1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
30 #define PFX DRV_NAME ": "
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
64 /* Do ugly workaround for GX server chipset errata. */
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #define yellowfin_debug debug
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
109 /* These identify the driver base version and may not be removed. */
110 static char version[] __devinitdata =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
136 I. Board Compatibility
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
142 II. Board-specific settings
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
150 III. Driver operation
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
174 IIIC. Synchronization
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
207 See Packet Engines confidential appendix (prototype chips only).
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
218 /* The PCI I/O space extent. */
220 YELLOWFIN_SIZE = 0x100,
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
229 int drv_flags; /* Driver use, intended as capability flags. */
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
271 __le32 result_status;
274 struct tx_status_words {
280 #else /* Little endian chips. */
285 #endif /* __BIG_ENDIAN */
288 /* Bits in yellowfin_desc.cmd */
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305 #define PRIV_ALIGN 31 /* Required alignment mask */
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static void yellowfin_init_ring(struct net_device *dev);
350 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
359 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
360 const struct pci_device_id *ent)
362 struct net_device *dev;
363 struct yellowfin_private *np;
365 int chip_idx = ent->driver_data;
367 void __iomem *ioaddr;
368 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
369 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
378 /* when built into the kernel, we only print version if device is found */
380 static int printed_version;
381 if (!printed_version++)
385 i = pci_enable_device(pdev);
388 dev = alloc_etherdev(sizeof(*np));
390 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
393 SET_NETDEV_DEV(dev, &pdev->dev);
395 np = netdev_priv(dev);
397 if (pci_request_regions(pdev, DRV_NAME))
398 goto err_out_free_netdev;
400 pci_set_master (pdev);
402 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
404 goto err_out_free_res;
408 if (drv_flags & DontUseEeprom)
409 for (i = 0; i < 6; i++)
410 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
412 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
413 for (i = 0; i < 6; i++)
414 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
417 /* Reset the chip. */
418 iowrite32(0x80000000, ioaddr + DMACtrl);
420 dev->base_addr = (unsigned long)ioaddr;
423 pci_set_drvdata(pdev, dev);
424 spin_lock_init(&np->lock);
427 np->chip_id = chip_idx;
428 np->drv_flags = drv_flags;
431 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
433 goto err_out_cleardev;
434 np->tx_ring = (struct yellowfin_desc *)ring_space;
435 np->tx_ring_dma = ring_dma;
437 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
439 goto err_out_unmap_tx;
440 np->rx_ring = (struct yellowfin_desc *)ring_space;
441 np->rx_ring_dma = ring_dma;
443 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
445 goto err_out_unmap_rx;
446 np->tx_status = (struct tx_status_words *)ring_space;
447 np->tx_status_dma = ring_dma;
450 option = dev->mem_start;
452 /* The lower four bits are the media type. */
456 np->default_port = option & 15;
457 if (np->default_port)
460 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
466 /* The Yellowfin-specific entries in the device structure. */
467 dev->open = &yellowfin_open;
468 dev->hard_start_xmit = &yellowfin_start_xmit;
469 dev->stop = &yellowfin_close;
470 dev->set_multicast_list = &set_rx_mode;
471 dev->do_ioctl = &netdev_ioctl;
472 SET_ETHTOOL_OPS(dev, ðtool_ops);
473 dev->tx_timeout = yellowfin_tx_timeout;
474 dev->watchdog_timeo = TX_TIMEOUT;
479 i = register_netdev(dev);
481 goto err_out_unmap_status;
483 printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
484 dev->name, pci_id_tbl[chip_idx].name,
485 ioread32(ioaddr + ChipRev), ioaddr,
488 if (np->drv_flags & HasMII) {
489 int phy, phy_idx = 0;
490 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
491 int mii_status = mdio_read(ioaddr, phy, 1);
492 if (mii_status != 0xffff && mii_status != 0x0000) {
493 np->phys[phy_idx++] = phy;
494 np->advertising = mdio_read(ioaddr, phy, 4);
495 printk(KERN_INFO "%s: MII PHY found at address %d, status "
496 "0x%4.4x advertising %4.4x.\n",
497 dev->name, phy, mii_status, np->advertising);
500 np->mii_cnt = phy_idx;
507 err_out_unmap_status:
508 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
511 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
513 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
515 pci_set_drvdata(pdev, NULL);
516 pci_iounmap(pdev, ioaddr);
518 pci_release_regions(pdev);
524 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
526 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
528 iowrite8(location, ioaddr + EEAddr);
529 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
530 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
532 return ioread8(ioaddr + EERead);
535 /* MII Managemen Data I/O accesses.
