2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation, version 2.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
54 #include "conditional.h"
62 extern void selnl_notify_policyload(u32 seqno);
63 unsigned int policydb_loaded_version;
65 int selinux_policycap_netpeer;
66 int selinux_policycap_openperm;
69 * This is declared in avc.c
71 extern const struct selinux_class_perm selinux_class_perm;
73 static DEFINE_RWLOCK(policy_rwlock);
75 static struct sidtab sidtab;
76 struct policydb policydb;
80 * The largest sequence number that has been used when
81 * providing an access decision to the access vector cache.
82 * The sequence number only changes when a policy change
85 static u32 latest_granting;
87 /* Forward declaration. */
88 static int context_struct_to_string(struct context *context, char **scontext,
92 * Return the boolean value of a constraint expression
93 * when it is applied to the specified source and target
96 * xcontext is a special beast... It is used by the validatetrans rules
97 * only. For these rules, scontext is the context before the transition,
98 * tcontext is the context after the transition, and xcontext is the context
99 * of the process performing the transition. All other callers of
100 * constraint_expr_eval should pass in NULL for xcontext.
102 static int constraint_expr_eval(struct context *scontext,
103 struct context *tcontext,
104 struct context *xcontext,
105 struct constraint_expr *cexpr)
109 struct role_datum *r1, *r2;
110 struct mls_level *l1, *l2;
111 struct constraint_expr *e;
112 int s[CEXPR_MAXDEPTH];
115 for (e = cexpr; e; e = e->next) {
116 switch (e->expr_type) {
132 if (sp == (CEXPR_MAXDEPTH-1))
136 val1 = scontext->user;
137 val2 = tcontext->user;
140 val1 = scontext->type;
141 val2 = tcontext->type;
144 val1 = scontext->role;
145 val2 = tcontext->role;
146 r1 = policydb.role_val_to_struct[val1 - 1];
147 r2 = policydb.role_val_to_struct[val2 - 1];
150 s[++sp] = ebitmap_get_bit(&r1->dominates,
154 s[++sp] = ebitmap_get_bit(&r2->dominates,
158 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
160 !ebitmap_get_bit(&r2->dominates,
168 l1 = &(scontext->range.level[0]);
169 l2 = &(tcontext->range.level[0]);
172 l1 = &(scontext->range.level[0]);
173 l2 = &(tcontext->range.level[1]);
176 l1 = &(scontext->range.level[1]);
177 l2 = &(tcontext->range.level[0]);
180 l1 = &(scontext->range.level[1]);
181 l2 = &(tcontext->range.level[1]);
184 l1 = &(scontext->range.level[0]);
185 l2 = &(scontext->range.level[1]);
188 l1 = &(tcontext->range.level[0]);
189 l2 = &(tcontext->range.level[1]);
194 s[++sp] = mls_level_eq(l1, l2);
197 s[++sp] = !mls_level_eq(l1, l2);
200 s[++sp] = mls_level_dom(l1, l2);
203 s[++sp] = mls_level_dom(l2, l1);
206 s[++sp] = mls_level_incomp(l2, l1);
220 s[++sp] = (val1 == val2);
223 s[++sp] = (val1 != val2);
231 if (sp == (CEXPR_MAXDEPTH-1))
234 if (e->attr & CEXPR_TARGET)
236 else if (e->attr & CEXPR_XTARGET) {
243 if (e->attr & CEXPR_USER)
245 else if (e->attr & CEXPR_ROLE)
247 else if (e->attr & CEXPR_TYPE)
256 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
259 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
277 * Compute access vectors based on a context structure pair for
278 * the permissions in a particular class.
280 static int context_struct_compute_av(struct context *scontext,
281 struct context *tcontext,
284 struct av_decision *avd)
286 struct constraint_node *constraint;
287 struct role_allow *ra;
288 struct avtab_key avkey;
289 struct avtab_node *node;
290 struct class_datum *tclass_datum;
291 struct ebitmap *sattr, *tattr;
292 struct ebitmap_node *snode, *tnode;
293 const struct selinux_class_perm *kdefs = &selinux_class_perm;
297 * Remap extended Netlink classes for old policy versions.
298 * Do this here rather than socket_type_to_security_class()
299 * in case a newer policy version is loaded, allowing sockets
300 * to remain in the correct class.
302 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
303 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
304 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
305 tclass = SECCLASS_NETLINK_SOCKET;
308 * Initialize the access vectors to the default values.
311 avd->decided = 0xffffffff;
313 avd->auditdeny = 0xffffffff;
314 avd->seqno = latest_granting;
317 * Check for all the invalid cases.
319 * - tclass > policy and > kernel
320 * - tclass > policy but is a userspace class
321 * - tclass > policy but we do not allow unknowns
323 if (unlikely(!tclass))
325 if (unlikely(tclass > policydb.p_classes.nprim))
326 if (tclass > kdefs->cts_len ||
327 !kdefs->class_to_string[tclass] ||
328 !policydb.allow_unknown)
332 * Kernel class and we allow unknown so pad the allow decision
333 * the pad will be all 1 for unknown classes.
335 if (tclass <= kdefs->cts_len && policydb.allow_unknown)
336 avd->allowed = policydb.undefined_perms[tclass - 1];
339 * Not in policy. Since decision is completed (all 1 or all 0) return.
341 if (unlikely(tclass > policydb.p_classes.nprim))
344 tclass_datum = policydb.class_val_to_struct[tclass - 1];
347 * If a specific type enforcement rule was defined for
348 * this permission check, then use it.
350 avkey.target_class = tclass;
351 avkey.specified = AVTAB_AV;
352 sattr = &policydb.type_attr_map[scontext->type - 1];
353 tattr = &policydb.type_attr_map[tcontext->type - 1];
354 ebitmap_for_each_positive_bit(sattr, snode, i) {
355 ebitmap_for_each_positive_bit(tattr, tnode, j) {
356 avkey.source_type = i + 1;
357 avkey.target_type = j + 1;
358 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
360 node = avtab_search_node_next(node, avkey.specified)) {
361 if (node->key.specified == AVTAB_ALLOWED)
362 avd->allowed |= node->datum.data;
363 else if (node->key.specified == AVTAB_AUDITALLOW)
364 avd->auditallow |= node->datum.data;
365 else if (node->key.specified == AVTAB_AUDITDENY)
366 avd->auditdeny &= node->datum.data;
369 /* Check conditional av table for additional permissions */
370 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
376 * Remove any permissions prohibited by a constraint (this includes
379 constraint = tclass_datum->constraints;
381 if ((constraint->permissions & (avd->allowed)) &&
382 !constraint_expr_eval(scontext, tcontext, NULL,
384 avd->allowed = (avd->allowed) & ~(constraint->permissions);
386 constraint = constraint->next;
390 * If checking process transition permission and the
391 * role is changing, then check the (current_role, new_role)
394 if (tclass == SECCLASS_PROCESS &&
395 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
396 scontext->role != tcontext->role) {
397 for (ra = policydb.role_allow; ra; ra = ra->next) {
398 if (scontext->role == ra->role &&
399 tcontext->role == ra->new_role)
403 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
404 PROCESS__DYNTRANSITION);
410 if (!tclass || tclass > kdefs->cts_len ||
411 !kdefs->class_to_string[tclass]) {
412 if (printk_ratelimit())
413 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
419 * Known to the kernel, but not to the policy.
