ret = init_nic(sp);
7194         if (ret != 0) {
7195                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7196                           dev->name);
7197                 if (ret != -EIO)
7198                         s2io_reset(sp);
7199                 return ret;
7200         }
7201
7202         /*
7203          * Initializing the Rx buffers. For now we are considering only 1
7204          * Rx ring and initializing buffers into 30 Rx blocks
7205          */
7206         mac_control = &sp->mac_control;
7207         config = &sp->config;
7208
7209         for (i = 0; i < config->rx_ring_num; i++) {
7210                 mac_control->rings[i].mtu = dev->mtu;
7211                 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7212                 if (ret) {
7213                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7214                                   dev->name);
7215                         s2io_reset(sp);
7216                         free_rx_buffers(sp);
7217                         return -ENOMEM;
7218                 }
7219                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7220                           mac_control->rings[i].rx_bufs_left);
7221         }
7222
7223         /* Initialise napi */
7224         if (config->napi) {
7225                 int i;
7226                 if (config->intr_type ==  MSI_X) {
7227                         for (i = 0; i < sp->config.rx_ring_num; i++)
7228                                 napi_enable(&sp->mac_control.rings[i].napi);
7229                 } else {
7230                         napi_enable(&sp->napi);
7231                 }
7232         }
7233
7234         /* Maintain the state prior to the open */
7235         if (sp->promisc_flg)
7236                 sp->promisc_flg = 0;
7237         if (sp->m_cast_flg) {
7238                 sp->m_cast_flg = 0;
7239                 sp->all_multi_pos= 0;
7240         }
7241
7242         /* Setting its receive mode */
7243         s2io_set_multicast(dev);
7244
7245         if (sp->lro) {
7246                 /* Initialize max aggregatable pkts per session based on MTU */
7247                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7248                 /* Check if we can use(if specified) user provided value */
7249                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7250                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7251         }
7252
7253         /* Enable Rx Traffic and interrupts on the NIC */
7254         if (start_nic(sp)) {
7255                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7256                 s2io_reset(sp);
7257                 free_rx_buffers(sp);
7258                 return -ENODEV;
7259         }
7260
7261         /* Add interrupt service routine */
7262         if (s2io_add_isr(sp) != 0) {
7263                 if (sp->config.intr_type == MSI_X)
7264                         s2io_rem_isr(sp);
7265                 s2io_reset(sp);
7266                 free_rx_buffers(sp);
7267                 return -ENODEV;
7268         }
7269
7270         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7271
7272         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7273
7274         /*  Enable select interrupts */
7275         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7276         if (sp->config.intr_type != INTA) {
7277                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7278                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7279         } else {
7280                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7281                 interruptible |= TX_PIC_INTR;
7282                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7283         }
7284
7285         return 0;
7286 }
7287
7288 /**
7289  * s2io_restart_nic - Resets the NIC.
7290  * @data : long pointer to the device private structure
7291  * Description:
7292  * This function is scheduled to be run by the s2io_tx_watchdog
7293  * function after 0.5 secs to reset the NIC. The idea is to reduce
7294  * the run time of the watch dog routine which is run holding a
7295  * spin lock.
7296  */
7297
7298 static void s2io_restart_nic(struct work_struct *work)
7299 {
7300         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7301         struct net_device *dev = sp->dev;
7302
7303         rtnl_lock();
7304
7305         if (!netif_running(dev))
7306                 goto out_unlock;
7307
7308         s2io_card_down(sp);
7309         if (s2io_card_up(sp)) {
7310                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7311                           dev->name);
7312         }
7313         s2io_wake_all_tx_queue(sp);
7314         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7315                   dev->name);
7316 out_unlock:
7317         rtnl_unlock();
7318 }
7319
7320 /**
7321  *  s2io_tx_watchdog - Watchdog for transmit side.
7322  *  @dev : Pointer to net device structure
7323  *  Description:
7324  *  This function is triggered if the Tx Queue is stopped
7325  *  for a pre-defined amount of time when the Interface is still up.
7326  *  If the Interface is jammed in such a situation, the hardware is
7327  *  reset (by s2io_close) and restarted again (by s2io_open) to
7328  *  overcome any problem that might have been caused in the hardware.
7329  *  Return value:
7330  *  void
7331  */
7332
7333 static void s2io_tx_watchdog(struct net_device *dev)
7334 {
7335         struct s2io_nic *sp = netdev_priv(dev);
7336
7337         if (netif_carrier_ok(dev)) {
7338                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7339                 schedule_work(&sp->rst_timer_task);
7340                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7341         }
7342 }
7343
7344 /**
7345  *   rx_osm_handler - To perform some OS related operations on SKB.
7346  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7347  *   @skb : the socket buffer pointer.
7348  *   @len : length of the packet
7349  *   @cksum : FCS checksum of the frame.
7350  *   @ring_no : the ring from which this RxD was extracted.
7351  *   Description:
7352  *   This function is called by the Rx interrupt serivce routine to perform
7353  *   some OS related operations on the SKB before passing it to the upper
7354  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7355  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7356  *   to the upper layer. If the checksum is wrong, it increments the Rx
7357  *   packet error count, frees the SKB and returns error.
7358  *   Return value:
7359  *   SUCCESS on success and -1 on failure.
7360  */
7361 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7362 {
7363         struct s2io_nic *sp = ring_data->nic;
7364         struct net_device *dev = (struct net_device *) ring_data->dev;
7365         struct sk_buff *skb = (struct sk_buff *)
7366                 ((unsigned long) rxdp->Host_Control);
7367         int ring_no = ring_data->ring_no;
7368         u16 l3_csum, l4_csum;
7369         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7370         struct lro *uninitialized_var(lro);
7371         u8 err_mask;
7372
7373         skb->dev = dev;
7374
7375         if (err) {
7376                 /* Check for parity error */
7377                 if (err & 0x1) {
7378                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7379                 }
7380                 err_mask = err >> 48;
7381                 switch(err_mask) {
7382                         case 1:
7383                                 sp->mac_control.stats_info->sw_stat.