536 These routines assume the MDIO controller is idle, and do not exit until
537 the command is finished. */
539 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
543 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
544 iowrite16(1, ioaddr + MII_Cmd);
545 for (i = 10000; i >= 0; i--)
546 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
548 return ioread16(ioaddr + MII_Rd_Data);
551 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
555 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
556 iowrite16(value, ioaddr + MII_Wr_Data);
558 /* Wait for the command to finish. */
559 for (i = 10000; i >= 0; i--)
560 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
566 static int yellowfin_open(struct net_device *dev)
568 struct yellowfin_private *yp = netdev_priv(dev);
569 void __iomem *ioaddr = yp->base;
572 /* Reset the chip. */
573 iowrite32(0x80000000, ioaddr + DMACtrl);
575 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
578 if (yellowfin_debug > 1)
579 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
580 dev->name, dev->irq);
582 yellowfin_init_ring(dev);
584 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
585 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
587 for (i = 0; i < 6; i++)
588 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
590 /* Set up various condition 'select' registers.
591 There are no options here. */
592 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
593 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
594 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
595 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
596 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
597 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
599 /* Initialize other registers: with so many this eventually this will
600 converted to an offset/value list. */
601 iowrite32(dma_ctrl, ioaddr + DMACtrl);
602 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
603 /* Enable automatic generation of flow control frames, period 0xffff. */
604 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
606 yp->tx_threshold = 32;
607 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
609 if (dev->if_port == 0)
610 dev->if_port = yp->default_port;
612 netif_start_queue(dev);
614 /* Setting the Rx mode will start the Rx process. */
615 if (yp->drv_flags & IsGigabit) {
616 /* We are always in full-duplex mode with gigabit! */
618 iowrite16(0x01CF, ioaddr + Cnfg);
620 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
621 iowrite16(0x1018, ioaddr + FrameGap1);
622 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
626 /* Enable interrupts by setting the interrupt mask. */
627 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
628 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
629 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
630 iowrite32(0x80008000, ioaddr + TxCtrl);
632 if (yellowfin_debug > 2) {
633 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
637 /* Set the timer to check for link beat. */
638 init_timer(&yp->timer);
639 yp->timer.expires = jiffies + 3*HZ;
640 yp->timer.data = (unsigned long)dev;
641 yp->timer.function = &yellowfin_timer; /* timer handler */
642 add_timer(&yp->timer);
647 static void yellowfin_timer(unsigned long data)
649 struct net_device *dev = (struct net_device *)data;
650 struct yellowfin_private *yp = netdev_priv(dev);
651 void __iomem *ioaddr = yp->base;
652 int next_tick = 60*HZ;
654 if (yellowfin_debug > 3) {
655 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
656 dev->name, ioread16(ioaddr + IntrStatus));
660 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
661 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
662 int negotiated = lpa & yp->advertising;
663 if (yellowfin_debug > 1)
664 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
665 "link partner capability %4.4x.\n",
666 dev->name, yp->phys[0], bmsr, lpa);
668 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
670 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
672 if (bmsr & BMSR_LSTATUS)
678 yp->timer.expires = jiffies + next_tick;
679 add_timer(&yp->timer);
682 static void yellowfin_tx_timeout(struct net_device *dev)
684 struct yellowfin_private *yp = netdev_priv(dev);
685 void __iomem *ioaddr = yp->base;
687 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