420 * Handle as a denial (allowed is 0).
426 * Given a sid find if the type has the permissive flag set
428 int security_permissive_sid(u32 sid)
430 struct context *context;
434 read_lock(&policy_rwlock);
436 context = sidtab_search(&sidtab, sid);
439 type = context->type;
441 * we are intentionally using type here, not type-1, the 0th bit may
442 * someday indicate that we are globally setting permissive in policy.
444 rc = ebitmap_get_bit(&policydb.permissive_map, type);
446 read_unlock(&policy_rwlock);
450 static int security_validtrans_handle_fail(struct context *ocontext,
451 struct context *ncontext,
452 struct context *tcontext,
455 char *o = NULL, *n = NULL, *t = NULL;
456 u32 olen, nlen, tlen;
458 if (context_struct_to_string(ocontext, &o, &olen) < 0)
460 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
462 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
464 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
465 "security_validate_transition: denied for"
466 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
467 o, n, t, policydb.p_class_val_to_name[tclass-1]);
473 if (!selinux_enforcing)
478 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
481 struct context *ocontext;
482 struct context *ncontext;
483 struct context *tcontext;
484 struct class_datum *tclass_datum;
485 struct constraint_node *constraint;
491 read_lock(&policy_rwlock);
494 * Remap extended Netlink classes for old policy versions.
495 * Do this here rather than socket_type_to_security_class()
496 * in case a newer policy version is loaded, allowing sockets
497 * to remain in the correct class.
499 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
500 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
501 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
502 tclass = SECCLASS_NETLINK_SOCKET;
504 if (!tclass || tclass > policydb.p_classes.nprim) {
505 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
510 tclass_datum = policydb.class_val_to_struct[tclass - 1];
512 ocontext = sidtab_search(&sidtab, oldsid);
514 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
520 ncontext = sidtab_search(&sidtab, newsid);
522 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
528 tcontext = sidtab_search(&sidtab, tasksid);
530 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
536 constraint = tclass_datum->validatetrans;
538 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
540 rc = security_validtrans_handle_fail(ocontext, ncontext,
544 constraint = constraint->next;
548 read_unlock(&policy_rwlock);
553 * security_compute_av - Compute access vector decisions.
554 * @ssid: source security identifier
555 * @tsid: target security identifier
556 * @tclass: target security class
557 * @requested: requested permissions
558 * @avd: access vector decisions
560 * Compute a set of access vector decisions based on the
561 * SID pair (@ssid, @tsid) for the permissions in @tclass.
562 * Return -%EINVAL if any of the parameters are invalid or %0
563 * if the access vector decisions were computed successfully.
565 int security_compute_av(u32 ssid,
569 struct av_decision *avd)
571 struct context *scontext = NULL, *tcontext = NULL;
574 if (!ss_initialized) {
575 avd->allowed = 0xffffffff;
576 avd->decided = 0xffffffff;
578 avd->auditdeny = 0xffffffff;
579 avd->seqno = latest_granting;
583 read_lock(&policy_rwlock);
585 scontext = sidtab_search(&sidtab, ssid);
587 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
592 tcontext = sidtab_search(&sidtab, tsid);
594 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
600 rc = context_struct_compute_av(scontext, tcontext, tclass,
603 read_unlock(&policy_rwlock);
608 * Write the security context string representation of
609 * the context structure `context' into a dynamically
610 * allocated string of the correct size. Set `*scontext'
611 * to point to this string and set `*scontext_len' to
612 * the length of the string.
614 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
622 *scontext_len = context->len;
623 *scontext = kstrdup(context->str, GFP_ATOMIC);
629 /* Compute the size of the context. */
630 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
631 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
632 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
633 *scontext_len += mls_compute_context_len(context);
635 /* Allocate space for the context; caller must free this space. */
636 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
639 *scontext = scontextp;
642 * Copy the user name, role name and type name into the context.
644 sprintf(scontextp, "%s:%s:%s",
645 policydb.p_user_val_to_name[context->user - 1],
646 policydb.p_role_val_to_name[context->role - 1],
647 policydb.p_type_val_to_name[context->type - 1]);
648 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
649 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
650 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
652 mls_sid_to_context(context, &scontextp);
659 #include "initial_sid_to_string.h"
661 const char *security_get_initial_sid_context(u32 sid)
663 if (unlikely(sid > SECINITSID_NUM))
665 return initial_sid_to_string[sid];
668 static int security_sid_to_context_core(u32 sid, char **scontext,
669 u32 *scontext_len, int force)
671 struct context *context;
677 if (!ss_initialized) {
678 if (sid <= SECINITSID_NUM) {
681 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
682 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
687 strcpy(scontextp, initial_sid_to_string[sid]);
688 *scontext = scontextp;
691 printk(KERN_ERR "SELinux: %s: called before initial "
692 "load_policy on unknown SID %d\n", __func__, sid);
696 read_lock(&policy_rwlock);
698 context = sidtab_search_force(&sidtab, sid);
700 context = sidtab_search(&sidtab, sid);
702 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
707 rc = context_struct_to_string(context, scontext, scontext_len);
709 read_unlock(&policy_rwlock);
716 * security_sid_to_context - Obtain a context for a given SID.
717 * @sid: security identifier, SID
718 * @scontext: security context
719 * @scontext_len: length in bytes
721 * Write the string representation of the context associated with @sid
722 * into a dynamically allocated string of the correct size. Set @scontext
723 * to point to this string and set @scontext_len to the length of the string.
725 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
727 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
730 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
732 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
736 * Caveat: Mutates scontext.
