V4L/DVB (12118): pvrusb2: Fix hardware scaling when used with cx25840
[linux-2.6] / drivers / firewire / core-iso.c
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/spinlock.h>
30 #include <linux/vmalloc.h>
31
32 #include <asm/byteorder.h>
33
34 #include "core.h"
35
36 /*
37  * Isochronous DMA context management
38  */
39
40 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
41                        int page_count, enum dma_data_direction direction)
42 {
43         int i, j;
44         dma_addr_t address;
45
46         buffer->page_count = page_count;
47         buffer->direction = direction;
48
49         buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
50                                 GFP_KERNEL);
51         if (buffer->pages == NULL)
52                 goto out;
53
54         for (i = 0; i < buffer->page_count; i++) {
55                 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
56                 if (buffer->pages[i] == NULL)
57                         goto out_pages;
58
59                 address = dma_map_page(card->device, buffer->pages[i],
60                                        0, PAGE_SIZE, direction);
61                 if (dma_mapping_error(card->device, address)) {
62                         __free_page(buffer->pages[i]);
63                         goto out_pages;
64                 }
65                 set_page_private(buffer->pages[i], address);
66         }
67
68         return 0;
69
70  out_pages:
71         for (j = 0; j < i; j++) {
72                 address = page_private(buffer->pages[j]);
73                 dma_unmap_page(card->device, address,
74                                PAGE_SIZE, direction);
75                 __free_page(buffer->pages[j]);
76         }
77         kfree(buffer->pages);
78  out:
79         buffer->pages = NULL;
80
81         return -ENOMEM;
82 }
83 EXPORT_SYMBOL(fw_iso_buffer_init);
84
85 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
86 {
87         unsigned long uaddr;
88         int i, err;
89
90         uaddr = vma->vm_start;
91         for (i = 0; i < buffer->page_count; i++) {
92                 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
93                 if (err)
94                         return err;
95
96                 uaddr += PAGE_SIZE;
97         }
98
99         return 0;
100 }
101
102 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
103                            struct fw_card *card)
104 {
105         int i;
106         dma_addr_t address;
107
108         for (i = 0; i < buffer->page_count; i++) {
109                 address = page_private(buffer->pages[i]);
110                 dma_unmap_page(card->device, address,
111                                PAGE_SIZE, buffer->direction);
112                 __free_page(buffer->pages[i]);
113         }
114
115         kfree(buffer->pages);
116         buffer->pages = NULL;
117 }
118 EXPORT_SYMBOL(fw_iso_buffer_destroy);
119
120 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
121                 int type, int channel, int speed, size_t header_size,
122                 fw_iso_callback_t callback, void *callback_data)
123 {
124         struct fw_iso_context *ctx;
125
126         ctx = card->driver->allocate_iso_context(card,
127                                                  type, channel, header_size);
128         if (IS_ERR(ctx))
129                 return ctx;
130
131         ctx->card = card;
132         ctx->type = type;
133         ctx->channel = channel;
134         ctx->speed = speed;
135         ctx->header_size = header_size;
136         ctx->callback = callback;
137         ctx->callback_data = callback_data;
138
139         return ctx;
140 }
141 EXPORT_SYMBOL(fw_iso_context_create);
142
143 void fw_iso_context_destroy(struct fw_iso_context *ctx)
144 {
145         struct fw_card *card = ctx->card;
146
147         card->driver->free_iso_context(ctx);
148 }
149 EXPORT_SYMBOL(fw_iso_context_destroy);
150
151 int fw_iso_context_start(struct fw_iso_context *ctx,
152                          int cycle, int sync, int tags)
153 {
154         return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
155 }
156 EXPORT_SYMBOL(fw_iso_context_start);
157
158 int fw_iso_context_queue(struct fw_iso_context *ctx,
159                          struct fw_iso_packet *packet,
160                          struct fw_iso_buffer *buffer,
161                          unsigned long payload)
162 {
163         struct fw_card *card = ctx->card;
164
165         return card->driver->queue_iso(ctx, packet, buffer, payload);
166 }
167 EXPORT_SYMBOL(fw_iso_context_queue);
168
169 int fw_iso_context_stop(struct fw_iso_context *ctx)
170 {
171         return ctx->card->driver->stop_iso(ctx);
172 }
173 EXPORT_SYMBOL(fw_iso_context_stop);
174
175 /*
176  * Isochronous bus resource management (channels, bandwidth), client side
177  */
178
179 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
180                             int bandwidth, bool allocate)
181 {
182         __be32 data[2];
183         int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
184
185         /*
186          * On a 1394a IRM with low contention, try < 1 is enough.