7384                                 rx_parity_err_cnt++;
7385                         break;
7386
7387                         case 2:
7388                                 sp->mac_control.stats_info->sw_stat.
7389                                 rx_abort_cnt++;
7390                         break;
7391
7392                         case 3:
7393                                 sp->mac_control.stats_info->sw_stat.
7394                                 rx_parity_abort_cnt++;
7395                         break;
7396
7397                         case 4:
7398                                 sp->mac_control.stats_info->sw_stat.
7399                                 rx_rda_fail_cnt++;
7400                         break;
7401
7402                         case 5:
7403                                 sp->mac_control.stats_info->sw_stat.
7404                                 rx_unkn_prot_cnt++;
7405                         break;
7406
7407                         case 6:
7408                                 sp->mac_control.stats_info->sw_stat.
7409                                 rx_fcs_err_cnt++;
7410                         break;
7411
7412                         case 7:
7413                                 sp->mac_control.stats_info->sw_stat.
7414                                 rx_buf_size_err_cnt++;
7415                         break;
7416
7417                         case 8:
7418                                 sp->mac_control.stats_info->sw_stat.
7419                                 rx_rxd_corrupt_cnt++;
7420                         break;
7421
7422                         case 15:
7423                                 sp->mac_control.stats_info->sw_stat.
7424                                 rx_unkn_err_cnt++;
7425                         break;
7426                 }
7427                 /*
7428                 * Drop the packet if bad transfer code. Exception being
7429                 * 0x5, which could be due to unsupported IPv6 extension header.
7430                 * In this case, we let stack handle the packet.
7431                 * Note that in this case, since checksum will be incorrect,
7432                 * stack will validate the same.
7433                 */
7434                 if (err_mask != 0x5) {
7435                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7436                                 dev->name, err_mask);
7437                         dev->stats.rx_crc_errors++;
7438                         sp->mac_control.stats_info->sw_stat.mem_freed
7439                                 += skb->truesize;
7440                         dev_kfree_skb(skb);
7441                         ring_data->rx_bufs_left -= 1;
7442                         rxdp->Host_Control = 0;
7443                         return 0;
7444                 }
7445         }
7446
7447         /* Updating statistics */
7448         ring_data->rx_packets++;
7449         rxdp->Host_Control = 0;
7450         if (sp->rxd_mode == RXD_MODE_1) {
7451                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7452
7453                 ring_data->rx_bytes += len;
7454                 skb_put(skb, len);
7455
7456         } else if (sp->rxd_mode == RXD_MODE_3B) {
7457                 int get_block = ring_data->rx_curr_get_info.block_index;
7458                 int get_off = ring_data->rx_curr_get_info.offset;
7459                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7460                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7461                 unsigned char *buff = skb_push(skb, buf0_len);
7462
7463                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7464                 ring_data->rx_bytes += buf0_len + buf2_len;
7465                 memcpy(buff, ba->ba_0, buf0_len);
7466                 skb_put(skb, buf2_len);
7467         }
7468
7469         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7470             (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7471             (sp->rx_csum)) {
7472                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7473                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7474                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7475                         /*
7476                          * NIC verifies if the Checksum of the received
7477                          * frame is Ok or not and accordingly returns
7478                          * a flag in the RxD.
7479                          */
7480                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7481                         if (ring_data->lro) {
7482                                 u32 tcp_len;
7483                                 u8 *tcp;
7484                                 int ret = 0;
7485
7486                                 ret = s2io_club_tcp_session(ring_data,
7487                                         skb->data, &tcp, &tcp_len, &lro,
7488                                         rxdp, sp);
7489                                 switch (ret) {
7490                                         case 3: /* Begin anew */
7491                                                 lro->parent = skb;
7492                                                 goto aggregate;
7493                                         case 1: /* Aggregate */
7494                                         {
7495                                                 lro_append_pkt(sp, lro,
7496                                                         skb, tcp_len);
7497                                                 goto aggregate;
7498                                         }
7499                                         case 4: /* Flush session */
7500                                         {
7501                                                 lro_append_pkt(sp, lro,
7502                                                         skb, tcp_len);
7503                                                 queue_rx_frame(lro->parent,
7504                                                         lro->vlan_tag);
7505                                                 clear_lro_session(lro);
7506                                                 sp->mac_control.stats_info->
7507                                                     sw_stat.flush_max_pkts++;
7508                                                 goto aggregate;
7509                                         }
7510                                         case 2: /* Flush both */
7511                                                 lro->parent->data_len =
7512                                                         lro->frags_len;
7513                                                 sp->mac_control.stats_info->
7514                                                      sw_stat.sending_both++;
7515                                                 queue_rx_frame(lro->parent,
7516                                                         lro->vlan_tag);
7517                                                 clear_lro_session(lro);
7518                                                 goto send_up;
7519                                         case 0: /* sessions exceeded */
7520                                         case -1: /* non-TCP or not
7521                                                   * L2 aggregatable
7522                                                   */
7523                                         case 5: /*
7524                                                  * First pkt in session not
7525                                                  * L3/L4 aggregatable
7526                                                  */
7527                                                 break;
7528                                         default:
7529                                                 DBG_PRINT(ERR_DBG,
7530                                                         "%s: Samadhana!!\n",
7531                                                          __func__);
7532                                                 BUG();
7533                                 }
7534                         }
7535                 } else {
7536                         /*
7537                          * Packet with erroneous checksum, let the
7538                          * upper layers deal with it.
7539                          */
7540                         skb->ip_summed = CHECKSUM_NONE;
7541                 }
7542         } else
7543                 skb->ip_summed = CHECKSUM_NONE;
7544
7545         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7546 send_up:
7547         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7548 aggregate:
7549         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7550         return SUCCESS;
7551 }
7552
7553 /**
7554  *  s2io_link - stops/starts the Tx queue.