688 "status %4.4x, Rx status %4.4x, resetting...\n",
689 dev->name, yp->cur_tx, yp->dirty_tx,
690 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
692 /* Note: these should be KERN_DEBUG. */
693 if (yellowfin_debug) {
695 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
696 for (i = 0; i < RX_RING_SIZE; i++)
697 printk(" %8.8x", yp->rx_ring[i].result_status);
698 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
699 for (i = 0; i < TX_RING_SIZE; i++)
700 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
701 yp->tx_ring[i].result_status);
705 /* If the hardware is found to hang regularly, we will update the code
706 to reinitialize the chip here. */
709 /* Wake the potentially-idle transmit channel. */
710 iowrite32(0x10001000, yp->base + TxCtrl);
711 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
712 netif_wake_queue (dev); /* Typical path */
714 dev->trans_start = jiffies;
715 dev->stats.tx_errors++;
718 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
719 static void yellowfin_init_ring(struct net_device *dev)
721 struct yellowfin_private *yp = netdev_priv(dev);
725 yp->cur_rx = yp->cur_tx = 0;
728 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
730 for (i = 0; i < RX_RING_SIZE; i++) {
731 yp->rx_ring[i].dbdma_cmd =
732 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
733 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
734 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
737 for (i = 0; i < RX_RING_SIZE; i++) {
738 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
739 yp->rx_skbuff[i] = skb;
742 skb->dev = dev; /* Mark as being used by this device. */
743 skb_reserve(skb, 2); /* 16 byte align the IP header. */
744 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
745 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
747 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
748 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
752 /* In this mode the Tx ring needs only a single descriptor. */
753 for (i = 0; i < TX_RING_SIZE; i++) {
754 yp->tx_skbuff[i] = NULL;
755 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
756 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
757 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
760 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
765 /* Tx ring needs a pair of descriptors, the second for the status. */
766 for (i = 0; i < TX_RING_SIZE; i++) {
768 yp->tx_skbuff[i] = 0;
769 /* Branch on Tx error. */
770 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
771 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
772 (j+1)*sizeof(struct yellowfin_desc));
774 if (yp->flags & FullTxStatus) {
775 yp->tx_ring[j].dbdma_cmd =
776 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
777 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
778 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
779 i*sizeof(struct tx_status_words));
781 /* Symbios chips write only tx_errs word. */
782 yp->tx_ring[j].dbdma_cmd =
783 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
784 yp->tx_ring[j].request_cnt = 2;
785 /* Om pade ummmmm... */
786 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
787 i*sizeof(struct tx_status_words) +
788 &(yp->tx_status[0].tx_errs) -
789 &(yp->tx_status[0]));
791 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
792 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
795 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
798 yp->tx_tail_desc = &yp->tx_status[0];
802 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
804 struct yellowfin_private *yp = netdev_priv(dev);
808 netif_stop_queue (dev);
810 /* Note: Ordering is important here, set the field with the
811 "ownership" bit last, and only then increment cur_tx. */
813 /* Calculate the next Tx descriptor entry. */
814 entry = yp->cur_tx % TX_RING_SIZE;
816 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
817 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
818 /* Fix GX chipset errata. */
819 if (cacheline_end > 24 || cacheline_end == 0) {
820 len = skb->len + 32 - cacheline_end + 1;
821 if (skb_padto(skb, len)) {
822 yp->tx_skbuff[entry] = NULL;
823 netif_wake_queue(dev);
828 yp->tx_skbuff[entry] = skb;
831 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
832 skb->data, len, PCI_DMA_TODEVICE));
833 yp->tx_ring[entry].result_status = 0;
834 if (entry >= TX_RING_SIZE-1) {