738 static int string_to_context_struct(struct policydb *pol,
739 struct sidtab *sidtabp,
745 struct role_datum *role;
746 struct type_datum *typdatum;
747 struct user_datum *usrdatum;
748 char *scontextp, *p, oldc;
753 /* Parse the security context. */
756 scontextp = (char *) scontext;
758 /* Extract the user. */
760 while (*p && *p != ':')
768 usrdatum = hashtab_search(pol->p_users.table, scontextp);
772 ctx->user = usrdatum->value;
776 while (*p && *p != ':')
784 role = hashtab_search(pol->p_roles.table, scontextp);
787 ctx->role = role->value;
791 while (*p && *p != ':')
796 typdatum = hashtab_search(pol->p_types.table, scontextp);
800 ctx->type = typdatum->value;
802 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
806 if ((p - scontext) < scontext_len) {
811 /* Check the validity of the new context. */
812 if (!policydb_context_isvalid(pol, ctx)) {
814 context_destroy(ctx);
822 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
823 u32 *sid, u32 def_sid, gfp_t gfp_flags,
826 char *scontext2, *str = NULL;
827 struct context context;
830 if (!ss_initialized) {
833 for (i = 1; i < SECINITSID_NUM; i++) {
834 if (!strcmp(initial_sid_to_string[i], scontext)) {
839 *sid = SECINITSID_KERNEL;
844 /* Copy the string so that we can modify the copy as we parse it. */
845 scontext2 = kmalloc(scontext_len+1, gfp_flags);
848 memcpy(scontext2, scontext, scontext_len);
849 scontext2[scontext_len] = 0;
852 /* Save another copy for storing in uninterpreted form */
853 str = kstrdup(scontext2, gfp_flags);
860 read_lock(&policy_rwlock);
861 rc = string_to_context_struct(&policydb, &sidtab,
862 scontext2, scontext_len,
864 if (rc == -EINVAL && force) {
866 context.len = scontext_len;
870 rc = sidtab_context_to_sid(&sidtab, &context, sid);
872 context_destroy(&context);
874 read_unlock(&policy_rwlock);
881 * security_context_to_sid - Obtain a SID for a given security context.
882 * @scontext: security context
883 * @scontext_len: length in bytes
884 * @sid: security identifier, SID
886 * Obtains a SID associated with the security context that
887 * has the string representation specified by @scontext.
888 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
889 * memory is available, or 0 on success.
891 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
893 return security_context_to_sid_core(scontext, scontext_len,
894 sid, SECSID_NULL, GFP_KERNEL, 0);
898 * security_context_to_sid_default - Obtain a SID for a given security context,
899 * falling back to specified default if needed.
901 * @scontext: security context
902 * @scontext_len: length in bytes
903 * @sid: security identifier, SID
904 * @def_sid: default SID to assign on error
906 * Obtains a SID associated with the security context that
907 * has the string representation specified by @scontext.
908 * The default SID is passed to the MLS layer to be used to allow
909 * kernel labeling of the MLS field if the MLS field is not present
910 * (for upgrading to MLS without full relabel).
911 * Implicitly forces adding of the context even if it cannot be mapped yet.
912 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
913 * memory is available, or 0 on success.
915 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
916 u32 *sid, u32 def_sid, gfp_t gfp_flags)
918 return security_context_to_sid_core(scontext, scontext_len,
919 sid, def_sid, gfp_flags, 1);
922 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
925 return security_context_to_sid_core(scontext, scontext_len,
926 sid, SECSID_NULL, GFP_KERNEL, 1);
929 static int compute_sid_handle_invalid_context(
930 struct context *scontext,
931 struct context *tcontext,
933 struct context *newcontext)
935 char *s = NULL, *t = NULL, *n = NULL;
936 u32 slen, tlen, nlen;
938 if (context_struct_to_string(scontext, &s, &slen) < 0)
940 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
942 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
944 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
945 "security_compute_sid: invalid context %s"
949 n, s, t, policydb.p_class_val_to_name[tclass-1]);
954 if (!selinux_enforcing)
959 static int security_compute_sid(u32 ssid,
965 struct context *scontext = NULL, *tcontext = NULL, newcontext;
966 struct role_trans *roletr = NULL;
967 struct avtab_key avkey;
968 struct avtab_datum *avdatum;
969 struct avtab_node *node;
972 if (!ss_initialized) {
974 case SECCLASS_PROCESS:
984 context_init(&newcontext);
986 read_lock(&policy_rwlock);
988 scontext = sidtab_search(&sidtab, ssid);
990 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
995 tcontext = sidtab_search(&sidtab, tsid);
997 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1003 /* Set the user identity. */
1004 switch (specified) {
1005 case AVTAB_TRANSITION:
1007 /* Use the process user identity. */
1008 newcontext.user = scontext->user;
1011 /* Use the related object owner. */
1012 newcontext.user = tcontext->user;
1016 /* Set the role and type to default values. */
1018 case SECCLASS_PROCESS:
1019 /* Use the current role and type of process. */
1020 newcontext.role = scontext->role;
1021 newcontext.type = scontext->type;
1024 /* Use the well-defined object role. */
1025 newcontext.role = OBJECT_R_VAL;
1026 /* Use the type of the related object. */
1027 newcontext.type = tcontext->type;
1030 /* Look for a type transition/member/change rule. */
1031 avkey.source_type = scontext->type;
1032 avkey.target_type = tcontext->type;
1033 avkey.target_class = tclass;
1034 avkey.specified = specified;
1035 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1037 /* If no permanent rule, also check for enabled conditional rules */
1039 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1040 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
1041 if (node->key.specified & AVTAB_ENABLED) {
1042 avdatum = &node->datum;
1049 /* Use the type from the type transition/member/change rule. */
1050 newcontext.type = avdatum->data;
1053 /* Check for class-specific changes. */
1055 case SECCLASS_PROCESS:
1056 if (specified & AVTAB_TRANSITION) {
1057 /* Look for a role transition rule. */
1058 for (roletr = policydb.role_tr; roletr;
1059 roletr = roletr->next) {
1060 if (roletr->role == scontext->role &&
1061 roletr->type == tcontext->type) {
1062 /* Use the role transition rule. */
1063 newcontext.role = roletr->new_role;
1073 /* Set the MLS attributes.
1074 This is done last because it may allocate memory. */
1075 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1079 /* Check the validity of the context. */
1080 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1081 rc = compute_sid_handle_invalid_context(scontext,
1088 /* Obtain the sid for the context. */
1089 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1091 read_unlock(&policy_rwlock);
1092 context_destroy(&newcontext);
1098 * security_transition_sid - Compute the SID for a new subject/object.
1099 * @ssid: source security identifier
1100 * @tsid: target security identifier
1101 * @tclass: target security class
1102 * @out_sid: security identifier for new subject/object
1104 * Compute a SID to use for labeling a new subject or object in the
1105 * class @tclass based on a SID pair (@ssid, @tsid).
1106 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1107 * if insufficient memory is available, or %0 if the new SID was
1108 * computed successfully.
1110 int security_transition_sid(u32 ssid,
1115 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1119 * security_member_sid - Compute the SID for member selection.
1120 * @ssid: source security identifier
1121 * @tsid: target security identifier
1122 * @tclass: target security class
1123 * @out_sid: security identifier for selected member
1125 * Compute a SID to use when selecting a member of a polyinstantiated
1126 * object of class @tclass based on a SID pair (@ssid, @tsid).