7555  *  @sp : private member of the device structure, which is a pointer to the
7556  *  s2io_nic structure.
7557  *  @link : inidicates whether link is UP/DOWN.
7558  *  Description:
7559  *  This function stops/starts the Tx queue depending on whether the link
7560  *  status of the NIC is is down or up. This is called by the Alarm
7561  *  interrupt handler whenever a link change interrupt comes up.
7562  *  Return value:
7563  *  void.
7564  */
7565
7566 static void s2io_link(struct s2io_nic * sp, int link)
7567 {
7568         struct net_device *dev = (struct net_device *) sp->dev;
7569
7570         if (link != sp->last_link_state) {
7571                 init_tti(sp, link);
7572                 if (link == LINK_DOWN) {
7573                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7574                         s2io_stop_all_tx_queue(sp);
7575                         netif_carrier_off(dev);
7576                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7577                         sp->mac_control.stats_info->sw_stat.link_up_time =
7578                                 jiffies - sp->start_time;
7579                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7580                 } else {
7581                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7582                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7583                         sp->mac_control.stats_info->sw_stat.link_down_time =
7584                                 jiffies - sp->start_time;
7585                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7586                         netif_carrier_on(dev);
7587                         s2io_wake_all_tx_queue(sp);
7588                 }
7589         }
7590         sp->last_link_state = link;
7591         sp->start_time = jiffies;
7592 }
7593
7594 /**
7595  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7596  *  @sp : private member of the device structure, which is a pointer to the
7597  *  s2io_nic structure.
7598  *  Description:
7599  *  This function initializes a few of the PCI and PCI-X configuration registers
7600  *  with recommended values.
7601  *  Return value:
7602  *  void
7603  */
7604
7605 static void s2io_init_pci(struct s2io_nic * sp)
7606 {
7607         u16 pci_cmd = 0, pcix_cmd = 0;
7608
7609         /* Enable Data Parity Error Recovery in PCI-X command register. */
7610         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611                              &(pcix_cmd));
7612         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613                               (pcix_cmd | 1));
7614         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7615                              &(pcix_cmd));
7616
7617         /* Set the PErr Response bit in PCI command register. */
7618         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7619         pci_write_config_word(sp->pdev, PCI_COMMAND,
7620                               (pci_cmd | PCI_COMMAND_PARITY));
7621         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7622 }
7623
7624 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7625         u8 *dev_multiq)
7626 {
7627         if ((tx_fifo_num > MAX_TX_FIFOS) ||
7628                 (tx_fifo_num < 1)) {
7629                 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7630                         "(%d) not supported\n", tx_fifo_num);
7631
7632                 if (tx_fifo_num < 1)
7633                         tx_fifo_num = 1;
7634                 else
7635                         tx_fifo_num = MAX_TX_FIFOS;
7636
7637                 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7638                 DBG_PRINT(ERR_DBG, "tx fifos\n");
7639         }
7640
7641         if (multiq)
7642                 *dev_multiq = multiq;
7643
7644         if (tx_steering_type && (1 == tx_fifo_num)) {
7645                 if (tx_steering_type != TX_DEFAULT_STEERING)
7646                         DBG_PRINT(ERR_DBG,
7647                                 "s2io: Tx steering is not supported with "
7648                                 "one fifo. Disabling Tx steering.\n");
7649                 tx_steering_type = NO_STEERING;
7650         }
7651
7652         if ((tx_steering_type < NO_STEERING) ||
7653                 (tx_steering_type > TX_DEFAULT_STEERING)) {
7654                 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7655                          "supported\n");
7656                 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7657                 tx_steering_type = NO_STEERING;
7658         }
7659
7660         if (rx_ring_num > MAX_RX_RINGS) {
7661                 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7662                          "supported\n");
7663                 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7664                         MAX_RX_RINGS);
7665                 rx_ring_num = MAX_RX_RINGS;
7666         }
7667
7668         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7669                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7670                           "Defaulting to INTA\n");
7671                 *dev_intr_type = INTA;
7672         }
7673
7674         if ((*dev_intr_type == MSI_X) &&
7675                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7676                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7677                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7678                                         "Defaulting to INTA\n");
7679                 *dev_intr_type = INTA;
7680         }
7681
7682         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7683                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7684                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7685                 rx_ring_mode = 1;
7686         }
7687         return SUCCESS;
7688 }
7689
7690 /**
7691  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7692  * or Traffic class respectively.
7693  * @nic: device private variable
7694  * Description: The function configures the receive steering to
7695  * desired receive ring.
7696  * Return Value:  SUCCESS on success and
7697  * '-1' on failure (endian settings incorrect).
7698  */
7699 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7700 {
7701         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7702         register u64 val64 = 0;
7703
7704         if (ds_codepoint > 63)
7705                 return FAILURE;
7706
7707         val64 = RTS_DS_MEM_DATA(ring);
7708         writeq(val64, &bar0->rts_ds_mem_data);
7709
7710         val64 = RTS_DS_MEM_CTRL_WE |
7711                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7712                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7713
7714         writeq(val64, &bar0->rts_ds_mem_ctrl);
7715
7716         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7717                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7718                                 S2IO_BIT_RESET);
7719 }
7720
7721 static const struct net_device_ops s2io_netdev_ops = {
7722         .ndo_open               = s2io_open,
7723         .ndo_stop               = s2io_close,
7724         .ndo_get_stats          = s2io_get_stats,
7725         .ndo_start_xmit         = s2io_xmit,
7726         .ndo_validate_addr      = eth_validate_addr,
7727         .ndo_set_multicast_list = s2io_set_multicast,
7728         .ndo_do_ioctl           = s2io_ioctl,
7729         .ndo_set_mac_address    = s2io_set_mac_addr,
7730         .ndo_change_mtu         = s2io_change_mtu,
7731         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7732         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7733         .ndo_tx_timeout         = s2io_tx_watchdog,
7734 #ifdef CONFIG_NET_POLL_CONTROLLER
7735         .ndo_poll_controller    = s2io_netpoll,
7736 #endif
7737 };
7738
7739 /**
7740  *  s2io_init_nic - Initialization of the adapter .