835 /* New stop command. */
836 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
837 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
838 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
840 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
841 yp->tx_ring[entry].dbdma_cmd =
842 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
846 yp->tx_ring[entry<<1].request_cnt = len;
847 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
848 skb->data, len, PCI_DMA_TODEVICE));
849 /* The input_last (status-write) command is constant, but we must
850 rewrite the subsequent 'stop' command. */
854 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
855 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
857 /* Final step -- overwrite the old 'stop' command. */
859 yp->tx_ring[entry<<1].dbdma_cmd =
860 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
861 CMD_TX_PKT | BRANCH_IFTRUE) | len);
864 /* Non-x86 Todo: explicitly flush cache lines here. */
866 /* Wake the potentially-idle transmit channel. */
867 iowrite32(0x10001000, yp->base + TxCtrl);
869 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
870 netif_start_queue (dev); /* Typical path */
873 dev->trans_start = jiffies;
875 if (yellowfin_debug > 4) {
876 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
877 dev->name, yp->cur_tx, entry);
882 /* The interrupt handler does all of the Rx thread work and cleans up
883 after the Tx thread. */
884 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
886 struct net_device *dev = dev_instance;
887 struct yellowfin_private *yp;
888 void __iomem *ioaddr;
889 int boguscnt = max_interrupt_work;
890 unsigned int handled = 0;
892 yp = netdev_priv(dev);
895 spin_lock (&yp->lock);
898 u16 intr_status = ioread16(ioaddr + IntrClear);
900 if (yellowfin_debug > 4)
901 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
902 dev->name, intr_status);
904 if (intr_status == 0)
908 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
910 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
914 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
915 int entry = yp->dirty_tx % TX_RING_SIZE;
918 if (yp->tx_ring[entry].result_status == 0)
920 skb = yp->tx_skbuff[entry];
921 dev->stats.tx_packets++;
922 dev->stats.tx_bytes += skb->len;
923 /* Free the original skb. */
924 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
925 skb->len, PCI_DMA_TODEVICE);
926 dev_kfree_skb_irq(skb);
927 yp->tx_skbuff[entry] = NULL;
930 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
931 /* The ring is no longer full, clear tbusy. */
933 netif_wake_queue(dev);
936 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
937 unsigned dirty_tx = yp->dirty_tx;
939 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
941 /* Todo: optimize this. */
942 int entry = dirty_tx % TX_RING_SIZE;
943 u16 tx_errs = yp->tx_status[entry].tx_errs;
946 #ifndef final_version
947 if (yellowfin_debug > 5)
948 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
949 "%4.4x %4.4x %4.4x %4.4x.\n",
951 yp->tx_status[entry].tx_cnt,
952 yp->tx_status[entry].tx_errs,
953 yp->tx_status[entry].total_tx_cnt,
954 yp->tx_status[entry].paused);
957 break; /* It still hasn't been Txed */
958 skb = yp->tx_skbuff[entry];
959 if (tx_errs & 0xF810) {
960 /* There was an major error, log it. */
961 #ifndef final_version
962 if (yellowfin_debug > 1)
963 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
966 dev->stats.tx_errors++;
967 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
968 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
969 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
970 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
972 #ifndef final_version
973 if (yellowfin_debug > 4)
974 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
977 dev->stats.tx_bytes += skb->len;
978 dev->stats.collisions += tx_errs & 15;
979 dev->stats.tx_packets++;
981 /* Free the original skb. */
982 pci_unmap_single(yp->pci_dev,
983 yp->tx_ring[entry<<1].addr, skb->len,
985 dev_kfree_skb_irq(skb);
986 yp->tx_skbuff[entry] = 0;
987 /* Mark status as empty. */
988 yp->tx_status[entry].tx_errs = 0;
991 #ifndef final_version
992 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
993 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
994 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
