2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
14 * Platform initialization for Discontig Memory
17 #include <linux/kernel.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
27 #include <asm/meminit.h>
29 #include <asm/sections.h>
32 * Track per-node information needed to setup the boot memory allocator, the
33 * per-node areas, and the real VM.
35 struct early_node_data {
36 struct ia64_node_data *node_data;
37 unsigned long pernode_addr;
38 unsigned long pernode_size;
39 struct bootmem_data bootmem_data;
40 unsigned long num_physpages;
41 #ifdef CONFIG_ZONE_DMA
42 unsigned long num_dma_physpages;
44 unsigned long min_pfn;
45 unsigned long max_pfn;
48 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
49 static nodemask_t memory_less_mask __initdata;
51 pg_data_t *pgdat_list[MAX_NUMNODES];
54 * To prevent cache aliasing effects, align per-node structures so that they
55 * start at addresses that are strided by node number.
57 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
58 #define NODEDATA_ALIGN(addr, node) \
59 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
60 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
63 * build_node_maps - callback to setup bootmem structs for each node
64 * @start: physical start of range
65 * @len: length of range
66 * @node: node where this range resides
68 * We allocate a struct bootmem_data for each piece of memory that we wish to
69 * treat as a virtually contiguous block (i.e. each node). Each such block
70 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
71 * if necessary. Any non-existent pages will simply be part of the virtual
72 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
73 * memory ranges from the caller.
75 static int __init build_node_maps(unsigned long start, unsigned long len,
78 unsigned long cstart, epfn, end = start + len;
79 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
81 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
82 cstart = GRANULEROUNDDOWN(start);
84 if (!bdp->node_low_pfn) {
85 bdp->node_boot_start = cstart;
86 bdp->node_low_pfn = epfn;
88 bdp->node_boot_start = min(cstart, bdp->node_boot_start);
89 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
96 * early_nr_cpus_node - return number of cpus on a given node
97 * @node: node to check
99 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
100 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101 * called yet. Note that node 0 will also count all non-existent cpus.
103 static int __meminit early_nr_cpus_node(int node)
107 for_each_possible_early_cpu(cpu)
108 if (node == node_cpuid[cpu].nid)
115 * compute_pernodesize - compute size of pernode data
116 * @node: the node id.
118 static unsigned long __meminit compute_pernodesize(int node)
120 unsigned long pernodesize = 0, cpus;
122 cpus = early_nr_cpus_node(node);
123 pernodesize += PERCPU_PAGE_SIZE * cpus;
124 pernodesize += node * L1_CACHE_BYTES;
125 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
126 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
127 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128 pernodesize = PAGE_ALIGN(pernodesize);
133 * per_cpu_node_setup - setup per-cpu areas on each node
134 * @cpu_data: per-cpu area on this node
135 * @node: node to setup
137 * Copy the static per-cpu data into the region we just set aside and then
138 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
139 * the end of the area.
141 static void *per_cpu_node_setup(void *cpu_data, int node)
146 for_each_possible_early_cpu(cpu) {
147 if (node == node_cpuid[cpu].nid) {
148 memcpy(__va(cpu_data), __phys_per_cpu_start,
149 __per_cpu_end - __per_cpu_start);
150 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
152 cpu_data += PERCPU_PAGE_SIZE;
160 * fill_pernode - initialize pernode data.
161 * @node: the node id.
162 * @pernode: physical address of pernode data
163 * @pernodesize: size of the pernode data
165 static void __init fill_pernode(int node, unsigned long pernode,
166 unsigned long pernodesize)
169 int cpus = early_nr_cpus_node(node);
170 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
172 mem_data[node].pernode_addr = pernode;
173 mem_data[node].pernode_size = pernodesize;
174 memset(__va(pernode), 0, pernodesize);
176 cpu_data = (void *)pernode;
177 pernode += PERCPU_PAGE_SIZE * cpus;
178 pernode += node * L1_CACHE_BYTES;
180 pgdat_list[node] = __va(pernode);
181 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
183 mem_data[node].node_data = __va(pernode);
184 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
186 pgdat_list[node]->bdata = bdp;
187 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
189 cpu_data = per_cpu_node_setup(cpu_data, node);
195 * find_pernode_space - allocate memory for memory map and per-node structures
196 * @start: physical start of range
197 * @len: length of range
198 * @node: node where this range resides
200 * This routine reserves space for the per-cpu data struct, the list of
201 * pg_data_ts and the per-node data struct. Each node will have something like
202 * the following in the first chunk of addr. space large enough to hold it.