7741  *  @pdev : structure containing the PCI related information of the device.
7742  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7743  *  Description:
7744  *  The function initializes an adapter identified by the pci_dec structure.
7745  *  All OS related initialization including memory and device structure and
7746  *  initlaization of the device private variable is done. Also the swapper
7747  *  control register is initialized to enable read and write into the I/O
7748  *  registers of the device.
7749  *  Return value:
7750  *  returns 0 on success and negative on failure.
7751  */
7752
7753 static int __devinit
7754 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7755 {
7756         struct s2io_nic *sp;
7757         struct net_device *dev;
7758         int i, j, ret;
7759         int dma_flag = FALSE;
7760         u32 mac_up, mac_down;
7761         u64 val64 = 0, tmp64 = 0;
7762         struct XENA_dev_config __iomem *bar0 = NULL;
7763         u16 subid;
7764         struct mac_info *mac_control;
7765         struct config_param *config;
7766         int mode;
7767         u8 dev_intr_type = intr_type;
7768         u8 dev_multiq = 0;
7769
7770         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7771         if (ret)
7772                 return ret;
7773
7774         if ((ret = pci_enable_device(pdev))) {
7775                 DBG_PRINT(ERR_DBG,
7776                           "s2io_init_nic: pci_enable_device failed\n");
7777                 return ret;
7778         }
7779
7780         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7781                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7782                 dma_flag = TRUE;
7783                 if (pci_set_consistent_dma_mask
7784                     (pdev, DMA_64BIT_MASK)) {
7785                         DBG_PRINT(ERR_DBG,
7786                                   "Unable to obtain 64bit DMA for \
7787                                         consistent allocations\n");
7788                         pci_disable_device(pdev);
7789                         return -ENOMEM;
7790                 }
7791         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7792                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7793         } else {
7794                 pci_disable_device(pdev);
7795                 return -ENOMEM;
7796         }
7797         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7798                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7799                 pci_disable_device(pdev);
7800                 return -ENODEV;
7801         }
7802         if (dev_multiq)
7803                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7804         else
7805                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7806         if (dev == NULL) {
7807                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7808                 pci_disable_device(pdev);
7809                 pci_release_regions(pdev);
7810                 return -ENODEV;
7811         }
7812
7813         pci_set_master(pdev);
7814         pci_set_drvdata(pdev, dev);
7815         SET_NETDEV_DEV(dev, &pdev->dev);
7816
7817         /*  Private member variable initialized to s2io NIC structure */
7818         sp = netdev_priv(dev);
7819         memset(sp, 0, sizeof(struct s2io_nic));
7820         sp->dev = dev;
7821         sp->pdev = pdev;
7822         sp->high_dma_flag = dma_flag;
7823         sp->device_enabled_once = FALSE;
7824         if (rx_ring_mode == 1)
7825                 sp->rxd_mode = RXD_MODE_1;
7826         if (rx_ring_mode == 2)
7827                 sp->rxd_mode = RXD_MODE_3B;
7828
7829         sp->config.intr_type = dev_intr_type;
7830
7831         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7832                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7833                 sp->device_type = XFRAME_II_DEVICE;
7834         else
7835                 sp->device_type = XFRAME_I_DEVICE;
7836
7837         sp->lro = lro_enable;
7838
7839         /* Initialize some PCI/PCI-X fields of the NIC. */
7840         s2io_init_pci(sp);
7841
7842         /*
7843          * Setting the device configuration parameters.
7844          * Most of these parameters can be specified by the user during
7845          * module insertion as they are module loadable parameters. If
7846          * these parameters are not not specified during load time, they
7847          * are initialized with default values.
7848          */
7849         mac_control = &sp->mac_control;
7850         config = &sp->config;
7851
7852         config->napi = napi;
7853         config->tx_steering_type = tx_steering_type;
7854
7855         /* Tx side parameters. */
7856         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7857                 config->tx_fifo_num = MAX_TX_FIFOS;
7858         else
7859                 config->tx_fifo_num = tx_fifo_num;
7860
7861         /* Initialize the fifos used for tx steering */
7862         if (config->tx_fifo_num < 5) {
7863                         if (config->tx_fifo_num  == 1)
7864                                 sp->total_tcp_fifos = 1;
7865                         else
7866                                 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7867                         sp->udp_fifo_idx = config->tx_fifo_num - 1;
7868                         sp->total_udp_fifos = 1;
7869                         sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7870         } else {
7871                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7872                                                 FIFO_OTHER_MAX_NUM);
7873                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7874                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7875                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7876         }
7877
7878         config->multiq = dev_multiq;
7879         for (i = 0; i < config->tx_fifo_num; i++) {
7880                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7881                 config->tx_cfg[i].fifo_priority = i;
7882         }
7883
7884         /* mapping the QoS priority to the configured fifos */
7885         for (i = 0; i < MAX_TX_FIFOS; i++)
7886                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7887
7888         /* map the hashing selector table to the configured fifos */
7889         for (i = 0; i < config->tx_fifo_num; i++)
7890                 sp->fifo_selector[i] = fifo_selector[i];
7891
7892
7893         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7894         for (i = 0; i < config->tx_fifo_num; i++) {
7895                 config->tx_cfg[i].f_no_snoop =
7896                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7897                 if (config->tx_cfg[i].fifo_len < 65) {
7898                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7899                         break;
7900                 }
7901         }
7902         /* + 2 because one Txd for skb->data and one Txd for UFO */
7903         config->max_txds = MAX_SKB_FRAGS + 2;
7904
7905         /* Rx side parameters. */
7906         config->rx_ring_num = rx_ring_num;
7907         for (i = 0; i < config->rx_ring_num; i++) {
7908                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7909                     (rxd_count[sp->rxd_mode] + 1);
7910                 config->rx_cfg[i].ring_priority = i;
7911                 mac_control->rings[i].rx_bufs_left = 0;
7912                 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7913                 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7914                 mac_control->rings[i].pdev = sp->pdev;
7915                 mac_control->rings[i].dev = sp->dev;
7916         }
7917
7918         for (i = 0; i < rx_ring_num; i++) {