1127 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1128 * if insufficient memory is available, or %0 if the SID was
1129 * computed successfully.
1131 int security_member_sid(u32 ssid,
1136 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1140 * security_change_sid - Compute the SID for object relabeling.
1141 * @ssid: source security identifier
1142 * @tsid: target security identifier
1143 * @tclass: target security class
1144 * @out_sid: security identifier for selected member
1146 * Compute a SID to use for relabeling an object of class @tclass
1147 * based on a SID pair (@ssid, @tsid).
1148 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1149 * if insufficient memory is available, or %0 if the SID was
1150 * computed successfully.
1152 int security_change_sid(u32 ssid,
1157 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1161 * Verify that each kernel class that is defined in the
1164 static int validate_classes(struct policydb *p)
1167 struct class_datum *cladatum;
1168 struct perm_datum *perdatum;
1169 u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1171 const struct selinux_class_perm *kdefs = &selinux_class_perm;
1172 const char *def_class, *def_perm, *pol_class;
1173 struct symtab *perms;
1174 bool print_unknown_handle = 0;
1176 if (p->allow_unknown) {
1177 u32 num_classes = kdefs->cts_len;
1178 p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1179 if (!p->undefined_perms)
1183 for (i = 1; i < kdefs->cts_len; i++) {
1184 def_class = kdefs->class_to_string[i];
1187 if (i > p->p_classes.nprim) {
1189 "SELinux: class %s not defined in policy\n",
1191 if (p->reject_unknown)
1193 if (p->allow_unknown)
1194 p->undefined_perms[i-1] = ~0U;
1195 print_unknown_handle = 1;
1198 pol_class = p->p_class_val_to_name[i-1];
1199 if (strcmp(pol_class, def_class)) {
1201 "SELinux: class %d is incorrect, found %s but should be %s\n",
1202 i, pol_class, def_class);
1206 for (i = 0; i < kdefs->av_pts_len; i++) {
1207 class_val = kdefs->av_perm_to_string[i].tclass;
1208 perm_val = kdefs->av_perm_to_string[i].value;
1209 def_perm = kdefs->av_perm_to_string[i].name;
1210 if (class_val > p->p_classes.nprim)
1212 pol_class = p->p_class_val_to_name[class_val-1];
1213 cladatum = hashtab_search(p->p_classes.table, pol_class);
1215 perms = &cladatum->permissions;
1216 nprim = 1 << (perms->nprim - 1);
1217 if (perm_val > nprim) {
1219 "SELinux: permission %s in class %s not defined in policy\n",
1220 def_perm, pol_class);
1221 if (p->reject_unknown)
1223 if (p->allow_unknown)
1224 p->undefined_perms[class_val-1] |= perm_val;
1225 print_unknown_handle = 1;
1228 perdatum = hashtab_search(perms->table, def_perm);
1229 if (perdatum == NULL) {
1231 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1232 def_perm, pol_class);
1235 pol_val = 1 << (perdatum->value - 1);
1236 if (pol_val != perm_val) {
1238 "SELinux: permission %s in class %s has incorrect value\n",
1239 def_perm, pol_class);
1243 for (i = 0; i < kdefs->av_inherit_len; i++) {
1244 class_val = kdefs->av_inherit[i].tclass;
1245 if (class_val > p->p_classes.nprim)
1247 pol_class = p->p_class_val_to_name[class_val-1];
1248 cladatum = hashtab_search(p->p_classes.table, pol_class);
1250 if (!cladatum->comdatum) {
1252 "SELinux: class %s should have an inherits clause but does not\n",
1256 tmp = kdefs->av_inherit[i].common_base;
1258 while (!(tmp & 0x01)) {
1262 perms = &cladatum->comdatum->permissions;
1263 for (j = 0; j < common_pts_len; j++) {
1264 def_perm = kdefs->av_inherit[i].common_pts[j];
1265 if (j >= perms->nprim) {
1267 "SELinux: permission %s in class %s not defined in policy\n",
1268 def_perm, pol_class);
1269 if (p->reject_unknown)
1271 if (p->allow_unknown)
1272 p->undefined_perms[class_val-1] |= (1 << j);
1273 print_unknown_handle = 1;
1276 perdatum = hashtab_search(perms->table, def_perm);
1277 if (perdatum == NULL) {
1279 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1280 def_perm, pol_class);
1283 if (perdatum->value != j + 1) {
1285 "SELinux: permission %s in class %s has incorrect value\n",
1286 def_perm, pol_class);
1291 if (print_unknown_handle)
1292 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1293 (security_get_allow_unknown() ? "allowed" : "denied"));
1297 /* Clone the SID into the new SID table. */
1298 static int clone_sid(u32 sid,
1299 struct context *context,
1302 struct sidtab *s = arg;
1304 return sidtab_insert(s, sid, context);
1307 static inline int convert_context_handle_invalid_context(struct context *context)
1311 if (selinux_enforcing) {
1317 if (!context_struct_to_string(context, &s, &len)) {
1319 "SELinux: Context %s would be invalid if enforcing\n",
1327 struct convert_context_args {
1328 struct policydb *oldp;
1329 struct policydb *newp;
1333 * Convert the values in the security context
1334 * structure `c' from the values specified
1335 * in the policy `p->oldp' to the values specified
1336 * in the policy `p->newp'. Verify that the
1337 * context is valid under the new policy.
1339 static int convert_context(u32 key,
1343 struct convert_context_args *args;
1344 struct context oldc;
1345 struct role_datum *role;
1346 struct type_datum *typdatum;
1347 struct user_datum *usrdatum;
1356 s = kstrdup(c->str, GFP_KERNEL);
1361 rc = string_to_context_struct(args->newp, NULL, s,
1362 c->len, &ctx, SECSID_NULL);
1366 "SELinux: Context %s became valid (mapped).\n",
1368 /* Replace string with mapped representation. */
1370 memcpy(c, &ctx, sizeof(*c));
1372 } else if (rc == -EINVAL) {
1373 /* Retain string representation for later mapping. */
1377 /* Other error condition, e.g. ENOMEM. */
1379 "SELinux: Unable to map context %s, rc = %d.\n",
1385 rc = context_cpy(&oldc, c);
1391 /* Convert the user. */
1392 usrdatum = hashtab_search(args->newp->p_users.table,
1393 args->oldp->p_user_val_to_name[c->user - 1]);
1396 c->user = usrdatum->value;
1398 /* Convert the role. */
1399 role = hashtab_search(args->newp->p_roles.table,
1400 args->oldp->p_role_val_to_name[c->role - 1]);
1403 c->role = role->value;
1405 /* Convert the type. */
1406 typdatum = hashtab_search(args->newp->p_types.table,
1407 args->oldp->p_type_val_to_name[c->type - 1]);
1410 c->type = typdatum->value;
1412 rc = mls_convert_context(args->oldp, args->newp, c);
1416 /* Check the validity of the new context. */
1417 if (!policydb_context_isvalid(args->newp, c)) {
1418 rc = convert_context_handle_invalid_context(&oldc);
1423 context_destroy(&oldc);
1428 /* Map old representation to string and save it. */
1429 if (context_struct_to_string(&oldc, &s, &len))
1431 context_destroy(&oldc);
1436 "SELinux: Context %s became invalid (unmapped).\n",
1442 static void security_load_policycaps(void)
1444 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1445 POLICYDB_CAPABILITY_NETPEER);
1446 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1447 POLICYDB_CAPABILITY_OPENPERM);
1450 extern void selinux_complete_init(void);
1451 static int security_preserve_bools(struct policydb *p);
1454 * security_load_policy - Load a security policy configuration.