187          * On a 1394-1995 IRM, we need at least try < 2.
188          * Let's just do try < 5.
189          */
190         for (try = 0; try < 5; try++) {
191                 new = allocate ? old - bandwidth : old + bandwidth;
192                 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
193                         break;
194
195                 data[0] = cpu_to_be32(old);
196                 data[1] = cpu_to_be32(new);
197                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
198                                 irm_id, generation, SCODE_100,
199                                 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
200                                 data, sizeof(data))) {
201                 case RCODE_GENERATION:
202                         /* A generation change frees all bandwidth. */
203                         return allocate ? -EAGAIN : bandwidth;
204
205                 case RCODE_COMPLETE:
206                         if (be32_to_cpup(data) == old)
207                                 return bandwidth;
208
209                         old = be32_to_cpup(data);
210                         /* Fall through. */
211                 }
212         }
213
214         return -EIO;
215 }
216
217 static int manage_channel(struct fw_card *card, int irm_id, int generation,
218                           u32 channels_mask, u64 offset, bool allocate)
219 {
220         __be32 data[2], c, all, old;
221         int i, retry = 5;
222
223         old = all = allocate ? cpu_to_be32(~0) : 0;
224
225         for (i = 0; i < 32; i++) {
226                 if (!(channels_mask & 1 << i))
227                         continue;
228
229                 c = cpu_to_be32(1 << (31 - i));
230                 if ((old & c) != (all & c))
231                         continue;
232
233                 data[0] = old;
234                 data[1] = old ^ c;
235                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
236                                            irm_id, generation, SCODE_100,
237                                            offset, data, sizeof(data))) {
238                 case RCODE_GENERATION:
239                         /* A generation change frees all channels. */
240                         return allocate ? -EAGAIN : i;
241
242                 case RCODE_COMPLETE:
243                         if (data[0] == old)
244                                 return i;
245
246                         old = data[0];
247
248                         /* Is the IRM 1394a-2000 compliant? */
249                         if ((data[0] & c) == (data[1] & c))
250                                 continue;
251
252                         /* 1394-1995 IRM, fall through to retry. */
253                 default:
254                         if (retry--)
255                                 i--;
256                 }
257         }
258
259         return -EIO;
260 }
261
262 static void deallocate_channel(struct fw_card *card, int irm_id,
263                                int generation, int channel)
264 {
265         u32 mask;
266         u64 offset;
267
268         mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
269         offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
270                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
271
272         manage_channel(card, irm_id, generation, mask, offset, false);
273 }
274
275 /**
276  * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
277  *
278  * In parameters: card, generation, channels_mask, bandwidth, allocate
279  * Out parameters: channel, bandwidth
280  * This function blocks (sleeps) during communication with the IRM.
281  *
282  * Allocates or deallocates at most one channel out of channels_mask.
283  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
284  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
285  * channel 0 and LSB for channel 63.)
286  * Allocates or deallocates as many bandwidth allocation units as specified.
287  *
288  * Returns channel < 0 if no channel was allocated or deallocated.
289  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
290  *
291  * If generation is stale, deallocations succeed but allocations fail with
292  * channel = -EAGAIN.
293  *
294  * If channel allocation fails, no bandwidth will be allocated either.
295  * If bandwidth allocation fails, no channel will be allocated either.
296  * But deallocations of channel and bandwidth are tried independently
297  * of each other's success.
298  */
299 void fw_iso_resource_manage(struct fw_card *card, int generation,
300                             u64 channels_mask, int *channel, int *bandwidth,
301                             bool allocate)
302 {
303         u32 channels_hi = channels_mask;        /* channels 31...0 */
304         u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
305         int irm_id, ret, c = -EINVAL;
306
307         spin_lock_irq(&card->lock);
308         irm_id = card->irm_node->node_id;
309         spin_unlock_irq(&card->lock);
310
311         if (channels_hi)
312                 c = manage_channel(card, irm_id, generation, channels_hi,
313                     CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, allocate);
314         if (channels_lo && c < 0) {
315                 c = manage_channel(card, irm_id, generation, channels_lo,
316                     CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, allocate);
317                 if (c >= 0)
318                         c += 32;
319         }
320         *channel = c;
321
322         if (allocate && channels_mask != 0 && c < 0)
323                 *bandwidth = 0;
324
325         if (*bandwidth == 0)
326                 return;
327
328         ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
329         if (ret < 0)
330                 *bandwidth = 0;
331
332         if (allocate && ret < 0 && c >= 0) {
333                 deallocate_channel(card, irm_id, generation, c);
334                 *channel = ret;
335         }
336 }