2 * This file contains the routines for handling the MMU on those
3 * PowerPC implementations where the MMU substantially follows the
4 * architecture specification. This includes the 6xx, 7xx, 7xxx,
5 * 8260, and POWER3 implementations but excludes the 8xx and 4xx.
8 * Derived from arch/ppc/mm/init.c:
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
12 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
13 * Copyright (C) 1996 Paul Mackerras
15 * Derived from "arch/i386/mm/init.c"
16 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/highmem.h>
29 #include <linux/lmb.h>
33 #include <asm/machdep.h>
37 struct hash_pte *Hash, *Hash_end;
38 unsigned long Hash_size, Hash_mask;
41 struct ppc_bat BATS[8][2]; /* 8 pairs of IBAT, DBAT */
43 struct batrange { /* stores address ranges mapped by BATs */
50 * Return PA for this VA if it is mapped by a BAT, or 0
52 phys_addr_t v_mapped_by_bats(unsigned long va)
55 for (b = 0; b < 4; ++b)
56 if (va >= bat_addrs[b].start && va < bat_addrs[b].limit)
57 return bat_addrs[b].phys + (va - bat_addrs[b].start);
62 * Return VA for a given PA or 0 if not mapped
64 unsigned long p_mapped_by_bats(phys_addr_t pa)
67 for (b = 0; b < 4; ++b)
68 if (pa >= bat_addrs[b].phys
69 && pa < (bat_addrs[b].limit-bat_addrs[b].start)
71 return bat_addrs[b].start+(pa-bat_addrs[b].phys);
75 unsigned long __init mmu_mapin_ram(void)
80 unsigned long tot, bl, done;
81 unsigned long max_size = (256<<20);
83 if (__map_without_bats) {
84 printk(KERN_DEBUG "RAM mapped without BATs\n");
88 /* Set up BAT2 and if necessary BAT3 to cover RAM. */
90 /* Make sure we don't map a block larger than the
91 smallest alignment of the physical address. */
93 for (bl = 128<<10; bl < max_size; bl <<= 1) {
98 setbat(2, PAGE_OFFSET, 0, bl, _PAGE_RAM);
99 done = (unsigned long)bat_addrs[2].limit - PAGE_OFFSET + 1;
100 if ((done < tot) && !bat_addrs[3].limit) {
101 /* use BAT3 to cover a bit more */
103 for (bl = 128<<10; bl < max_size; bl <<= 1)
106 setbat(3, PAGE_OFFSET+done, done, bl, _PAGE_RAM);
107 done = (unsigned long)bat_addrs[3].limit - PAGE_OFFSET + 1;
115 * Set up one of the I/D BAT (block address translation) register pairs.
116 * The parameters are not checked; in particular size must be a power
117 * of 2 between 128k and 256M.
119 void __init setbat(int index, unsigned long virt, phys_addr_t phys,
120 unsigned int size, int flags)
124 struct ppc_bat *bat = BATS[index];
126 if ((flags & _PAGE_NO_CACHE) ||
127 (cpu_has_feature(CPU_FTR_NEED_COHERENT) == 0))
128 flags &= ~_PAGE_COHERENT;
130 bl = (size >> 17) - 1;
131 if (PVR_VER(mfspr(SPRN_PVR)) != 1) {
134 wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
135 | _PAGE_COHERENT | _PAGE_GUARDED);
136 wimgxpp |= (flags & _PAGE_RW)? BPP_RW: BPP_RX;
137 bat[1].batu = virt | (bl << 2) | 2; /* Vs=1, Vp=0 */
138 bat[1].batl = BAT_PHYS_ADDR(phys) | wimgxpp;
139 #ifndef CONFIG_KGDB /* want user access for breakpoints */
140 if (flags & _PAGE_USER)
142 bat[1].batu |= 1; /* Vp = 1 */
143 if (flags & _PAGE_GUARDED) {
144 /* G bit must be zero in IBATs */
145 bat[0].batu = bat[0].batl = 0;
147 /* make IBAT same as DBAT */
154 wimgxpp = flags & (_PAGE_WRITETHRU | _PAGE_NO_CACHE
156 wimgxpp |= (flags & _PAGE_RW)?
157 ((flags & _PAGE_USER)? PP_RWRW: PP_RWXX): PP_RXRX;
158 bat->batu = virt | wimgxpp | 4; /* Ks=0, Ku=1 */
159 bat->batl = phys | bl | 0x40; /* V=1 */
162 bat_addrs[index].start = virt;
163 bat_addrs[index].limit = virt + ((bl + 1) << 17) - 1;
164 bat_addrs[index].phys = phys;
168 * Preload a translation in the hash table
170 void hash_preload(struct mm_struct *mm, unsigned long ea,
171 unsigned long access, unsigned long trap)
177 pmd = pmd_offset(pud_offset(pgd_offset(mm, ea), ea), ea);
179 add_hash_page(mm->context.id, ea, pmd_val(*pmd));
183 * Initialize the hash table and patch the instructions in hashtable.S.