204 * ________________________
206 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
207 * | PERCPU_PAGE_SIZE * | start and length big enough
208 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
209 * |------------------------|
210 * | local pg_data_t * |
211 * |------------------------|
212 * | local ia64_node_data |
213 * |------------------------|
215 * |________________________|
217 * Once this space has been set aside, the bootmem maps are initialized. We
218 * could probably move the allocation of the per-cpu and ia64_node_data space
219 * outside of this function and use alloc_bootmem_node(), but doing it here
220 * is straightforward and we get the alignments we want so...
222 static int __init find_pernode_space(unsigned long start, unsigned long len,
226 unsigned long pernodesize = 0, pernode, pages, mapsize;
227 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
229 epfn = (start + len) >> PAGE_SHIFT;
231 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
232 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
235 * Make sure this memory falls within this node's usable memory
236 * since we may have thrown some away in build_maps().
238 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
241 /* Don't setup this node's local space twice... */
242 if (mem_data[node].pernode_addr)
246 * Calculate total size needed, incl. what's necessary
247 * for good alignment and alias prevention.
249 pernodesize = compute_pernodesize(node);
250 pernode = NODEDATA_ALIGN(start, node);
252 /* Is this range big enough for what we want to store here? */
253 if (start + len > (pernode + pernodesize + mapsize))
254 fill_pernode(node, pernode, pernodesize);
260 * free_node_bootmem - free bootmem allocator memory for use
261 * @start: physical start of range
262 * @len: length of range
263 * @node: node where this range resides
265 * Simply calls the bootmem allocator to free the specified ranged from
266 * the given pg_data_t's bdata struct. After this function has been called
267 * for all the entries in the EFI memory map, the bootmem allocator will
268 * be ready to service allocation requests.
270 static int __init free_node_bootmem(unsigned long start, unsigned long len,
273 free_bootmem_node(pgdat_list[node], start, len);
279 * reserve_pernode_space - reserve memory for per-node space
281 * Reserve the space used by the bootmem maps & per-node space in the boot
282 * allocator so that when we actually create the real mem maps we don't
285 static void __init reserve_pernode_space(void)
287 unsigned long base, size, pages;
288 struct bootmem_data *bdp;
291 for_each_online_node(node) {
292 pg_data_t *pdp = pgdat_list[node];
294 if (node_isset(node, memory_less_mask))
299 /* First the bootmem_map itself */
300 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
301 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
302 base = __pa(bdp->node_bootmem_map);
303 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
305 /* Now the per-node space */
306 size = mem_data[node].pernode_size;
307 base = __pa(mem_data[node].pernode_addr);
308 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
312 static void __meminit scatter_node_data(void)
318 * for_each_online_node() can't be used at here.
319 * node_online_map is not set for hot-added nodes at this time,
320 * because we are halfway through initialization of the new node's
321 * structures. If for_each_online_node() is used, a new node's
322 * pg_data_ptrs will be not initialized. Instead of using it,
323 * pgdat_list[] is checked.
325 for_each_node(node) {
326 if (pgdat_list[node]) {
327 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
328 memcpy(dst, pgdat_list, sizeof(pgdat_list));
334 * initialize_pernode_data - fixup per-cpu & per-node pointers
336 * Each node's per-node area has a copy of the global pg_data_t list, so
337 * we copy that to each node here, as well as setting the per-cpu pointer
338 * to the local node data structure. The active_cpus field of the per-node
339 * structure gets setup by the platform_cpu_init() function later.