995 dirty_tx += TX_RING_SIZE;
1000 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1001 /* The ring is no longer full, clear tbusy. */
1003 netif_wake_queue(dev);
1006 yp->dirty_tx = dirty_tx;
1007 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1011 /* Log errors and other uncommon events. */
1012 if (intr_status & 0x2ee) /* Abnormal error summary. */
1013 yellowfin_error(dev, intr_status);
1015 if (--boguscnt < 0) {
1016 printk(KERN_WARNING "%s: Too much work at interrupt, "
1017 "status=0x%4.4x.\n",
1018 dev->name, intr_status);
1023 if (yellowfin_debug > 3)
1024 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1025 dev->name, ioread16(ioaddr + IntrStatus));
1027 spin_unlock (&yp->lock);
1028 return IRQ_RETVAL(handled);
1031 /* This routine is logically part of the interrupt handler, but separated
1032 for clarity and better register allocation. */
1033 static int yellowfin_rx(struct net_device *dev)
1035 struct yellowfin_private *yp = netdev_priv(dev);
1036 int entry = yp->cur_rx % RX_RING_SIZE;
1037 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1039 if (yellowfin_debug > 4) {
1040 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1041 entry, yp->rx_ring[entry].result_status);
1042 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1043 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1044 yp->rx_ring[entry].result_status);
1047 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1049 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1050 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1056 if(!desc->result_status)
1058 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1059 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1060 desc_status = le32_to_cpu(desc->result_status) >> 16;
1061 buf_addr = rx_skb->data;
1062 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1063 le32_to_cpu(desc->result_status)) & 0xffff;
1064 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1065 if (yellowfin_debug > 4)
1066 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1070 if ( ! (desc_status & RX_EOP)) {
1072 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1073 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1074 dev->stats.rx_length_errors++;
1075 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1076 /* There was a error. */
1077 if (yellowfin_debug > 3)
1078 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1080 dev->stats.rx_errors++;
1081 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1082 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1083 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1084 if (frame_status < 0) dev->stats.rx_dropped++;
1085 } else if ( !(yp->drv_flags & IsGigabit) &&
1086 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1087 u8 status1 = buf_addr[data_size-2];
1088 u8 status2 = buf_addr[data_size-1];
1089 dev->stats.rx_errors++;
1090 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1091 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1092 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1093 if (status2 & 0x80) dev->stats.rx_dropped++;
1094 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1095 } else if ((yp->flags & HasMACAddrBug) &&
1096 memcmp(le32_to_cpu(yp->rx_ring_dma +
1097 entry*sizeof(struct yellowfin_desc)),
1098 dev->dev_addr, 6) != 0 &&
1099 memcmp(le32_to_cpu(yp->rx_ring_dma +
1100 entry*sizeof(struct yellowfin_desc)),
1101 "\377\377\377\377\377\377", 6) != 0) {
1102 if (bogus_rx++ == 0)
1103 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1104 dev->name, buf_addr);
1107 struct sk_buff *skb;
1108 int pkt_len = data_size -
1109 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1110 /* To verify: Yellowfin Length should omit the CRC! */
1112 #ifndef final_version
1113 if (yellowfin_debug > 4)
1114 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1115 " of %d, bogus_cnt %d.\n",
1116 pkt_len, data_size, boguscnt);
1118 /* Check if the packet is long enough to just pass up the skbuff
1119 without copying to a properly sized skbuff. */
1120 if (pkt_len > rx_copybreak) {
1121 skb_put(skb = rx_skb, pkt_len);
1122 pci_unmap_single(yp->pci_dev,
1123 le32_to_cpu(yp->rx_ring[entry].addr),
1125 PCI_DMA_FROMDEVICE);
1126 yp->rx_skbuff[entry] = NULL;
1128 skb = dev_alloc_skb(pkt_len + 2);
1131 skb_reserve(skb, 2); /* 16 byte align the IP header */