1455 * @data: binary policy data
1456 * @len: length of data in bytes
1458 * Load a new set of security policy configuration data,
1459 * validate it and convert the SID table as necessary.
1460 * This function will flush the access vector cache after
1461 * loading the new policy.
1463 int security_load_policy(void *data, size_t len)
1465 struct policydb oldpolicydb, newpolicydb;
1466 struct sidtab oldsidtab, newsidtab;
1467 struct convert_context_args args;
1470 struct policy_file file = { data, len }, *fp = &file;
1472 if (!ss_initialized) {
1474 if (policydb_read(&policydb, fp)) {
1475 avtab_cache_destroy();
1478 if (policydb_load_isids(&policydb, &sidtab)) {
1479 policydb_destroy(&policydb);
1480 avtab_cache_destroy();
1483 /* Verify that the kernel defined classes are correct. */
1484 if (validate_classes(&policydb)) {
1486 "SELinux: the definition of a class is incorrect\n");
1487 sidtab_destroy(&sidtab);
1488 policydb_destroy(&policydb);
1489 avtab_cache_destroy();
1492 security_load_policycaps();
1493 policydb_loaded_version = policydb.policyvers;
1495 seqno = ++latest_granting;
1496 selinux_complete_init();
1497 avc_ss_reset(seqno);
1498 selnl_notify_policyload(seqno);
1499 selinux_netlbl_cache_invalidate();
1500 selinux_xfrm_notify_policyload();
1505 sidtab_hash_eval(&sidtab, "sids");
1508 if (policydb_read(&newpolicydb, fp))
1511 if (sidtab_init(&newsidtab)) {
1512 policydb_destroy(&newpolicydb);
1516 /* Verify that the kernel defined classes are correct. */
1517 if (validate_classes(&newpolicydb)) {
1519 "SELinux: the definition of a class is incorrect\n");
1524 rc = security_preserve_bools(&newpolicydb);
1526 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
1530 /* Clone the SID table. */
1531 sidtab_shutdown(&sidtab);
1532 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1538 * Convert the internal representations of contexts
1539 * in the new SID table.
1541 args.oldp = &policydb;
1542 args.newp = &newpolicydb;
1543 rc = sidtab_map(&newsidtab, convert_context, &args);
1547 /* Save the old policydb and SID table to free later. */
1548 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1549 sidtab_set(&oldsidtab, &sidtab);
1551 /* Install the new policydb and SID table. */
1552 write_lock_irq(&policy_rwlock);
1553 memcpy(&policydb, &newpolicydb, sizeof policydb);
1554 sidtab_set(&sidtab, &newsidtab);
1555 security_load_policycaps();
1556 seqno = ++latest_granting;
1557 policydb_loaded_version = policydb.policyvers;
1558 write_unlock_irq(&policy_rwlock);
1560 /* Free the old policydb and SID table. */
1561 policydb_destroy(&oldpolicydb);
1562 sidtab_destroy(&oldsidtab);
1564 avc_ss_reset(seqno);
1565 selnl_notify_policyload(seqno);
1566 selinux_netlbl_cache_invalidate();
1567 selinux_xfrm_notify_policyload();
1572 sidtab_destroy(&newsidtab);
1573 policydb_destroy(&newpolicydb);
1579 * security_port_sid - Obtain the SID for a port.
1580 * @protocol: protocol number
1581 * @port: port number
1582 * @out_sid: security identifier
1584 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1589 read_lock(&policy_rwlock);
1591 c = policydb.ocontexts[OCON_PORT];
1593 if (c->u.port.protocol == protocol &&
1594 c->u.port.low_port <= port &&
1595 c->u.port.high_port >= port)
1602 rc = sidtab_context_to_sid(&sidtab,
1608 *out_sid = c->sid[0];
1610 *out_sid = SECINITSID_PORT;
1614 read_unlock(&policy_rwlock);
1619 * security_netif_sid - Obtain the SID for a network interface.
1620 * @name: interface name
1621 * @if_sid: interface SID
1623 int security_netif_sid(char *name, u32 *if_sid)
1628 read_lock(&policy_rwlock);
1630 c = policydb.ocontexts[OCON_NETIF];
1632 if (strcmp(name, c->u.name) == 0)
1638 if (!c->sid[0] || !c->sid[1]) {
1639 rc = sidtab_context_to_sid(&sidtab,
1644 rc = sidtab_context_to_sid(&sidtab,
1650 *if_sid = c->sid[0];
1652 *if_sid = SECINITSID_NETIF;
1655 read_unlock(&policy_rwlock);
1659 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1663 for (i = 0; i < 4; i++)
1664 if (addr[i] != (input[i] & mask[i])) {
1673 * security_node_sid - Obtain the SID for a node (host).
1674 * @domain: communication domain aka address family
1676 * @addrlen: address length in bytes
1677 * @out_sid: security identifier
1679 int security_node_sid(u16 domain,
1687 read_lock(&policy_rwlock);
1693 if (addrlen != sizeof(u32)) {
1698 addr = *((u32 *)addrp);
1700 c = policydb.ocontexts[OCON_NODE];
1702 if (c->u.node.addr == (addr & c->u.node.mask))
1710 if (addrlen != sizeof(u64) * 2) {
1714 c = policydb.ocontexts[OCON_NODE6];
1716 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1724 *out_sid = SECINITSID_NODE;
1730 rc = sidtab_context_to_sid(&sidtab,
1736 *out_sid = c->sid[0];
1738 *out_sid = SECINITSID_NODE;
1742 read_unlock(&policy_rwlock);
1749 * security_get_user_sids - Obtain reachable SIDs for a user.
1750 * @fromsid: starting SID
1751 * @username: username
1752 * @sids: array of reachable SIDs for user
1753 * @nel: number of elements in @sids
1755 * Generate the set of SIDs for legal security contexts
1756 * for a given user that can be reached by @fromsid.