7919                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7920                 config->rx_cfg[i].f_no_snoop =
7921                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7922         }
7923
7924         /*  Setting Mac Control parameters */
7925         mac_control->rmac_pause_time = rmac_pause_time;
7926         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7927         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7928
7929
7930         /*  initialize the shared memory used by the NIC and the host */
7931         if (init_shared_mem(sp)) {
7932                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7933                           dev->name);
7934                 ret = -ENOMEM;
7935                 goto mem_alloc_failed;
7936         }
7937
7938         sp->bar0 = pci_ioremap_bar(pdev, 0);
7939         if (!sp->bar0) {
7940                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7941                           dev->name);
7942                 ret = -ENOMEM;
7943                 goto bar0_remap_failed;
7944         }
7945
7946         sp->bar1 = pci_ioremap_bar(pdev, 2);
7947         if (!sp->bar1) {
7948                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7949                           dev->name);
7950                 ret = -ENOMEM;
7951                 goto bar1_remap_failed;
7952         }
7953
7954         dev->irq = pdev->irq;
7955         dev->base_addr = (unsigned long) sp->bar0;
7956
7957         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7958         for (j = 0; j < MAX_TX_FIFOS; j++) {
7959                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7960                     (sp->bar1 + (j * 0x00020000));
7961         }
7962
7963         /*  Driver entry points */
7964         dev->netdev_ops = &s2io_netdev_ops;
7965         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7966         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7967
7968         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7969         if (sp->high_dma_flag == TRUE)
7970                 dev->features |= NETIF_F_HIGHDMA;
7971         dev->features |= NETIF_F_TSO;
7972         dev->features |= NETIF_F_TSO6;
7973         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7974                 dev->features |= NETIF_F_UFO;
7975                 dev->features |= NETIF_F_HW_CSUM;
7976         }
7977         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7978         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7979         INIT_WORK(&sp->set_link_task, s2io_set_link);
7980
7981         pci_save_state(sp->pdev);
7982
7983         /* Setting swapper control on the NIC, for proper reset operation */
7984         if (s2io_set_swapper(sp)) {
7985                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7986                           dev->name);
7987                 ret = -EAGAIN;
7988                 goto set_swap_failed;
7989         }
7990
7991         /* Verify if the Herc works on the slot its placed into */
7992         if (sp->device_type & XFRAME_II_DEVICE) {
7993                 mode = s2io_verify_pci_mode(sp);
7994                 if (mode < 0) {
7995                         DBG_PRINT(ERR_DBG, "%s: ", __func__);
7996                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7997                         ret = -EBADSLT;
7998                         goto set_swap_failed;
7999                 }
8000         }
8001
8002         if (sp->config.intr_type == MSI_X) {
8003                 sp->num_entries = config->rx_ring_num + 1;
8004                 ret = s2io_enable_msi_x(sp);
8005
8006                 if (!ret) {
8007                         ret = s2io_test_msi(sp);
8008                         /* rollback MSI-X, will re-enable during add_isr() */
8009                         remove_msix_isr(sp);
8010                 }
8011                 if (ret) {
8012
8013                         DBG_PRINT(ERR_DBG,
8014                           "%s: MSI-X requested but failed to enable\n",
8015                           dev->name);
8016                         sp->config.intr_type = INTA;
8017                 }
8018         }
8019
8020         if (config->intr_type ==  MSI_X) {
8021                 for (i = 0; i < config->rx_ring_num ; i++)
8022                         netif_napi_add(dev, &mac_control->rings[i].napi,
8023                                 s2io_poll_msix, 64);
8024         } else {
8025                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8026         }
8027
8028         /* Not needed for Herc */
8029         if (sp->device_type & XFRAME_I_DEVICE) {
8030                 /*
8031                  * Fix for all "FFs" MAC address problems observed on
8032                  * Alpha platforms
8033                  */
8034                 fix_mac_address(sp);
8035                 s2io_reset(sp);
8036         }
8037
8038         /*
8039          * MAC address initialization.
8040          * For now only one mac address will be read and used.
8041          */
8042         bar0 = sp->bar0;
8043         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8044             RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8045         writeq(val64, &bar0->rmac_addr_cmd_mem);
8046         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8047                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8048         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8049         mac_down = (u32) tmp64;
8050         mac_up = (u32) (tmp64 >> 32);
8051
8052         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8053         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8054         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8055         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8056         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8057         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8058
8059         /*  Set the factory defined MAC address initially   */
8060         dev->addr_len = ETH_ALEN;
8061         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8062         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8063
8064         /* initialize number of multicast & unicast MAC entries variables */
8065         if (sp->device_type == XFRAME_I_DEVICE) {
8066                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8067                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8068                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8069         } else if (sp->device_type == XFRAME_II_DEVICE) {
8070                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8071                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8072                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8073         }
8074
8075         /* store mac addresses from CAM to s2io_nic structure */
8076         do_s2io_store_unicast_mc(sp);
8077
8078         /* Configure MSIX vector for number of rings configured plus one */
8079         if ((sp->device_type == XFRAME_II_DEVICE) &&
8080                 (config->intr_type == MSI_X))
8081                 sp->num_entries = config->rx_ring_num + 1;
8082
8083          /* Store the values of the MSIX table in the s2io_nic structure */
8084         store_xmsi_data(sp);
8085         /* reset Nic and bring it to known state */
8086         s2io_reset(sp);
8087
8088         /*
8089          * Initialize link state flags
8090          * and the card state parameter
8091          */
8092         sp->state = 0;
8093
8094         /* Initialize spinlocks */
8095         for (i = 0; i < sp->config.tx_fifo_num; i++)
8096                 spin_lock_init(&mac_control->fifos[i].tx_lock);
8097
8098         /*
8099          * SXE-002: Configure link and activity LED to init state
8100          * on driver load.
