2 * Support for IDE interfaces on PowerMacs.
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
7 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/pci.h>
33 #include <linux/adb.h>
34 #include <linux/pmu.h>
35 #include <linux/scatterlist.h>
39 #include <asm/dbdma.h>
41 #include <asm/pci-bridge.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/sections.h>
48 #include <asm/mediabay.h>
53 #define DMA_WAIT_TIMEOUT 50
55 typedef struct pmac_ide_hwif {
56 unsigned long regbase;
60 unsigned mediabay : 1;
61 unsigned broken_dma : 1;
62 unsigned broken_dma_warn : 1;
63 struct device_node* node;
64 struct macio_dev *mdev;
66 volatile u32 __iomem * *kauai_fcr;
67 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
68 /* Those fields are duplicating what is in hwif. We currently
69 * can't use the hwif ones because of some assumptions that are
70 * beeing done by the generic code about the kind of dma controller
71 * and format of the dma table. This will have to be fixed though.
73 volatile struct dbdma_regs __iomem * dma_regs;
74 struct dbdma_cmd* dma_table_cpu;
80 controller_ohare, /* OHare based */
81 controller_heathrow, /* Heathrow/Paddington */
82 controller_kl_ata3, /* KeyLargo ATA-3 */
83 controller_kl_ata4, /* KeyLargo ATA-4 */
84 controller_un_ata6, /* UniNorth2 ATA-6 */
85 controller_k2_ata6, /* K2 ATA-6 */
86 controller_sh_ata6, /* Shasta ATA-6 */
89 static const char* model_name[] = {
90 "OHare ATA", /* OHare based */
91 "Heathrow ATA", /* Heathrow/Paddington */
92 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
93 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
94 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
95 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
96 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
100 * Extra registers, both 32-bit little-endian
102 #define IDE_TIMING_CONFIG 0x200
103 #define IDE_INTERRUPT 0x300
105 /* Kauai (U2) ATA has different register setup */
106 #define IDE_KAUAI_PIO_CONFIG 0x200
107 #define IDE_KAUAI_ULTRA_CONFIG 0x210
108 #define IDE_KAUAI_POLL_CONFIG 0x220
111 * Timing configuration register definitions
114 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
115 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
116 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
117 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
118 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
120 /* 133Mhz cell, found in shasta.
121 * See comments about 100 Mhz Uninorth 2...
122 * Note that PIO_MASK and MDMA_MASK seem to overlap
124 #define TR_133_PIOREG_PIO_MASK 0xff000fff
125 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
126 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
127 #define TR_133_UDMAREG_UDMA_EN 0x00000001
129 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
130 * this one yet, it appears as a pci device (106b/0033) on uninorth
131 * internal PCI bus and it's clock is controlled like gem or fw. It
132 * appears to be an evolution of keylargo ATA4 with a timing register
133 * extended to 2 32bits registers and a similar DBDMA channel. Other
134 * registers seem to exist but I can't tell much about them.
136 * So far, I'm using pre-calculated tables for this extracted from
137 * the values used by the MacOS X driver.
139 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
140 * register controls the UDMA timings. At least, it seems bit 0
141 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
142 * cycle time in units of 10ns. Bits 8..15 are used by I don't
143 * know their meaning yet
145 #define TR_100_PIOREG_PIO_MASK 0xff000fff
146 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
147 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
148 #define TR_100_UDMAREG_UDMA_EN 0x00000001
151 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
152 * 40 connector cable and to 4 on 80 connector one.
153 * Clock unit is 15ns (66Mhz)
155 * 3 Values can be programmed:
156 * - Write data setup, which appears to match the cycle time. They
157 * also call it DIOW setup.
158 * - Ready to pause time (from spec)
159 * - Address setup. That one is weird. I don't see where exactly
160 * it fits in UDMA cycles, I got it's name from an obscure piece
161 * of commented out code in Darwin. They leave it to 0, we do as
162 * well, despite a comment that would lead to think it has a
164 * Apple also add 60ns to the write data setup (or cycle time ?) on
167 #define TR_66_UDMA_MASK 0xfff00000
168 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
169 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
170 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
171 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
172 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
173 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
174 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
175 #define TR_66_MDMA_MASK 0x000ffc00
176 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
177 #define TR_66_MDMA_RECOVERY_SHIFT 15
178 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
179 #define TR_66_MDMA_ACCESS_SHIFT 10
180 #define TR_66_PIO_MASK 0x000003ff
181 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
182 #define TR_66_PIO_RECOVERY_SHIFT 5
183 #define TR_66_PIO_ACCESS_MASK 0x0000001f
184 #define TR_66_PIO_ACCESS_SHIFT 0
186 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
187 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
189 * The access time and recovery time can be programmed. Some older
190 * Darwin code base limit OHare to 150ns cycle time. I decided to do
191 * the same here fore safety against broken old hardware ;)
192 * The HalfTick bit, when set, adds half a clock (15ns) to the access
193 * time and removes one from recovery. It's not supported on KeyLargo
194 * implementation afaik. The E bit appears to be set for PIO mode 0 and
195 * is used to reach long timings used in this mode.