1757 * Set *@sids to point to a dynamically allocated
1758 * array containing the set of SIDs. Set *@nel to the
1759 * number of elements in the array.
1762 int security_get_user_sids(u32 fromsid,
1767 struct context *fromcon, usercon;
1768 u32 *mysids = NULL, *mysids2, sid;
1769 u32 mynel = 0, maxnel = SIDS_NEL;
1770 struct user_datum *user;
1771 struct role_datum *role;
1772 struct ebitmap_node *rnode, *tnode;
1778 if (!ss_initialized)
1781 read_lock(&policy_rwlock);
1783 context_init(&usercon);
1785 fromcon = sidtab_search(&sidtab, fromsid);
1791 user = hashtab_search(policydb.p_users.table, username);
1796 usercon.user = user->value;
1798 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1804 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1805 role = policydb.role_val_to_struct[i];
1807 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1810 if (mls_setup_user_range(fromcon, user, &usercon))
1813 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1816 if (mynel < maxnel) {
1817 mysids[mynel++] = sid;
1820 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1825 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1828 mysids[mynel++] = sid;
1834 read_unlock(&policy_rwlock);
1840 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1846 for (i = 0, j = 0; i < mynel; i++) {
1847 rc = avc_has_perm_noaudit(fromsid, mysids[i],
1849 PROCESS__TRANSITION, AVC_STRICT,
1852 mysids2[j++] = mysids[i];
1864 * security_genfs_sid - Obtain a SID for a file in a filesystem
1865 * @fstype: filesystem type
1866 * @path: path from root of mount
1867 * @sclass: file security class
1868 * @sid: SID for path
1870 * Obtain a SID to use for a file in a filesystem that
1871 * cannot support xattr or use a fixed labeling behavior like
1872 * transition SIDs or task SIDs.
1874 int security_genfs_sid(const char *fstype,
1880 struct genfs *genfs;
1882 int rc = 0, cmp = 0;
1884 while (path[0] == '/' && path[1] == '/')
1887 read_lock(&policy_rwlock);
1889 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1890 cmp = strcmp(fstype, genfs->fstype);
1895 if (!genfs || cmp) {
1896 *sid = SECINITSID_UNLABELED;
1901 for (c = genfs->head; c; c = c->next) {
1902 len = strlen(c->u.name);
1903 if ((!c->v.sclass || sclass == c->v.sclass) &&
1904 (strncmp(c->u.name, path, len) == 0))
1909 *sid = SECINITSID_UNLABELED;
1915 rc = sidtab_context_to_sid(&sidtab,
1924 read_unlock(&policy_rwlock);
1929 * security_fs_use - Determine how to handle labeling for a filesystem.
1930 * @fstype: filesystem type
1931 * @behavior: labeling behavior
1932 * @sid: SID for filesystem (superblock)
1934 int security_fs_use(
1936 unsigned int *behavior,
1943 read_lock(&policy_rwlock);
1945 c = policydb.ocontexts[OCON_FSUSE];
1947 if (strcmp(fstype, c->u.name) == 0)
1952 /* look for labeling behavior defined in policy */
1954 *behavior = c->v.behavior;
1956 rc = sidtab_context_to_sid(&sidtab,
1966 /* labeling behavior not in policy, use xattrs if possible */
1968 *behavior = SECURITY_FS_USE_XATTR;
1969 *sid = SECINITSID_FS;
1973 /* no behavior in policy and can't use xattrs, try GENFS */
1974 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1976 *behavior = SECURITY_FS_USE_NONE;
1979 *behavior = SECURITY_FS_USE_GENFS;
1983 read_unlock(&policy_rwlock);
1987 int security_get_bools(int *len, char ***names, int **values)
1989 int i, rc = -ENOMEM;
1991 read_lock(&policy_rwlock);
1995 *len = policydb.p_bools.nprim;
2001 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2005 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2009 for (i = 0; i < *len; i++) {
2011 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2012 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2013 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2016 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2017 (*names)[i][name_len - 1] = 0;
2021 read_unlock(&policy_rwlock);
2025 for (i = 0; i < *len; i++)
2033 int security_set_bools(int len, int *values)
2036 int lenp, seqno = 0;
2037 struct cond_node *cur;
2039 write_lock_irq(&policy_rwlock);
2041 lenp = policydb.p_bools.nprim;
2047 for (i = 0; i < len; i++) {
2048 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2049 audit_log(current->audit_context, GFP_ATOMIC,
2050 AUDIT_MAC_CONFIG_CHANGE,
2051 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2052 policydb.p_bool_val_to_name[i],
2054 policydb.bool_val_to_struct[i]->state,
2055 audit_get_loginuid(current),
2056 audit_get_sessionid(current));
2059 policydb.bool_val_to_struct[i]->state = 1;
2061 policydb.bool_val_to_struct[i]->state = 0;
2064 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
2065 rc = evaluate_cond_node(&policydb, cur);
2070 seqno = ++latest_granting;
2073 write_unlock_irq(&policy_rwlock);
2075 avc_ss_reset(seqno);
2076 selnl_notify_policyload(seqno);
2077 selinux_xfrm_notify_policyload();
2082 int security_get_bool_value(int bool)
2087 read_lock(&policy_rwlock);
2089 len = policydb.p_bools.nprim;
2095 rc = policydb.bool_val_to_struct[bool]->state;
2097 read_unlock(&policy_rwlock);
2101 static int security_preserve_bools(struct policydb *p)
2103 int rc, nbools = 0, *bvalues = NULL, i;
2104 char **bnames = NULL;
2105 struct cond_bool_datum *booldatum;
2106 struct cond_node *cur;
2108 rc = security_get_bools(&nbools, &bnames, &bvalues);
2111 for (i = 0; i < nbools; i++) {
2112 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2114 booldatum->state = bvalues[i];
2116 for (cur = p->cond_list; cur != NULL; cur = cur->next) {
2117 rc = evaluate_cond_node(p, cur);
2124 for (i = 0; i < nbools; i++)
2133 * security_sid_mls_copy() - computes a new sid based on the given
2134 * sid and the mls portion of mls_sid.