8101          */
8102         subid = sp->pdev->subsystem_device;
8103         if ((subid & 0xFF) >= 0x07) {
8104                 val64 = readq(&bar0->gpio_control);
8105                 val64 |= 0x0000800000000000ULL;
8106                 writeq(val64, &bar0->gpio_control);
8107                 val64 = 0x0411040400000000ULL;
8108                 writeq(val64, (void __iomem *) bar0 + 0x2700);
8109                 val64 = readq(&bar0->gpio_control);
8110         }
8111
8112         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8113
8114         if (register_netdev(dev)) {
8115                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8116                 ret = -ENODEV;
8117                 goto register_failed;
8118         }
8119         s2io_vpd_read(sp);
8120         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8121         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8122                   sp->product_name, pdev->revision);
8123         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8124                   s2io_driver_version);
8125         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8126         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8127         if (sp->device_type & XFRAME_II_DEVICE) {
8128                 mode = s2io_print_pci_mode(sp);
8129                 if (mode < 0) {
8130                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8131                         ret = -EBADSLT;
8132                         unregister_netdev(dev);
8133                         goto set_swap_failed;
8134                 }
8135         }
8136         switch(sp->rxd_mode) {
8137                 case RXD_MODE_1:
8138                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8139                                                 dev->name);
8140                     break;
8141                 case RXD_MODE_3B:
8142                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8143                                                 dev->name);
8144                     break;
8145         }
8146
8147         switch (sp->config.napi) {
8148         case 0:
8149                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8150                 break;
8151         case 1:
8152                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8153                 break;
8154         }
8155
8156         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8157                 sp->config.tx_fifo_num);
8158
8159         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8160                   sp->config.rx_ring_num);
8161
8162         switch(sp->config.intr_type) {
8163                 case INTA:
8164                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8165                     break;
8166                 case MSI_X:
8167                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8168                     break;
8169         }
8170         if (sp->config.multiq) {
8171                 for (i = 0; i < sp->config.tx_fifo_num; i++)
8172                         mac_control->fifos[i].multiq = config->multiq;
8173                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8174                         dev->name);
8175         } else
8176                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8177                         dev->name);
8178
8179         switch (sp->config.tx_steering_type) {
8180         case NO_STEERING:
8181                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8182                         " transmit\n", dev->name);
8183                         break;
8184         case TX_PRIORITY_STEERING:
8185                 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8186                         " transmit\n", dev->name);
8187                 break;
8188         case TX_DEFAULT_STEERING:
8189                 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8190                         " transmit\n", dev->name);
8191         }
8192
8193         if (sp->lro)
8194                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8195                           dev->name);
8196         if (ufo)
8197                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8198                                         " enabled\n", dev->name);
8199         /* Initialize device name */
8200         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8201
8202         if (vlan_tag_strip)
8203                 sp->vlan_strip_flag = 1;
8204         else
8205                 sp->vlan_strip_flag = 0;
8206
8207         /*
8208          * Make Link state as off at this point, when the Link change
8209          * interrupt comes the state will be automatically changed to
8210          * the right state.
8211          */
8212         netif_carrier_off(dev);
8213
8214         return 0;
8215
8216       register_failed:
8217       set_swap_failed:
8218         iounmap(sp->bar1);
8219       bar1_remap_failed:
8220         iounmap(sp->bar0);
8221       bar0_remap_failed:
8222       mem_alloc_failed:
8223         free_shared_mem(sp);
8224         pci_disable_device(pdev);
8225         pci_release_regions(pdev);
8226         pci_set_drvdata(pdev, NULL);
8227         free_netdev(dev);
8228
8229         return ret;
8230 }
8231
8232 /**
8233  * s2io_rem_nic - Free the PCI device
8234  * @pdev: structure containing the PCI related information of the device.
8235  * Description: This function is called by the Pci subsystem to release a
8236  * PCI device and free up all resource held up by the device. This could
8237  * be in response to a Hot plug event or when the driver is to be removed
8238  * from memory.
8239  */
8240
8241 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8242 {
8243         struct net_device *dev =
8244             (struct net_device *) pci_get_drvdata(pdev);
8245         struct s2io_nic *sp;
8246
8247         if (dev == NULL) {
8248                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8249                 return;
8250         }
8251
8252         flush_scheduled_work();
8253
8254         sp = netdev_priv(dev);
8255         unregister_netdev(dev);
8256
8257         free_shared_mem(sp);
8258         iounmap(sp->bar0);
8259         iounmap(sp->bar1);
8260         pci_release_regions(pdev);
8261         pci_set_drvdata(pdev, NULL);
8262         free_netdev(dev);
8263         pci_disable_device(pdev);
8264 }
8265
8266 /**
8267  * s2io_starter - Entry point for the driver
8268  * Description: This function is the entry point for the driver. It verifies
8269  * the module loadable parameters and initializes PCI configuration space.
8270  */
8271
8272 static int __init s2io_starter(void)
8273 {
8274         return pci_register_driver(&s2io_driver);
8275 }
8276
8277 /**
8278  * s2io_closer - Cleanup routine for the driver
8279  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8280  */
8281
8282 static __exit void s2io_closer(void)
8283 {
8284         pci_unregister_driver(&s2io_driver);
8285         DBG_PRINT(INIT_DBG, "cleanup done\n");
8286 }
8287
8288 module_init(s2io_starter);
8289 module_exit(s2io_closer);
8290
8291 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8292                 struct tcphdr **tcp, struct RxD_t *rxdp,
8293                 struct s2io_nic *sp)
8294 {
8295         int ip_off;
8296         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8297
8298         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8299                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8300                           __func__);
8301                 return -1;
8302         }
8303
8304         /* Checking for DIX type or DIX type with VLAN */
8305         if ((l2_type == 0)
8306                 || (l2_type == 4)) {
8307                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8308                 /*
8309                  * If vlan stripping is disabled and the frame is VLAN tagged,
8310                  * shift the offset by the VLAN header size bytes.