197 #define TR_33_MDMA_MASK 0x003ff800
198 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
199 #define TR_33_MDMA_RECOVERY_SHIFT 16
200 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
201 #define TR_33_MDMA_ACCESS_SHIFT 11
202 #define TR_33_MDMA_HALFTICK 0x00200000
203 #define TR_33_PIO_MASK 0x000007ff
204 #define TR_33_PIO_E 0x00000400
205 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
206 #define TR_33_PIO_RECOVERY_SHIFT 5
207 #define TR_33_PIO_ACCESS_MASK 0x0000001f
208 #define TR_33_PIO_ACCESS_SHIFT 0
211 * Interrupt register definitions
213 #define IDE_INTR_DMA 0x80000000
214 #define IDE_INTR_DEVICE 0x40000000
217 * FCR Register on Kauai. Not sure what bit 0x4 is ...
219 #define KAUAI_FCR_UATA_MAGIC 0x00000004
220 #define KAUAI_FCR_UATA_RESET_N 0x00000002
221 #define KAUAI_FCR_UATA_ENABLE 0x00000001
223 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
225 /* Rounded Multiword DMA timings
227 * I gave up finding a generic formula for all controller
228 * types and instead, built tables based on timing values
229 * used by Apple in Darwin's implementation.
231 struct mdma_timings_t {
237 struct mdma_timings_t mdma_timings_33[] =
250 struct mdma_timings_t mdma_timings_33k[] =
263 struct mdma_timings_t mdma_timings_66[] =
276 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
278 int addrSetup; /* ??? */
281 } kl66_udma_timings[] =
283 { 0, 180, 120 }, /* Mode 0 */
284 { 0, 150, 90 }, /* 1 */
285 { 0, 120, 60 }, /* 2 */
286 { 0, 90, 45 }, /* 3 */
287 { 0, 90, 30 } /* 4 */
290 /* UniNorth 2 ATA/100 timings */
291 struct kauai_timing {
296 static struct kauai_timing kauai_pio_timings[] =
298 { 930 , 0x08000fff },
299 { 600 , 0x08000a92 },
300 { 383 , 0x0800060f },
301 { 360 , 0x08000492 },
302 { 330 , 0x0800048f },
303 { 300 , 0x080003cf },
304 { 270 , 0x080003cc },
305 { 240 , 0x0800038b },
306 { 239 , 0x0800030c },
307 { 180 , 0x05000249 },
308 { 120 , 0x04000148 },
312 static struct kauai_timing kauai_mdma_timings[] =
314 { 1260 , 0x00fff000 },
315 { 480 , 0x00618000 },
316 { 360 , 0x00492000 },
317 { 270 , 0x0038e000 },
318 { 240 , 0x0030c000 },
319 { 210 , 0x002cb000 },
320 { 180 , 0x00249000 },
321 { 150 , 0x00209000 },
322 { 120 , 0x00148000 },
326 static struct kauai_timing kauai_udma_timings[] =
328 { 120 , 0x000070c0 },
337 static struct kauai_timing shasta_pio_timings[] =
339 { 930 , 0x08000fff },
340 { 600 , 0x0A000c97 },
341 { 383 , 0x07000712 },
342 { 360 , 0x040003cd },
343 { 330 , 0x040003cd },
344 { 300 , 0x040003cd },
345 { 270 , 0x040003cd },
346 { 240 , 0x040003cd },
347 { 239 , 0x040003cd },
348 { 180 , 0x0400028b },
349 { 120 , 0x0400010a },
353 static struct kauai_timing shasta_mdma_timings[] =
355 { 1260 , 0x00fff000 },
356 { 480 , 0x00820800 },
357 { 360 , 0x00820800 },
358 { 270 , 0x00820800 },
359 { 240 , 0x00820800 },
360 { 210 , 0x00820800 },
361 { 180 , 0x00820800 },
362 { 150 , 0x0028b000 },
363 { 120 , 0x001ca000 },
367 static struct kauai_timing shasta_udma133_timings[] =
369 { 120 , 0x00035901, },
370 { 90 , 0x000348b1, },
371 { 60 , 0x00033881, },
372 { 45 , 0x00033861, },
373 { 30 , 0x00033841, },
374 { 20 , 0x00033031, },
375 { 15 , 0x00033021, },
381 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
385 for (i=0; table[i].cycle_time; i++)
386 if (cycle_time > table[i+1].cycle_time)
387 return table[i].timing_reg;
392 /* allow up to 256 DBDMA commands per xfer */
393 #define MAX_DCMDS 256
396 * Wait 1s for disk to answer on IDE bus after a hard reset
397 * of the device (via GPIO/FCR).
399 * Some devices seem to "pollute" the bus even after dropping
400 * the BSY bit (typically some combo drives slave on the UDMA
401 * bus) after a hard reset. Since we hard reset all drives on
402 * KeyLargo ATA66, we have to keep that delay around. I may end
403 * up not hard resetting anymore on these and keep the delay only
404 * for older interfaces instead (we have to reset when coming
405 * from MacOS...) --BenH.