1132 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1133 skb_put(skb, pkt_len);
1134 pci_dma_sync_single_for_device(yp->pci_dev,
1135 le32_to_cpu(desc->addr),
1137 PCI_DMA_FROMDEVICE);
1139 skb->protocol = eth_type_trans(skb, dev);
1141 dev->last_rx = jiffies;
1142 dev->stats.rx_packets++;
1143 dev->stats.rx_bytes += pkt_len;
1145 entry = (++yp->cur_rx) % RX_RING_SIZE;
1148 /* Refill the Rx ring buffers. */
1149 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1150 entry = yp->dirty_rx % RX_RING_SIZE;
1151 if (yp->rx_skbuff[entry] == NULL) {
1152 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1154 break; /* Better luck next round. */
1155 yp->rx_skbuff[entry] = skb;
1156 skb->dev = dev; /* Mark as being used by this device. */
1157 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1158 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1159 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1161 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1162 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1164 yp->rx_ring[entry - 1].dbdma_cmd =
1165 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1167 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1168 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1175 static void yellowfin_error(struct net_device *dev, int intr_status)
1177 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1178 dev->name, intr_status);
1179 /* Hmmmmm, it's not clear what to do here. */
1180 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1181 dev->stats.tx_errors++;
1182 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1183 dev->stats.rx_errors++;
1186 static int yellowfin_close(struct net_device *dev)
1188 struct yellowfin_private *yp = netdev_priv(dev);
1189 void __iomem *ioaddr = yp->base;
1192 netif_stop_queue (dev);
1194 if (yellowfin_debug > 1) {
1195 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1196 "Rx %4.4x Int %2.2x.\n",
1197 dev->name, ioread16(ioaddr + TxStatus),
1198 ioread16(ioaddr + RxStatus),
1199 ioread16(ioaddr + IntrStatus));
1200 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1201 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1204 /* Disable interrupts by clearing the interrupt mask. */
1205 iowrite16(0x0000, ioaddr + IntrEnb);
1207 /* Stop the chip's Tx and Rx processes. */
1208 iowrite32(0x80000000, ioaddr + RxCtrl);
1209 iowrite32(0x80000000, ioaddr + TxCtrl);
1211 del_timer(&yp->timer);
1213 #if defined(__i386__)
1214 if (yellowfin_debug > 2) {
1215 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1216 (unsigned long long)yp->tx_ring_dma);
1217 for (i = 0; i < TX_RING_SIZE*2; i++)
1218 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1219 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1220 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1221 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1222 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1223 for (i = 0; i < TX_RING_SIZE; i++)
1224 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1225 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1226 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1228 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1229 (unsigned long long)yp->rx_ring_dma);
1230 for (i = 0; i < RX_RING_SIZE; i++) {
1231 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1232 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1233 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1234 yp->rx_ring[i].result_status);
1235 if (yellowfin_debug > 6) {
1236 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1238 for (j = 0; j < 0x50; j++)
1240 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1246 #endif /* __i386__ debugging only */
1248 free_irq(dev->irq, dev);
1250 /* Free all the skbuffs in the Rx queue. */
1251 for (i = 0; i < RX_RING_SIZE; i++) {
1252 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1253 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1254 if (yp->rx_skbuff[i]) {
1255 dev_kfree_skb(yp->rx_skbuff[i]);
1257 yp->rx_skbuff[i] = NULL;
1259 for (i = 0; i < TX_RING_SIZE; i++) {
1260 if (yp->tx_skbuff[i])
1261 dev_kfree_skb(yp->tx_skbuff[i]);
1262 yp->tx_skbuff[i] = NULL;
1265 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1266 if (yellowfin_debug > 0) {
1267 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1268 dev->name, bogus_rx);