8311                  */
8312                 if ((!sp->vlan_strip_flag) &&
8313                         (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8314                         ip_off += HEADER_VLAN_SIZE;
8315         } else {
8316                 /* LLC, SNAP etc are considered non-mergeable */
8317                 return -1;
8318         }
8319
8320         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8321         ip_len = (u8)((*ip)->ihl);
8322         ip_len <<= 2;
8323         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8324
8325         return 0;
8326 }
8327
8328 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8329                                   struct tcphdr *tcp)
8330 {
8331         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8332         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8333            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8334                 return -1;
8335         return 0;
8336 }
8337
8338 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8339 {
8340         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8341 }
8342
8343 static void initiate_new_session(struct lro *lro, u8 *l2h,
8344         struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8345 {
8346         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8347         lro->l2h = l2h;
8348         lro->iph = ip;
8349         lro->tcph = tcp;
8350         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8351         lro->tcp_ack = tcp->ack_seq;
8352         lro->sg_num = 1;
8353         lro->total_len = ntohs(ip->tot_len);
8354         lro->frags_len = 0;
8355         lro->vlan_tag = vlan_tag;
8356         /*
8357          * check if we saw TCP timestamp. Other consistency checks have
8358          * already been done.
8359          */
8360         if (tcp->doff == 8) {
8361                 __be32 *ptr;
8362                 ptr = (__be32 *)(tcp+1);
8363                 lro->saw_ts = 1;
8364                 lro->cur_tsval = ntohl(*(ptr+1));
8365                 lro->cur_tsecr = *(ptr+2);
8366         }
8367         lro->in_use = 1;
8368 }
8369
8370 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8371 {
8372         struct iphdr *ip = lro->iph;
8373         struct tcphdr *tcp = lro->tcph;
8374         __sum16 nchk;
8375         struct stat_block *statinfo = sp->mac_control.stats_info;
8376         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8377
8378         /* Update L3 header */
8379         ip->tot_len = htons(lro->total_len);
8380         ip->check = 0;
8381         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8382         ip->check = nchk;
8383
8384         /* Update L4 header */
8385         tcp->ack_seq = lro->tcp_ack;
8386         tcp->window = lro->window;
8387
8388         /* Update tsecr field if this session has timestamps enabled */
8389         if (lro->saw_ts) {
8390                 __be32 *ptr = (__be32 *)(tcp + 1);
8391                 *(ptr+2) = lro->cur_tsecr;
8392         }
8393
8394         /* Update counters required for calculation of
8395          * average no. of packets aggregated.
8396          */
8397         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8398         statinfo->sw_stat.num_aggregations++;
8399 }
8400
8401 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8402                 struct tcphdr *tcp, u32 l4_pyld)
8403 {
8404         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8405         lro->total_len += l4_pyld;
8406         lro->frags_len += l4_pyld;
8407         lro->tcp_next_seq += l4_pyld;
8408         lro->sg_num++;
8409
8410         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8411         lro->tcp_ack = tcp->ack_seq;
8412         lro->window = tcp->window;
8413
8414         if (lro->saw_ts) {
8415                 __be32 *ptr;
8416                 /* Update tsecr and tsval from this packet */
8417                 ptr = (__be32 *)(tcp+1);
8418                 lro->cur_tsval = ntohl(*(ptr+1));
8419                 lro->cur_tsecr = *(ptr + 2);
8420         }
8421 }
8422
8423 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8424                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8425 {
8426         u8 *ptr;
8427
8428         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8429
8430         if (!tcp_pyld_len) {
8431                 /* Runt frame or a pure ack */
8432                 return -1;
8433         }
8434
8435         if (ip->ihl != 5) /* IP has options */
8436                 return -1;
8437
8438         /* If we see CE codepoint in IP header, packet is not mergeable */
8439         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8440                 return -1;
8441
8442         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8443         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8444                                     tcp->ece || tcp->cwr || !tcp->ack) {
8445                 /*
8446                  * Currently recognize only the ack control word and
8447                  * any other control field being set would result in
8448                  * flushing the LRO session
8449                  */
8450                 return -1;
8451         }
8452
8453         /*
8454          * Allow only one TCP timestamp option. Don't aggregate if
8455          * any other options are detected.
8456          */
8457         if (tcp->doff != 5 && tcp->doff != 8)
8458                 return -1;
8459
8460         if (tcp->doff == 8) {
8461                 ptr = (u8 *)(tcp + 1);
8462                 while (*ptr == TCPOPT_NOP)
8463                         ptr++;
8464                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8465                         return -1;
8466
8467                 /* Ensure timestamp value increases monotonically */
8468                 if (l_lro)
8469                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8470                                 return -1;
8471
8472                 /* timestamp echo reply should be non-zero */
8473                 if (*((__be32 *)(ptr+6)) == 0)
8474                         return -1;
8475         }
8476
8477         return 0;
8478 }
8479
8480 static int
8481 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8482         u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8483         struct s2io_nic *sp)
8484 {
8485         struct iphdr *ip;
8486         struct tcphdr *tcph;
8487         int ret = 0, i;
8488         u16 vlan_tag = 0;
8489
8490         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8491                                          rxdp, sp))) {
8492                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8493                           ip->saddr, ip->daddr);
8494         } else
8495                 return ret;
8496
8497         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8498         tcph = (struct tcphdr *)*tcp;
8499         *tcp_len = get_l4_pyld_length(ip, tcph);
8500         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8501                 struct lro *l_lro = &ring_data->lro0_n[i];
8502                 if (l_lro->in_use) {
8503                         if (check_for_socket_match(l_lro, ip, tcph))
8504                                 continue;
8505                         /* Sock pair matched */
8506                         *lro = l_lro;
8507
8508                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8509                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8510                                           "0x%x, actual 0x%x\n", __func__,
8511                                           (*lro)->tcp_next_seq,
8512                                           ntohl(tcph->seq));
8513
8514                                 sp->mac_control.stats_info->
8515                                    sw_stat.outof_sequence_pkts++;
8516                                 ret = 2;
8517                                 break;
8518                         }
8519
8520                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8521                                 ret = 1; /* Aggregate */
8522                         else
8523                                 ret = 2; /* Flush both */
8524                         break;
8525                 }
8526         }
8527
8528         if (ret == 0) {
8529                 /* Before searching for available LRO objects,
8530                  * check if the pkt is L3/L4 aggregatable. If not
8531                  * don't create new LRO session. Just send this
8532                  * packet up.