407 #define IDE_WAKEUP_DELAY (1*HZ)
409 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
410 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
411 static void pmac_ide_selectproc(ide_drive_t *drive);
412 static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
414 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
416 #define PMAC_IDE_REG(x) \
417 ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
420 * Apply the timings of the proper unit (master/slave) to the shared
421 * timing register when selecting that unit. This version is for
422 * ASICs with a single timing register
425 pmac_ide_selectproc(ide_drive_t *drive)
427 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
432 if (drive->select.b.unit & 0x01)
433 writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
435 writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
436 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
440 * Apply the timings of the proper unit (master/slave) to the shared
441 * timing register when selecting that unit. This version is for
442 * ASICs with a dual timing register (Kauai)
445 pmac_ide_kauai_selectproc(ide_drive_t *drive)
447 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
452 if (drive->select.b.unit & 0x01) {
453 writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
454 writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
456 writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
457 writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
459 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
463 * Force an update of controller timing values for a given drive
466 pmac_ide_do_update_timings(ide_drive_t *drive)
468 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
473 if (pmif->kind == controller_sh_ata6 ||
474 pmif->kind == controller_un_ata6 ||
475 pmif->kind == controller_k2_ata6)
476 pmac_ide_kauai_selectproc(drive);
478 pmac_ide_selectproc(drive);
481 static void pmac_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
485 writeb(value, (void __iomem *) port);
486 tmp = readl((void __iomem *)(hwif->io_ports.data_addr
487 + IDE_TIMING_CONFIG));
491 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
494 pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
496 struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
498 unsigned accessTicks, recTicks;
499 unsigned accessTime, recTime;
500 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
501 unsigned int cycle_time;
506 /* which drive is it ? */
507 timings = &pmif->timings[drive->select.b.unit & 0x01];
510 cycle_time = ide_pio_cycle_time(drive, pio);
512 switch (pmif->kind) {
513 case controller_sh_ata6: {
515 u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
516 t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
519 case controller_un_ata6:
520 case controller_k2_ata6: {
522 u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
523 t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
526 case controller_kl_ata4:
528 recTime = cycle_time - tim->active - tim->setup;
529 recTime = max(recTime, 150U);
530 accessTime = tim->active;
531 accessTime = max(accessTime, 150U);
532 accessTicks = SYSCLK_TICKS_66(accessTime);
533 accessTicks = min(accessTicks, 0x1fU);
534 recTicks = SYSCLK_TICKS_66(recTime);
535 recTicks = min(recTicks, 0x1fU);
536 t = (t & ~TR_66_PIO_MASK) |
537 (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
538 (recTicks << TR_66_PIO_RECOVERY_SHIFT);
543 recTime = cycle_time - tim->active - tim->setup;
544 recTime = max(recTime, 150U);
545 accessTime = tim->active;
546 accessTime = max(accessTime, 150U);
547 accessTicks = SYSCLK_TICKS(accessTime);
548 accessTicks = min(accessTicks, 0x1fU);
549 accessTicks = max(accessTicks, 4U);
550 recTicks = SYSCLK_TICKS(recTime);
551 recTicks = min(recTicks, 0x1fU);
552 recTicks = max(recTicks, 5U) - 4;
554 recTicks--; /* guess, but it's only for PIO0, so... */
557 t = (t & ~TR_33_PIO_MASK) |
558 (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
559 (recTicks << TR_33_PIO_RECOVERY_SHIFT);
566 #ifdef IDE_PMAC_DEBUG
567 printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
568 drive->name, pio, *timings);
572 pmac_ide_do_update_timings(drive);
575 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
578 * Calculate KeyLargo ATA/66 UDMA timings
581 set_timings_udma_ata4(u32 *timings, u8 speed)
583 unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
585 if (speed > XFER_UDMA_4)
588 rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
589 wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
590 addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
592 *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
593 (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
594 (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
595 (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
597 #ifdef IDE_PMAC_DEBUG
598 printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
599 speed & 0xf, *timings);
606 * Calculate Kauai ATA/100 UDMA timings
609 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
611 struct ide_timing *t = ide_timing_find_mode(speed);
614 if (speed > XFER_UDMA_5 || t == NULL)
616 tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
617 *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
618 *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
624 * Calculate Shasta ATA/133 UDMA timings
627 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
629 struct ide_timing *t = ide_timing_find_mode(speed);
632 if (speed > XFER_UDMA_6 || t == NULL)
634 tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
635 *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
636 *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
642 * Calculate MDMA timings for all cells
645 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
648 int cycleTime, accessTime = 0, recTime = 0;
649 unsigned accessTicks, recTicks;
650 struct hd_driveid *id = drive->id;
651 struct mdma_timings_t* tm = NULL;
654 /* Get default cycle time for mode */
655 switch(speed & 0xf) {
656 case 0: cycleTime = 480; break;
657 case 1: cycleTime = 150; break;
658 case 2: cycleTime = 120; break;
664 /* Check if drive provides explicit DMA cycle time */
665 if ((id->field_valid & 2) && id->eide_dma_time)
666 cycleTime = max_t(int, id->eide_dma_time, cycleTime);
668 /* OHare limits according to some old Apple sources */