2136 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2138 struct context *context1;
2139 struct context *context2;
2140 struct context newcon;
2145 if (!ss_initialized || !selinux_mls_enabled) {
2150 context_init(&newcon);
2152 read_lock(&policy_rwlock);
2153 context1 = sidtab_search(&sidtab, sid);
2155 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2161 context2 = sidtab_search(&sidtab, mls_sid);
2163 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2169 newcon.user = context1->user;
2170 newcon.role = context1->role;
2171 newcon.type = context1->type;
2172 rc = mls_context_cpy(&newcon, context2);
2176 /* Check the validity of the new context. */
2177 if (!policydb_context_isvalid(&policydb, &newcon)) {
2178 rc = convert_context_handle_invalid_context(&newcon);
2183 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2187 if (!context_struct_to_string(&newcon, &s, &len)) {
2188 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2189 "security_sid_mls_copy: invalid context %s", s);
2194 read_unlock(&policy_rwlock);
2195 context_destroy(&newcon);
2201 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2202 * @nlbl_sid: NetLabel SID
2203 * @nlbl_type: NetLabel labeling protocol type
2204 * @xfrm_sid: XFRM SID
2207 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2208 * resolved into a single SID it is returned via @peer_sid and the function
2209 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2210 * returns a negative value. A table summarizing the behavior is below:
2212 * | function return | @sid
2213 * ------------------------------+-----------------+-----------------
2214 * no peer labels | 0 | SECSID_NULL
2215 * single peer label | 0 | <peer_label>
2216 * multiple, consistent labels | 0 | <peer_label>
2217 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2220 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2225 struct context *nlbl_ctx;
2226 struct context *xfrm_ctx;
2228 /* handle the common (which also happens to be the set of easy) cases
2229 * right away, these two if statements catch everything involving a
2230 * single or absent peer SID/label */
2231 if (xfrm_sid == SECSID_NULL) {
2232 *peer_sid = nlbl_sid;
2235 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2236 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2238 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2239 *peer_sid = xfrm_sid;
2243 /* we don't need to check ss_initialized here since the only way both
2244 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2245 * security server was initialized and ss_initialized was true */
2246 if (!selinux_mls_enabled) {
2247 *peer_sid = SECSID_NULL;
2251 read_lock(&policy_rwlock);
2253 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2255 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2256 __func__, nlbl_sid);
2260 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2262 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2263 __func__, xfrm_sid);
2267 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2270 read_unlock(&policy_rwlock);
2272 /* at present NetLabel SIDs/labels really only carry MLS
2273 * information so if the MLS portion of the NetLabel SID
2274 * matches the MLS portion of the labeled XFRM SID/label
2275 * then pass along the XFRM SID as it is the most
2277 *peer_sid = xfrm_sid;
2279 *peer_sid = SECSID_NULL;
2283 static int get_classes_callback(void *k, void *d, void *args)
2285 struct class_datum *datum = d;
2286 char *name = k, **classes = args;
2287 int value = datum->value - 1;
2289 classes[value] = kstrdup(name, GFP_ATOMIC);
2290 if (!classes[value])
2296 int security_get_classes(char ***classes, int *nclasses)
2300 read_lock(&policy_rwlock);
2302 *nclasses = policydb.p_classes.nprim;
2303 *classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2307 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2311 for (i = 0; i < *nclasses; i++)
2312 kfree((*classes)[i]);
2317 read_unlock(&policy_rwlock);
2321 static int get_permissions_callback(void *k, void *d, void *args)
2323 struct perm_datum *datum = d;
2324 char *name = k, **perms = args;
2325 int value = datum->value - 1;
2327 perms[value] = kstrdup(name, GFP_ATOMIC);
2334 int security_get_permissions(char *class, char ***perms, int *nperms)
2336 int rc = -ENOMEM, i;
2337 struct class_datum *match;
2339 read_lock(&policy_rwlock);
2341 match = hashtab_search(policydb.p_classes.table, class);
2343 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2349 *nperms = match->permissions.nprim;
2350 *perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2354 if (match->comdatum) {
2355 rc = hashtab_map(match->comdatum->permissions.table,
2356 get_permissions_callback, *perms);
2361 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2367 read_unlock(&policy_rwlock);
2371 read_unlock(&policy_rwlock);
2372 for (i = 0; i < *nperms; i++)
2378 int security_get_reject_unknown(void)
2380 return policydb.reject_unknown;
2383 int security_get_allow_unknown(void)
2385 return policydb.allow_unknown;
2389 * security_policycap_supported - Check for a specific policy capability
2390 * @req_cap: capability
2393 * This function queries the currently loaded policy to see if it supports the
2394 * capability specified by @req_cap. Returns true (1) if the capability is
2395 * supported, false (0) if it isn't supported.
2398 int security_policycap_supported(unsigned int req_cap)
2402 read_lock(&policy_rwlock);
2403 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2404 read_unlock(&policy_rwlock);
2409 struct selinux_audit_rule {
2411 struct context au_ctxt;
2414 void selinux_audit_rule_free(void *vrule)
2416 struct selinux_audit_rule *rule = vrule;
2419 context_destroy(&rule->au_ctxt);
2424 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2426 struct selinux_audit_rule *tmprule;
2427 struct role_datum *roledatum;
2428 struct type_datum *typedatum;
2429 struct user_datum *userdatum;
2430 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2435 if (!ss_initialized)
2439 case AUDIT_SUBJ_USER:
2440 case AUDIT_SUBJ_ROLE:
2441 case AUDIT_SUBJ_TYPE:
2442 case AUDIT_OBJ_USER:
2443 case AUDIT_OBJ_ROLE:
2444 case AUDIT_OBJ_TYPE:
2445 /* only 'equals' and 'not equals' fit user, role, and type */
2446 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2449 case AUDIT_SUBJ_SEN:
2450 case AUDIT_SUBJ_CLR:
2451 case AUDIT_OBJ_LEV_LOW:
2452 case AUDIT_OBJ_LEV_HIGH:
2453 /* we do not allow a range, indicated by the presense of '-' */
2454 if (strchr(rulestr, '-'))
2458 /* only the above fields are valid */
2462 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2466 context_init(&tmprule->au_ctxt);
2468 read_lock(&policy_rwlock);
2470 tmprule->au_seqno = latest_granting;
2473 case AUDIT_SUBJ_USER:
2474 case AUDIT_OBJ_USER:
2475 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2479 tmprule->au_ctxt.user = userdatum->value;
2481 case AUDIT_SUBJ_ROLE:
2482 case AUDIT_OBJ_ROLE:
2483 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2487 tmprule->au_ctxt.role = roledatum->value;
2489 case AUDIT_SUBJ_TYPE:
2490 case AUDIT_OBJ_TYPE:
2491 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2495 tmprule->au_ctxt.type = typedatum->value;