341 static void __init initialize_pernode_data(void)
348 /* Set the node_data pointer for each per-cpu struct */
349 for_each_possible_early_cpu(cpu) {
350 node = node_cpuid[cpu].nid;
351 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
355 struct cpuinfo_ia64 *cpu0_cpu_info;
357 node = node_cpuid[cpu].nid;
358 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
359 ((char *)&per_cpu__cpu_info - __per_cpu_start));
360 cpu0_cpu_info->node_data = mem_data[node].node_data;
362 #endif /* CONFIG_SMP */
366 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
367 * node but fall back to any other node when __alloc_bootmem_node fails
370 * @pernodesize: size of this node's pernode data
372 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
376 int bestnode = -1, node, anynode = 0;
378 for_each_online_node(node) {
379 if (node_isset(node, memory_less_mask))
381 else if (node_distance(nid, node) < best) {
382 best = node_distance(nid, node);
391 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
392 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
398 * memory_less_nodes - allocate and initialize CPU only nodes pernode
401 static void __init memory_less_nodes(void)
403 unsigned long pernodesize;
407 for_each_node_mask(node, memory_less_mask) {
408 pernodesize = compute_pernodesize(node);
409 pernode = memory_less_node_alloc(node, pernodesize);
410 fill_pernode(node, __pa(pernode), pernodesize);
417 * find_memory - walk the EFI memory map and setup the bootmem allocator
419 * Called early in boot to setup the bootmem allocator, and to
420 * allocate the per-cpu and per-node structures.
422 void __init find_memory(void)
428 if (num_online_nodes() == 0) {
429 printk(KERN_ERR "node info missing!\n");
433 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
437 /* These actually end up getting called by call_pernode_memory() */
438 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
439 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
440 efi_memmap_walk(find_max_min_low_pfn, NULL);
442 for_each_online_node(node)
443 if (mem_data[node].bootmem_data.node_low_pfn) {
444 node_clear(node, memory_less_mask);
445 mem_data[node].min_pfn = ~0UL;
448 efi_memmap_walk(filter_memory, register_active_ranges);
451 * Initialize the boot memory maps in reverse order since that's
452 * what the bootmem allocator expects
454 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
455 unsigned long pernode, pernodesize, map;
456 struct bootmem_data *bdp;
458 if (!node_online(node))
460 else if (node_isset(node, memory_less_mask))
463 bdp = &mem_data[node].bootmem_data;
464 pernode = mem_data[node].pernode_addr;
465 pernodesize = mem_data[node].pernode_size;
466 map = pernode + pernodesize;
468 init_bootmem_node(pgdat_list[node],
470 bdp->node_boot_start>>PAGE_SHIFT,
474 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
476 reserve_pernode_space();
478 initialize_pernode_data();
480 max_pfn = max_low_pfn;
487 * per_cpu_init - setup per-cpu variables
489 * find_pernode_space() does most of this already, we just need to set
490 * local_per_cpu_offset
492 void __cpuinit *per_cpu_init(void)
495 static int first_time = 1;
499 for_each_possible_early_cpu(cpu)
500 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
503 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
505 #endif /* CONFIG_SMP */
508 * show_mem - give short summary of memory stats
510 * Shows a simple page count of reserved and used pages in the system.
511 * For discontig machines, it does this on a per-pgdat basis.
515 int i, total_reserved = 0;
516 int total_shared = 0, total_cached = 0;
517 unsigned long total_present = 0;
520 printk(KERN_INFO "Mem-info:\n");
522 printk(KERN_INFO "Node memory in pages:\n");
523 for_each_online_pgdat(pgdat) {
524 unsigned long present;
526 int shared = 0, cached = 0, reserved = 0;
528 pgdat_resize_lock(pgdat, &flags);
529 present = pgdat->node_present_pages;
530 for(i = 0; i < pgdat->node_spanned_pages; i++) {
532 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
533 touch_nmi_watchdog();
534 if (pfn_valid(pgdat->node_start_pfn + i))
535 page = pfn_to_page(pgdat->node_start_pfn + i);
537 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
541 if (PageReserved(page))
543 else if (PageSwapCache(page))
545 else if (page_count(page))
546 shared += page_count(page)-1;
548 pgdat_resize_unlock(pgdat, &flags);
549 total_present += present;
550 total_reserved += reserved;
551 total_cached += cached;
552 total_shared += shared;
553 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
554 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
555 present, reserved, shared, cached);
557 printk(KERN_INFO "%ld pages of RAM\n", total_present);
558 printk(KERN_INFO "%d reserved pages\n", total_reserved);
559 printk(KERN_INFO "%d pages shared\n", total_shared);
560 printk(KERN_INFO "%d pages swap cached\n", total_cached);
561 printk(KERN_INFO "Total of %ld pages in page table cache\n",
562 quicklist_total_size());
563 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
567 * call_pernode_memory - use SRAT to call callback functions with node info
568 * @start: physical start of range
569 * @len: length of range
570 * @arg: function to call for each range
572 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
573 * out to which node a block of memory belongs. Ignore memory that we cannot
574 * identify, and split blocks that run across multiple nodes.