669 if ((intf_type == controller_ohare) && (cycleTime < 150))
671 /* Get the proper timing array for this controller */
673 case controller_sh_ata6:
674 case controller_un_ata6:
675 case controller_k2_ata6:
677 case controller_kl_ata4:
678 tm = mdma_timings_66;
680 case controller_kl_ata3:
681 tm = mdma_timings_33k;
684 tm = mdma_timings_33;
688 /* Lookup matching access & recovery times */
691 if (tm[i+1].cycleTime < cycleTime)
695 cycleTime = tm[i].cycleTime;
696 accessTime = tm[i].accessTime;
697 recTime = tm[i].recoveryTime;
699 #ifdef IDE_PMAC_DEBUG
700 printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
701 drive->name, cycleTime, accessTime, recTime);
705 case controller_sh_ata6: {
707 u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
708 *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
709 *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
711 case controller_un_ata6:
712 case controller_k2_ata6: {
714 u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
715 *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
716 *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
719 case controller_kl_ata4:
721 accessTicks = SYSCLK_TICKS_66(accessTime);
722 accessTicks = min(accessTicks, 0x1fU);
723 accessTicks = max(accessTicks, 0x1U);
724 recTicks = SYSCLK_TICKS_66(recTime);
725 recTicks = min(recTicks, 0x1fU);
726 recTicks = max(recTicks, 0x3U);
727 /* Clear out mdma bits and disable udma */
728 *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
729 (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
730 (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
732 case controller_kl_ata3:
733 /* 33Mhz cell on KeyLargo */
734 accessTicks = SYSCLK_TICKS(accessTime);
735 accessTicks = max(accessTicks, 1U);
736 accessTicks = min(accessTicks, 0x1fU);
737 accessTime = accessTicks * IDE_SYSCLK_NS;
738 recTicks = SYSCLK_TICKS(recTime);
739 recTicks = max(recTicks, 1U);
740 recTicks = min(recTicks, 0x1fU);
741 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
742 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
743 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
746 /* 33Mhz cell on others */
748 int origAccessTime = accessTime;
749 int origRecTime = recTime;
751 accessTicks = SYSCLK_TICKS(accessTime);
752 accessTicks = max(accessTicks, 1U);
753 accessTicks = min(accessTicks, 0x1fU);
754 accessTime = accessTicks * IDE_SYSCLK_NS;
755 recTicks = SYSCLK_TICKS(recTime);
756 recTicks = max(recTicks, 2U) - 1;
757 recTicks = min(recTicks, 0x1fU);
758 recTime = (recTicks + 1) * IDE_SYSCLK_NS;
759 if ((accessTicks > 1) &&
760 ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
761 ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
765 *timings = ((*timings) & ~TR_33_MDMA_MASK) |
766 (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
767 (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
769 *timings |= TR_33_MDMA_HALFTICK;
772 #ifdef IDE_PMAC_DEBUG
773 printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
774 drive->name, speed & 0xf, *timings);
777 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
779 static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
781 int unit = (drive->select.b.unit & 0x01);
783 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
784 u32 *timings, *timings2, tl[2];
786 timings = &pmif->timings[unit];
787 timings2 = &pmif->timings[unit+2];
789 /* Copy timings to local image */
793 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
794 if (speed >= XFER_UDMA_0) {
795 if (pmif->kind == controller_kl_ata4)
796 ret = set_timings_udma_ata4(&tl[0], speed);
797 else if (pmif->kind == controller_un_ata6
798 || pmif->kind == controller_k2_ata6)
799 ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
800 else if (pmif->kind == controller_sh_ata6)
801 ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
805 set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
806 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
810 /* Apply timings to controller */
814 pmac_ide_do_update_timings(drive);
818 * Blast some well known "safe" values to the timing registers at init or
819 * wakeup from sleep time, before we do real calculation
822 sanitize_timings(pmac_ide_hwif_t *pmif)
824 unsigned int value, value2 = 0;
827 case controller_sh_ata6:
831 case controller_un_ata6:
832 case controller_k2_ata6:
836 case controller_kl_ata4:
839 case controller_kl_ata3:
842 case controller_heathrow:
843 case controller_ohare:
848 pmif->timings[0] = pmif->timings[1] = value;
849 pmif->timings[2] = pmif->timings[3] = value2;
852 /* Suspend call back, should be called after the child devices
853 * have actually been suspended
856 pmac_ide_do_suspend(ide_hwif_t *hwif)
858 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
860 /* We clear the timings */
861 pmif->timings[0] = 0;
862 pmif->timings[1] = 0;
864 disable_irq(pmif->irq);
866 /* The media bay will handle itself just fine */
870 /* Kauai has bus control FCRs directly here */
871 if (pmif->kauai_fcr) {
872 u32 fcr = readl(pmif->kauai_fcr);
873 fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
874 writel(fcr, pmif->kauai_fcr);
877 /* Disable the bus on older machines and the cell on kauai */
878 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
884 /* Resume call back, should be called before the child devices
888 pmac_ide_do_resume(ide_hwif_t *hwif)
890 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
892 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
893 if (!pmif->mediabay) {
894 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
895 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
897 ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
899 /* Kauai has it different */
900 if (pmif->kauai_fcr) {
901 u32 fcr = readl(pmif->kauai_fcr);
902 fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
903 writel(fcr, pmif->kauai_fcr);
906 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
909 /* Sanitize drive timings */
910 sanitize_timings(pmif);
912 enable_irq(pmif->irq);
917 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
919 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)ide_get_hwifdata(hwif);
920 struct device_node *np = pmif->node;
921 const char *cable = of_get_property(np, "cable-type", NULL);
923 /* Get cable type from device-tree. */
924 if (cable && !strncmp(cable, "80-", 3))
925 return ATA_CBL_PATA80;
928 * G5's seem to have incorrect cable type in device-tree.