185 void __init MMU_init_hw(void)
187 unsigned int hmask, mb, mb2;
188 unsigned int n_hpteg, lg_n_hpteg;
190 extern unsigned int hash_page_patch_A[];
191 extern unsigned int hash_page_patch_B[], hash_page_patch_C[];
192 extern unsigned int hash_page[];
193 extern unsigned int flush_hash_patch_A[], flush_hash_patch_B[];
195 if (!mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
197 * Put a blr (procedure return) instruction at the
198 * start of hash_page, since we can still get DSI
199 * exceptions on a 603.
201 hash_page[0] = 0x4e800020;
202 flush_icache_range((unsigned long) &hash_page[0],
203 (unsigned long) &hash_page[1]);
207 if ( ppc_md.progress ) ppc_md.progress("hash:enter", 0x105);
209 #define LG_HPTEG_SIZE 6 /* 64 bytes per HPTEG */
210 #define SDR1_LOW_BITS ((n_hpteg - 1) >> 10)
211 #define MIN_N_HPTEG 1024 /* min 64kB hash table */
214 * Allow 1 HPTE (1/8 HPTEG) for each page of memory.
215 * This is less than the recommended amount, but then
218 n_hpteg = total_memory / (PAGE_SIZE * 8);
219 if (n_hpteg < MIN_N_HPTEG)
220 n_hpteg = MIN_N_HPTEG;
221 lg_n_hpteg = __ilog2(n_hpteg);
222 if (n_hpteg & (n_hpteg - 1)) {
223 ++lg_n_hpteg; /* round up if not power of 2 */
224 n_hpteg = 1 << lg_n_hpteg;
226 Hash_size = n_hpteg << LG_HPTEG_SIZE;
229 * Find some memory for the hash table.
231 if ( ppc_md.progress ) ppc_md.progress("hash:find piece", 0x322);
232 Hash = __va(lmb_alloc_base(Hash_size, Hash_size,
233 __initial_memory_limit_addr));
234 cacheable_memzero(Hash, Hash_size);
235 _SDR1 = __pa(Hash) | SDR1_LOW_BITS;
237 Hash_end = (struct hash_pte *) ((unsigned long)Hash + Hash_size);
239 printk("Total memory = %lldMB; using %ldkB for hash table (at %p)\n",
240 (unsigned long long)(total_memory >> 20), Hash_size >> 10, Hash);
244 * Patch up the instructions in hashtable.S:create_hpte
246 if ( ppc_md.progress ) ppc_md.progress("hash:patch", 0x345);
247 Hash_mask = n_hpteg - 1;
248 hmask = Hash_mask >> (16 - LG_HPTEG_SIZE);
249 mb2 = mb = 32 - LG_HPTEG_SIZE - lg_n_hpteg;
251 mb2 = 16 - LG_HPTEG_SIZE;
253 hash_page_patch_A[0] = (hash_page_patch_A[0] & ~0xffff)
254 | ((unsigned int)(Hash) >> 16);
255 hash_page_patch_A[1] = (hash_page_patch_A[1] & ~0x7c0) | (mb << 6);
256 hash_page_patch_A[2] = (hash_page_patch_A[2] & ~0x7c0) | (mb2 << 6);
257 hash_page_patch_B[0] = (hash_page_patch_B[0] & ~0xffff) | hmask;
258 hash_page_patch_C[0] = (hash_page_patch_C[0] & ~0xffff) | hmask;
261 * Ensure that the locations we've patched have been written
262 * out from the data cache and invalidated in the instruction
263 * cache, on those machines with split caches.
265 flush_icache_range((unsigned long) &hash_page_patch_A[0],
266 (unsigned long) &hash_page_patch_C[1]);
269 * Patch up the instructions in hashtable.S:flush_hash_page
271 flush_hash_patch_A[0] = (flush_hash_patch_A[0] & ~0xffff)
272 | ((unsigned int)(Hash) >> 16);
273 flush_hash_patch_A[1] = (flush_hash_patch_A[1] & ~0x7c0) | (mb << 6);
274 flush_hash_patch_A[2] = (flush_hash_patch_A[2] & ~0x7c0) | (mb2 << 6);
275 flush_hash_patch_B[0] = (flush_hash_patch_B[0] & ~0xffff) | hmask;
276 flush_icache_range((unsigned long) &flush_hash_patch_A[0],
277 (unsigned long) &flush_hash_patch_B[1]);
279 if ( ppc_md.progress ) ppc_md.progress("hash:done", 0x205);