2497 case AUDIT_SUBJ_SEN:
2498 case AUDIT_SUBJ_CLR:
2499 case AUDIT_OBJ_LEV_LOW:
2500 case AUDIT_OBJ_LEV_HIGH:
2501 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2505 read_unlock(&policy_rwlock);
2508 selinux_audit_rule_free(tmprule);
2517 /* Check to see if the rule contains any selinux fields */
2518 int selinux_audit_rule_known(struct audit_krule *rule)
2522 for (i = 0; i < rule->field_count; i++) {
2523 struct audit_field *f = &rule->fields[i];
2525 case AUDIT_SUBJ_USER:
2526 case AUDIT_SUBJ_ROLE:
2527 case AUDIT_SUBJ_TYPE:
2528 case AUDIT_SUBJ_SEN:
2529 case AUDIT_SUBJ_CLR:
2530 case AUDIT_OBJ_USER:
2531 case AUDIT_OBJ_ROLE:
2532 case AUDIT_OBJ_TYPE:
2533 case AUDIT_OBJ_LEV_LOW:
2534 case AUDIT_OBJ_LEV_HIGH:
2542 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2543 struct audit_context *actx)
2545 struct context *ctxt;
2546 struct mls_level *level;
2547 struct selinux_audit_rule *rule = vrule;
2551 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2552 "selinux_audit_rule_match: missing rule\n");
2556 read_lock(&policy_rwlock);
2558 if (rule->au_seqno < latest_granting) {
2559 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2560 "selinux_audit_rule_match: stale rule\n");
2565 ctxt = sidtab_search(&sidtab, sid);
2567 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2568 "selinux_audit_rule_match: unrecognized SID %d\n",
2574 /* a field/op pair that is not caught here will simply fall through
2577 case AUDIT_SUBJ_USER:
2578 case AUDIT_OBJ_USER:
2581 match = (ctxt->user == rule->au_ctxt.user);
2583 case AUDIT_NOT_EQUAL:
2584 match = (ctxt->user != rule->au_ctxt.user);
2588 case AUDIT_SUBJ_ROLE:
2589 case AUDIT_OBJ_ROLE:
2592 match = (ctxt->role == rule->au_ctxt.role);
2594 case AUDIT_NOT_EQUAL:
2595 match = (ctxt->role != rule->au_ctxt.role);
2599 case AUDIT_SUBJ_TYPE:
2600 case AUDIT_OBJ_TYPE:
2603 match = (ctxt->type == rule->au_ctxt.type);
2605 case AUDIT_NOT_EQUAL:
2606 match = (ctxt->type != rule->au_ctxt.type);
2610 case AUDIT_SUBJ_SEN:
2611 case AUDIT_SUBJ_CLR:
2612 case AUDIT_OBJ_LEV_LOW:
2613 case AUDIT_OBJ_LEV_HIGH:
2614 level = ((field == AUDIT_SUBJ_SEN ||
2615 field == AUDIT_OBJ_LEV_LOW) ?
2616 &ctxt->range.level[0] : &ctxt->range.level[1]);
2619 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2622 case AUDIT_NOT_EQUAL:
2623 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2626 case AUDIT_LESS_THAN:
2627 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2629 !mls_level_eq(&rule->au_ctxt.range.level[0],
2632 case AUDIT_LESS_THAN_OR_EQUAL:
2633 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2636 case AUDIT_GREATER_THAN:
2637 match = (mls_level_dom(level,
2638 &rule->au_ctxt.range.level[0]) &&
2639 !mls_level_eq(level,
2640 &rule->au_ctxt.range.level[0]));
2642 case AUDIT_GREATER_THAN_OR_EQUAL:
2643 match = mls_level_dom(level,
2644 &rule->au_ctxt.range.level[0]);
2650 read_unlock(&policy_rwlock);
2654 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2656 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2657 u16 class, u32 perms, u32 *retained)
2661 if (event == AVC_CALLBACK_RESET && aurule_callback)
2662 err = aurule_callback();
2666 static int __init aurule_init(void)
2670 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2671 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2673 panic("avc_add_callback() failed, error %d\n", err);
2677 __initcall(aurule_init);
2679 #ifdef CONFIG_NETLABEL
2681 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2682 * @secattr: the NetLabel packet security attributes
2683 * @sid: the SELinux SID
2686 * Attempt to cache the context in @ctx, which was derived from the packet in
2687 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2688 * already been initialized.
2691 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2696 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2697 if (sid_cache == NULL)
2699 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2700 if (secattr->cache == NULL) {
2706 secattr->cache->free = kfree;
2707 secattr->cache->data = sid_cache;
2708 secattr->flags |= NETLBL_SECATTR_CACHE;
2712 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2713 * @secattr: the NetLabel packet security attributes
2714 * @sid: the SELinux SID
2717 * Convert the given NetLabel security attributes in @secattr into a
2718 * SELinux SID. If the @secattr field does not contain a full SELinux
2719 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2720 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2721 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2722 * conversion for future lookups. Returns zero on success, negative values on
2726 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2730 struct context *ctx;
2731 struct context ctx_new;
2733 if (!ss_initialized) {
2738 read_lock(&policy_rwlock);
2740 if (secattr->flags & NETLBL_SECATTR_CACHE) {
2741 *sid = *(u32 *)secattr->cache->data;
2743 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
2744 *sid = secattr->attr.secid;
2746 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2747 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2749 goto netlbl_secattr_to_sid_return;
2751 ctx_new.user = ctx->user;
2752 ctx_new.role = ctx->role;
2753 ctx_new.type = ctx->type;
2754 mls_import_netlbl_lvl(&ctx_new, secattr);
2755 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2756 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2757 secattr->attr.mls.cat) != 0)
2758 goto netlbl_secattr_to_sid_return;
2759 ctx_new.range.level[1].cat.highbit =
2760 ctx_new.range.level[0].cat.highbit;
2761 ctx_new.range.level[1].cat.node =
2762 ctx_new.range.level[0].cat.node;
2764 ebitmap_init(&ctx_new.range.level[0].cat);
2765 ebitmap_init(&ctx_new.range.level[1].cat);
2767 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2768 goto netlbl_secattr_to_sid_return_cleanup;
2770 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2772 goto netlbl_secattr_to_sid_return_cleanup;
2774 security_netlbl_cache_add(secattr, *sid);
2776 ebitmap_destroy(&ctx_new.range.level[0].cat);
2782 netlbl_secattr_to_sid_return:
2783 read_unlock(&policy_rwlock);
2785 netlbl_secattr_to_sid_return_cleanup:
2786 ebitmap_destroy(&ctx_new.range.level[0].cat);
2787 goto netlbl_secattr_to_sid_return;
2791 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2792 * @sid: the SELinux SID
2793 * @secattr: the NetLabel packet security attributes
2796 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2797 * Returns zero on success, negative values on failure.
2800 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2803 struct context *ctx;
2805 if (!ss_initialized)
2808 read_lock(&policy_rwlock);
2809 ctx = sidtab_search(&sidtab, sid);
2811 goto netlbl_sid_to_secattr_failure;
2812 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2814 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY;
2815 mls_export_netlbl_lvl(ctx, secattr);
2816 rc = mls_export_netlbl_cat(ctx, secattr);
2818 goto netlbl_sid_to_secattr_failure;
2819 read_unlock(&policy_rwlock);
2823 netlbl_sid_to_secattr_failure:
2824 read_unlock(&policy_rwlock);
2827 #endif /* CONFIG_NETLABEL */