929 * Let's assume they have a 80 conductor cable, this seem
930 * to be always the case unless the user mucked around.
932 if (of_device_is_compatible(np, "K2-UATA") ||
933 of_device_is_compatible(np, "shasta-ata"))
934 return ATA_CBL_PATA80;
936 return ATA_CBL_PATA40;
939 static const struct ide_port_ops pmac_ide_ata6_port_ops = {
940 .set_pio_mode = pmac_ide_set_pio_mode,
941 .set_dma_mode = pmac_ide_set_dma_mode,
942 .selectproc = pmac_ide_kauai_selectproc,
943 .cable_detect = pmac_ide_cable_detect,
946 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
947 .set_pio_mode = pmac_ide_set_pio_mode,
948 .set_dma_mode = pmac_ide_set_dma_mode,
949 .selectproc = pmac_ide_selectproc,
950 .cable_detect = pmac_ide_cable_detect,
953 static const struct ide_port_ops pmac_ide_port_ops = {
954 .set_pio_mode = pmac_ide_set_pio_mode,
955 .set_dma_mode = pmac_ide_set_dma_mode,
956 .selectproc = pmac_ide_selectproc,
959 static const struct ide_dma_ops pmac_dma_ops;
961 static const struct ide_port_info pmac_port_info = {
962 .init_dma = pmac_ide_init_dma,
964 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
965 .dma_ops = &pmac_dma_ops,
967 .port_ops = &pmac_ide_port_ops,
968 .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
969 IDE_HFLAG_POST_SET_MODE |
971 IDE_HFLAG_UNMASK_IRQS,
972 .pio_mask = ATA_PIO4,
973 .mwdma_mask = ATA_MWDMA2,
977 * Setup, register & probe an IDE channel driven by this driver, this is
978 * called by one of the 2 probe functions (macio or PCI).
981 pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
983 struct device_node *np = pmif->node;
985 u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
986 struct ide_port_info d = pmac_port_info;
988 pmif->broken_dma = pmif->broken_dma_warn = 0;
989 if (of_device_is_compatible(np, "shasta-ata")) {
990 pmif->kind = controller_sh_ata6;
991 d.port_ops = &pmac_ide_ata6_port_ops;
992 d.udma_mask = ATA_UDMA6;
993 } else if (of_device_is_compatible(np, "kauai-ata")) {
994 pmif->kind = controller_un_ata6;
995 d.port_ops = &pmac_ide_ata6_port_ops;
996 d.udma_mask = ATA_UDMA5;
997 } else if (of_device_is_compatible(np, "K2-UATA")) {
998 pmif->kind = controller_k2_ata6;
999 d.port_ops = &pmac_ide_ata6_port_ops;
1000 d.udma_mask = ATA_UDMA5;
1001 } else if (of_device_is_compatible(np, "keylargo-ata")) {
1002 if (strcmp(np->name, "ata-4") == 0) {
1003 pmif->kind = controller_kl_ata4;
1004 d.port_ops = &pmac_ide_ata4_port_ops;
1005 d.udma_mask = ATA_UDMA4;
1007 pmif->kind = controller_kl_ata3;
1008 } else if (of_device_is_compatible(np, "heathrow-ata")) {
1009 pmif->kind = controller_heathrow;
1011 pmif->kind = controller_ohare;
1012 pmif->broken_dma = 1;
1015 bidp = of_get_property(np, "AAPL,bus-id", NULL);
1016 pmif->aapl_bus_id = bidp ? *bidp : 0;
1018 /* On Kauai-type controllers, we make sure the FCR is correct */
1019 if (pmif->kauai_fcr)
1020 writel(KAUAI_FCR_UATA_MAGIC |
1021 KAUAI_FCR_UATA_RESET_N |
1022 KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1026 /* Make sure we have sane timings */
1027 sanitize_timings(pmif);
1029 #ifndef CONFIG_PPC64
1030 /* XXX FIXME: Media bay stuff need re-organizing */
1031 if (np->parent && np->parent->name
1032 && strcasecmp(np->parent->name, "media-bay") == 0) {
1033 #ifdef CONFIG_PMAC_MEDIABAY
1034 media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
1036 #endif /* CONFIG_PMAC_MEDIABAY */
1039 pmif->aapl_bus_id = 1;
1040 } else if (pmif->kind == controller_ohare) {
1041 /* The code below is having trouble on some ohare machines
1042 * (timing related ?). Until I can put my hand on one of these
1043 * units, I keep the old way
1045 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1049 /* This is necessary to enable IDE when net-booting */
1050 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1051 ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1053 ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1054 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1057 /* Setup MMIO ops */
1058 default_hwif_mmiops(hwif);
1059 hwif->OUTBSYNC = pmac_outbsync;
1061 hwif->hwif_data = pmif;
1062 ide_init_port_hw(hwif, hw);
1064 printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1065 hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
1066 pmif->mediabay ? " (mediabay)" : "", hwif->irq);
1068 if (pmif->mediabay) {
1069 #ifdef CONFIG_PMAC_MEDIABAY
1070 if (check_media_bay_by_base(pmif->regbase, MB_CD)) {
1074 hwif->drives[0].noprobe = 1;
1075 hwif->drives[1].noprobe = 1;
1079 idx[0] = hwif->index;
1081 ide_device_add(idx, &d);
1086 static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
1090 for (i = 0; i < 8; ++i)
1091 hw->io_ports_array[i] = base + i * 0x10;
1093 hw->io_ports.ctl_addr = base + 0x160;