1275 /* Set or clear the multicast filter for this adaptor. */
1277 static void set_rx_mode(struct net_device *dev)
1279 struct yellowfin_private *yp = netdev_priv(dev);
1280 void __iomem *ioaddr = yp->base;
1281 u16 cfg_value = ioread16(ioaddr + Cnfg);
1283 /* Stop the Rx process to change any value. */
1284 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1285 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1286 iowrite16(0x000F, ioaddr + AddrMode);
1287 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1288 /* Too many to filter well, or accept all multicasts. */
1289 iowrite16(0x000B, ioaddr + AddrMode);
1290 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1291 struct dev_mc_list *mclist;
1294 memset(hash_table, 0, sizeof(hash_table));
1295 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1296 i++, mclist = mclist->next) {
1299 /* Due to a bug in the early chip versions, multiple filter
1300 slots must be set for each address. */
1301 if (yp->drv_flags & HasMulticastBug) {
1302 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1303 hash_table[bit >> 4] |= (1 << bit);
1304 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1305 hash_table[bit >> 4] |= (1 << bit);
1306 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1307 hash_table[bit >> 4] |= (1 << bit);
1309 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1310 hash_table[bit >> 4] |= (1 << bit);
1312 /* Copy the hash table to the chip. */
1313 for (i = 0; i < 4; i++)
1314 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1315 iowrite16(0x0003, ioaddr + AddrMode);
1316 } else { /* Normal, unicast/broadcast-only mode. */
1317 iowrite16(0x0001, ioaddr + AddrMode);
1319 /* Restart the Rx process. */
1320 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1323 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1325 struct yellowfin_private *np = netdev_priv(dev);
1326 strcpy(info->driver, DRV_NAME);
1327 strcpy(info->version, DRV_VERSION);
1328 strcpy(info->bus_info, pci_name(np->pci_dev));
1331 static const struct ethtool_ops ethtool_ops = {
1332 .get_drvinfo = yellowfin_get_drvinfo
1335 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1337 struct yellowfin_private *np = netdev_priv(dev);
1338 void __iomem *ioaddr = np->base;
1339 struct mii_ioctl_data *data = if_mii(rq);
1342 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1343 data->phy_id = np->phys[0] & 0x1f;
1346 case SIOCGMIIREG: /* Read MII PHY register. */
1347 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1350 case SIOCSMIIREG: /* Write MII PHY register. */
1351 if (!capable(CAP_NET_ADMIN))
1353 if (data->phy_id == np->phys[0]) {
1354 u16 value = data->val_in;
1355 switch (data->reg_num) {
1357 /* Check for autonegotiation on or reset. */
1358 np->medialock = (value & 0x9000) ? 0 : 1;
1360 np->full_duplex = (value & 0x0100) ? 1 : 0;
1362 case 4: np->advertising = value; break;
1364 /* Perhaps check_duplex(dev), depending on chip semantics. */
1366 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1374 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1376 struct net_device *dev = pci_get_drvdata(pdev);
1377 struct yellowfin_private *np;
1380 np = netdev_priv(dev);
1382 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1384 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1385 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1386 unregister_netdev (dev);
1388 pci_iounmap(pdev, np->base);
1390 pci_release_regions (pdev);
1393 pci_set_drvdata(pdev, NULL);
1397 static struct pci_driver yellowfin_driver = {
1399 .id_table = yellowfin_pci_tbl,
1400 .probe = yellowfin_init_one,
1401 .remove = __devexit_p(yellowfin_remove_one),
1405 static int __init yellowfin_init (void)
1407 /* when a module, this is printed whether or not devices are found in probe */
1411 return pci_register_driver(&yellowfin_driver);
1415 static void __exit yellowfin_cleanup (void)
1417 pci_unregister_driver (&yellowfin_driver);
1421 module_init(yellowfin_init);
1422 module_exit(yellowfin_cleanup);
1426 * compile-command: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c yellowfin.c"
1427 * compile-command-alphaLX: "gcc -DMODULE -Wall -Wstrict-prototypes -O2 -c yellowfin.c -fomit-frame-pointer -fno-strength-reduce -mno-fp-regs -Wa,-m21164a -DBWX_USABLE -DBWIO_ENABLED"
1428 * simple-compile-command: "gcc -DMODULE -O6 -c yellowfin.c"