576 * Take this opportunity to round the start address up and the end address
577 * down to page boundaries.
579 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
581 unsigned long rs, re, end = start + len;
582 void (*func)(unsigned long, unsigned long, int);
585 start = PAGE_ALIGN(start);
592 if (!num_node_memblks) {
593 /* No SRAT table, so assume one node (node 0) */
595 (*func)(start, end - start, 0);
599 for (i = 0; i < num_node_memblks; i++) {
600 rs = max(start, node_memblk[i].start_paddr);
601 re = min(end, node_memblk[i].start_paddr +
602 node_memblk[i].size);
605 (*func)(rs, re - rs, node_memblk[i].nid);
613 * count_node_pages - callback to build per-node memory info structures
614 * @start: physical start of range
615 * @len: length of range
616 * @node: node where this range resides
618 * Each node has it's own number of physical pages, DMAable pages, start, and
619 * end page frame number. This routine will be called by call_pernode_memory()
620 * for each piece of usable memory and will setup these values for each node.
621 * Very similar to build_maps().
623 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
625 unsigned long end = start + len;
627 mem_data[node].num_physpages += len >> PAGE_SHIFT;
628 #ifdef CONFIG_ZONE_DMA
629 if (start <= __pa(MAX_DMA_ADDRESS))
630 mem_data[node].num_dma_physpages +=
631 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
633 start = GRANULEROUNDDOWN(start);
634 start = ORDERROUNDDOWN(start);
635 end = GRANULEROUNDUP(end);
636 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
638 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
639 start >> PAGE_SHIFT);
645 * paging_init - setup page tables
647 * paging_init() sets up the page tables for each node of the system and frees
648 * the bootmem allocator memory for general use.
650 void __init paging_init(void)
652 unsigned long max_dma;
653 unsigned long pfn_offset = 0;
654 unsigned long max_pfn = 0;
656 unsigned long max_zone_pfns[MAX_NR_ZONES];
658 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
660 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
662 sparse_memory_present_with_active_regions(MAX_NUMNODES);
665 #ifdef CONFIG_VIRTUAL_MEM_MAP
666 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
667 sizeof(struct page));
668 vmem_map = (struct page *) vmalloc_end;
669 efi_memmap_walk(create_mem_map_page_table, NULL);
670 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
673 for_each_online_node(node) {
674 num_physpages += mem_data[node].num_physpages;
675 pfn_offset = mem_data[node].min_pfn;
677 #ifdef CONFIG_VIRTUAL_MEM_MAP
678 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
680 if (mem_data[node].max_pfn > max_pfn)
681 max_pfn = mem_data[node].max_pfn;
684 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
685 #ifdef CONFIG_ZONE_DMA
686 max_zone_pfns[ZONE_DMA] = max_dma;
688 max_zone_pfns[ZONE_NORMAL] = max_pfn;
689 free_area_init_nodes(max_zone_pfns);
691 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
694 #ifdef CONFIG_MEMORY_HOTPLUG
695 pg_data_t *arch_alloc_nodedata(int nid)
697 unsigned long size = compute_pernodesize(nid);
699 return kzalloc(size, GFP_KERNEL);
702 void arch_free_nodedata(pg_data_t *pgdat)
707 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
709 pgdat_list[update_node] = update_pgdat;
714 #ifdef CONFIG_SPARSEMEM_VMEMMAP
715 int __meminit vmemmap_populate(struct page *start_page,
716 unsigned long size, int node)
718 return vmemmap_populate_basepages(start_page, size, node);