1097 * Attach to a macio probed interface
1099 static int __devinit
1100 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1103 unsigned long regbase;
1105 pmac_ide_hwif_t *pmif;
1109 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1113 hwif = ide_find_port();
1115 printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
1116 printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
1121 if (macio_resource_count(mdev) == 0) {
1122 printk(KERN_WARNING "ide-pmac: no address for %s\n",
1123 mdev->ofdev.node->full_name);
1128 /* Request memory resource for IO ports */
1129 if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1130 printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1131 "%s!\n", mdev->ofdev.node->full_name);
1136 /* XXX This is bogus. Should be fixed in the registry by checking
1137 * the kind of host interrupt controller, a bit like gatwick
1138 * fixes in irq.c. That works well enough for the single case
1139 * where that happens though...
1141 if (macio_irq_count(mdev) == 0) {
1142 printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1143 "13\n", mdev->ofdev.node->full_name);
1144 irq = irq_create_mapping(NULL, 13);
1146 irq = macio_irq(mdev, 0);
1148 base = ioremap(macio_resource_start(mdev, 0), 0x400);
1149 regbase = (unsigned long) base;
1152 pmif->node = mdev->ofdev.node;
1153 pmif->regbase = regbase;
1155 pmif->kauai_fcr = NULL;
1156 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1157 if (macio_resource_count(mdev) >= 2) {
1158 if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1159 printk(KERN_WARNING "ide-pmac: can't request DMA "
1160 "resource for %s!\n",
1161 mdev->ofdev.node->full_name);
1163 pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1165 pmif->dma_regs = NULL;
1166 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1167 dev_set_drvdata(&mdev->ofdev.dev, hwif);
1169 memset(&hw, 0, sizeof(hw));
1170 pmac_ide_init_ports(&hw, pmif->regbase);
1172 hw.dev = &mdev->bus->pdev->dev;
1173 hw.parent = &mdev->ofdev.dev;
1175 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1177 /* The inteface is released to the common IDE layer */
1178 dev_set_drvdata(&mdev->ofdev.dev, NULL);
1180 if (pmif->dma_regs) {
1181 iounmap(pmif->dma_regs);
1182 macio_release_resource(mdev, 1);
1184 macio_release_resource(mdev, 0);
1196 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1198 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1201 if (mesg.event != mdev->ofdev.dev.power.power_state.event
1202 && (mesg.event & PM_EVENT_SLEEP)) {
1203 rc = pmac_ide_do_suspend(hwif);
1205 mdev->ofdev.dev.power.power_state = mesg;
1212 pmac_ide_macio_resume(struct macio_dev *mdev)
1214 ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1217 if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1218 rc = pmac_ide_do_resume(hwif);
1220 mdev->ofdev.dev.power.power_state = PMSG_ON;
1227 * Attach to a PCI probed interface
1229 static int __devinit
1230 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1233 struct device_node *np;
1234 pmac_ide_hwif_t *pmif;
1236 unsigned long rbase, rlen;
1240 np = pci_device_to_OF_node(pdev);
1242 printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1246 pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1250 hwif = ide_find_port();
1252 printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
1253 printk(KERN_ERR " %s\n", np->full_name);
1258 if (pci_enable_device(pdev)) {
1259 printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1260 "%s\n", np->full_name);
1264 pci_set_master(pdev);
1266 if (pci_request_regions(pdev, "Kauai ATA")) {
1267 printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1268 "%s\n", np->full_name);
1276 rbase = pci_resource_start(pdev, 0);
1277 rlen = pci_resource_len(pdev, 0);
1279 base = ioremap(rbase, rlen);
1280 pmif->regbase = (unsigned long) base + 0x2000;
1281 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1282 pmif->dma_regs = base + 0x1000;
1283 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1284 pmif->kauai_fcr = base;
1285 pmif->irq = pdev->irq;
1287 pci_set_drvdata(pdev, hwif);
1289 memset(&hw, 0, sizeof(hw));
1290 pmac_ide_init_ports(&hw, pmif->regbase);
1292 hw.dev = &pdev->dev;
1294 rc = pmac_ide_setup_device(pmif, hwif, &hw);
1296 /* The inteface is released to the common IDE layer */
1297 pci_set_drvdata(pdev, NULL);
1299 pci_release_regions(pdev);
1311 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1313 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1316 if (mesg.event != pdev->dev.power.power_state.event
1317 && (mesg.event & PM_EVENT_SLEEP)) {
1318 rc = pmac_ide_do_suspend(hwif);
1320 pdev->dev.power.power_state = mesg;