8533                  */
8534                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8535                         return 5;
8536                 }
8537
8538                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8539                         struct lro *l_lro = &ring_data->lro0_n[i];
8540                         if (!(l_lro->in_use)) {
8541                                 *lro = l_lro;
8542                                 ret = 3; /* Begin anew */
8543                                 break;
8544                         }
8545                 }
8546         }
8547
8548         if (ret == 0) { /* sessions exceeded */
8549                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8550                           __func__);
8551                 *lro = NULL;
8552                 return ret;
8553         }
8554
8555         switch (ret) {
8556                 case 3:
8557                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8558                                                                 vlan_tag);
8559                         break;
8560                 case 2:
8561                         update_L3L4_header(sp, *lro);
8562                         break;
8563                 case 1:
8564                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8565                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8566                                 update_L3L4_header(sp, *lro);
8567                                 ret = 4; /* Flush the LRO */
8568                         }
8569                         break;
8570                 default:
8571                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8572                                 __func__);
8573                         break;
8574         }
8575
8576         return ret;
8577 }
8578
8579 static void clear_lro_session(struct lro *lro)
8580 {
8581         static u16 lro_struct_size = sizeof(struct lro);
8582
8583         memset(lro, 0, lro_struct_size);
8584 }
8585
8586 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8587 {
8588         struct net_device *dev = skb->dev;
8589         struct s2io_nic *sp = netdev_priv(dev);
8590
8591         skb->protocol = eth_type_trans(skb, dev);
8592         if (sp->vlgrp && vlan_tag
8593                 && (sp->vlan_strip_flag)) {
8594                 /* Queueing the vlan frame to the upper layer */
8595                 if (sp->config.napi)
8596                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8597                 else
8598                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8599         } else {
8600                 if (sp->config.napi)
8601                         netif_receive_skb(skb);
8602                 else
8603                         netif_rx(skb);
8604         }
8605 }
8606
8607 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8608                            struct sk_buff *skb,
8609                            u32 tcp_len)
8610 {
8611         struct sk_buff *first = lro->parent;
8612
8613         first->len += tcp_len;
8614         first->data_len = lro->frags_len;
8615         skb_pull(skb, (skb->len - tcp_len));
8616         if (skb_shinfo(first)->frag_list)
8617                 lro->last_frag->next = skb;
8618         else
8619                 skb_shinfo(first)->frag_list = skb;
8620         first->truesize += skb->truesize;
8621         lro->last_frag = skb;
8622         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8623         return;
8624 }
8625
8626 /**
8627  * s2io_io_error_detected - called when PCI error is detected
8628  * @pdev: Pointer to PCI device
8629  * @state: The current pci connection state
8630  *
8631  * This function is called after a PCI bus error affecting
8632  * this device has been detected.
8633  */
8634 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8635                                                pci_channel_state_t state)
8636 {
8637         struct net_device *netdev = pci_get_drvdata(pdev);
8638         struct s2io_nic *sp = netdev_priv(netdev);
8639
8640         netif_device_detach(netdev);
8641
8642         if (netif_running(netdev)) {
8643                 /* Bring down the card, while avoiding PCI I/O */
8644                 do_s2io_card_down(sp, 0);
8645         }
8646         pci_disable_device(pdev);
8647
8648         return PCI_ERS_RESULT_NEED_RESET;
8649 }
8650
8651 /**
8652  * s2io_io_slot_reset - called after the pci bus has been reset.
8653  * @pdev: Pointer to PCI device
8654  *
8655  * Restart the card from scratch, as if from a cold-boot.
8656  * At this point, the card has exprienced a hard reset,
8657  * followed by fixups by BIOS, and has its config space
8658  * set up identically to what it was at cold boot.
8659  */
8660 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8661 {
8662         struct net_device *netdev = pci_get_drvdata(pdev);
8663         struct s2io_nic *sp = netdev_priv(netdev);
8664
8665         if (pci_enable_device(pdev)) {
8666                 printk(KERN_ERR "s2io: "
8667                        "Cannot re-enable PCI device after reset.\n");
8668                 return PCI_ERS_RESULT_DISCONNECT;
8669         }
8670
8671         pci_set_master(pdev);
8672         s2io_reset(sp);
8673
8674         return PCI_ERS_RESULT_RECOVERED;
8675 }
8676
8677 /**
8678  * s2io_io_resume - called when traffic can start flowing again.
8679  * @pdev: Pointer to PCI device
8680  *
8681  * This callback is called when the error recovery driver tells
8682  * us that its OK to resume normal operation.
8683  */
8684 static void s2io_io_resume(struct pci_dev *pdev)
8685 {
8686         struct net_device *netdev = pci_get_drvdata(pdev);
8687         struct s2io_nic *sp = netdev_priv(netdev);
8688
8689         if (netif_running(netdev)) {
8690                 if (s2io_card_up(sp)) {
8691                         printk(KERN_ERR "s2io: "
8692                                "Can't bring device back up after reset.\n");
8693                         return;
8694                 }
8695
8696                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8697                         s2io_card_down(sp);
8698                         printk(KERN_ERR "s2io: "
8699                                "Can't resetore mac addr after reset.\n");
8700                         return;
8701                 }
8702         }
8703
8704         netif_device_attach(netdev);
8705         netif_tx_wake_all_queues(netdev);
8706 }