1327 pmac_ide_pci_resume(struct pci_dev *pdev)
1329 ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
1332 if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1333 rc = pmac_ide_do_resume(hwif);
1335 pdev->dev.power.power_state = PMSG_ON;
1341 static struct of_device_id pmac_ide_macio_match[] =
1358 static struct macio_driver pmac_ide_macio_driver =
1361 .match_table = pmac_ide_macio_match,
1362 .probe = pmac_ide_macio_attach,
1363 .suspend = pmac_ide_macio_suspend,
1364 .resume = pmac_ide_macio_resume,
1367 static const struct pci_device_id pmac_ide_pci_match[] = {
1368 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
1369 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
1370 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
1371 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
1372 { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
1376 static struct pci_driver pmac_ide_pci_driver = {
1378 .id_table = pmac_ide_pci_match,
1379 .probe = pmac_ide_pci_attach,
1380 .suspend = pmac_ide_pci_suspend,
1381 .resume = pmac_ide_pci_resume,
1383 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1385 int __init pmac_ide_probe(void)
1389 if (!machine_is(powermac))
1392 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1393 error = pci_register_driver(&pmac_ide_pci_driver);
1396 error = macio_register_driver(&pmac_ide_macio_driver);
1398 pci_unregister_driver(&pmac_ide_pci_driver);
1402 error = macio_register_driver(&pmac_ide_macio_driver);
1405 error = pci_register_driver(&pmac_ide_pci_driver);
1407 macio_unregister_driver(&pmac_ide_macio_driver);
1415 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1418 * pmac_ide_build_dmatable builds the DBDMA command list
1419 * for a transfer and sets the DBDMA channel to point to it.
1422 pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
1424 struct dbdma_cmd *table;
1426 ide_hwif_t *hwif = HWIF(drive);
1427 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1428 volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1429 struct scatterlist *sg;
1430 int wr = (rq_data_dir(rq) == WRITE);
1432 /* DMA table is already aligned */
1433 table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1435 /* Make sure DMA controller is stopped (necessary ?) */
1436 writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1437 while (readl(&dma->status) & RUN)
1440 hwif->sg_nents = i = ide_build_sglist(drive, rq);
1445 /* Build DBDMA commands list */
1446 sg = hwif->sg_table;
1447 while (i && sg_dma_len(sg)) {
1451 cur_addr = sg_dma_address(sg);
1452 cur_len = sg_dma_len(sg);
1454 if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1455 if (pmif->broken_dma_warn == 0) {
1456 printk(KERN_WARNING "%s: DMA on non aligned address, "
1457 "switching to PIO on Ohare chipset\n", drive->name);
1458 pmif->broken_dma_warn = 1;
1460 goto use_pio_instead;
1463 unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1465 if (count++ >= MAX_DCMDS) {
1466 printk(KERN_WARNING "%s: DMA table too small\n",
1468 goto use_pio_instead;
1470 st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1471 st_le16(&table->req_count, tc);
1472 st_le32(&table->phy_addr, cur_addr);
1474 table->xfer_status = 0;
1475 table->res_count = 0;
1484 /* convert the last command to an input/output last command */
1486 st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1487 /* add the stop command to the end of the list */
1488 memset(table, 0, sizeof(struct dbdma_cmd));
1489 st_le16(&table->command, DBDMA_STOP);
1491 writel(hwif->dmatable_dma, &dma->cmdptr);
1495 printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1498 ide_destroy_dmatable(drive);
1500 return 0; /* revert to PIO for this request */
1503 /* Teardown mappings after DMA has completed. */
1505 pmac_ide_destroy_dmatable (ide_drive_t *drive)
1507 ide_hwif_t *hwif = drive->hwif;
1509 if (hwif->sg_nents) {
1510 ide_destroy_dmatable(drive);
1516 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1517 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1520 pmac_ide_dma_setup(ide_drive_t *drive)
1522 ide_hwif_t *hwif = HWIF(drive);
1523 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1524 struct request *rq = HWGROUP(drive)->rq;
1525 u8 unit = (drive->select.b.unit & 0x01);
1530 ata4 = (pmif->kind == controller_kl_ata4);
1532 if (!pmac_ide_build_dmatable(drive, rq)) {
1533 ide_map_sg(drive, rq);
1537 /* Apple adds 60ns to wrDataSetup on reads */
1538 if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1539 writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
1540 PMAC_IDE_REG(IDE_TIMING_CONFIG));
1541 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1544 drive->waiting_for_dma = 1;
1550 pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
1552 /* issue cmd to drive */
1553 ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
1557 * Kick the DMA controller into life after the DMA command has been issued
1561 pmac_ide_dma_start(ide_drive_t *drive)
1563 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1564 volatile struct dbdma_regs __iomem *dma;
1566 dma = pmif->dma_regs;
1568 writel((RUN << 16) | RUN, &dma->control);
1569 /* Make sure it gets to the controller right now */
1570 (void)readl(&dma->control);
1574 * After a DMA transfer, make sure the controller is stopped
1577 pmac_ide_dma_end (ide_drive_t *drive)
1579 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1580 volatile struct dbdma_regs __iomem *dma;
1585 dma = pmif->dma_regs;
1587 drive->waiting_for_dma = 0;
1588 dstat = readl(&dma->status);
1589 writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1590 pmac_ide_destroy_dmatable(drive);
1591 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1592 * in theory, but with ATAPI decices doing buffer underruns, that would
1593 * cause us to disable DMA, which isn't what we want
1595 return (dstat & (RUN|DEAD)) != RUN;
1599 * Check out that the interrupt we got was for us. We can't always know this
1600 * for sure with those Apple interfaces (well, we could on the recent ones but
1601 * that's not implemented yet), on the other hand, we don't have shared interrupts
1602 * so it's not really a problem
1605 pmac_ide_dma_test_irq (ide_drive_t *drive)
1607 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1608 volatile struct dbdma_regs __iomem *dma;
1609 unsigned long status, timeout;
1613 dma = pmif->dma_regs;
1615 /* We have to things to deal with here:
1617 * - The dbdma won't stop if the command was started
1618 * but completed with an error without transferring all
1619 * datas. This happens when bad blocks are met during
1620 * a multi-block transfer.
1622 * - The dbdma fifo hasn't yet finished flushing to
1623 * to system memory when the disk interrupt occurs.
1627 /* If ACTIVE is cleared, the STOP command have passed and
1628 * transfer is complete.
1630 status = readl(&dma->status);
1631 if (!(status & ACTIVE))
1633 if (!drive->waiting_for_dma)
1634 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1635 called while not waiting\n", HWIF(drive)->index);
1637 /* If dbdma didn't execute the STOP command yet, the
1638 * active bit is still set. We consider that we aren't
1639 * sharing interrupts (which is hopefully the case with
1640 * those controllers) and so we just try to flush the
1641 * channel for pending data in the fifo
1644 writel((FLUSH << 16) | FLUSH, &dma->control);
1648 status = readl(&dma->status);
1649 if ((status & FLUSH) == 0)
1651 if (++timeout > 100) {
1652 printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1653 timeout flushing channel\n", HWIF(drive)->index);
1660 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1665 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1667 pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
1668 volatile struct dbdma_regs __iomem *dma;
1669 unsigned long status;
1673 dma = pmif->dma_regs;
1675 status = readl(&dma->status);
1676 printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1679 static const struct ide_dma_ops pmac_dma_ops = {
1680 .dma_host_set = pmac_ide_dma_host_set,
1681 .dma_setup = pmac_ide_dma_setup,
1682 .dma_exec_cmd = pmac_ide_dma_exec_cmd,
1683 .dma_start = pmac_ide_dma_start,
1684 .dma_end = pmac_ide_dma_end,
1685 .dma_test_irq = pmac_ide_dma_test_irq,
1686 .dma_timeout = ide_dma_timeout,
1687 .dma_lost_irq = pmac_ide_dma_lost_irq,
1691 * Allocate the data structures needed for using DMA with an interface
1692 * and fill the proper list of functions pointers
1694 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1695 const struct ide_port_info *d)
1697 pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
1698 struct pci_dev *dev = to_pci_dev(hwif->dev);
1700 /* We won't need pci_dev if we switch to generic consistent
1703 if (dev == NULL || pmif->dma_regs == 0)
1706 * Allocate space for the DBDMA commands.
1707 * The +2 is +1 for the stop command and +1 to allow for
1708 * aligning the start address to a multiple of 16 bytes.
1710 pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
1712 (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1713 &hwif->dmatable_dma);
1714 if (pmif->dma_table_cpu == NULL) {
1715 printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1720 hwif->sg_max_nents = MAX_DCMDS;
1725 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1726 const struct ide_port_info *d)
1730 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1732 module_init(pmac_ide_probe);
1734 MODULE_LICENSE("GPL");