1 #include <linux/bitops.h>
2 #include <linux/slab.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
18 /* temporary define until extent_map moves out of btrfs */
19 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
20 unsigned long extra_flags,
21 void (*ctor)(void *, struct kmem_cache *,
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29 static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED;
31 #define BUFFER_LRU_MAX 64
36 struct rb_node rb_node;
39 struct extent_page_data {
41 struct extent_io_tree *tree;
42 get_extent_t *get_extent;
45 int __init extent_io_init(void)
47 extent_state_cache = btrfs_cache_create("extent_state",
48 sizeof(struct extent_state), 0,
50 if (!extent_state_cache)
53 extent_buffer_cache = btrfs_cache_create("extent_buffers",
54 sizeof(struct extent_buffer), 0,
56 if (!extent_buffer_cache)
57 goto free_state_cache;
61 kmem_cache_destroy(extent_state_cache);
65 void extent_io_exit(void)
67 struct extent_state *state;
68 struct extent_buffer *eb;
70 while (!list_empty(&states)) {
71 state = list_entry(states.next, struct extent_state, leak_list);
72 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
73 list_del(&state->leak_list);
74 kmem_cache_free(extent_state_cache, state);
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs));
81 list_del(&eb->leak_list);
82 kmem_cache_free(extent_buffer_cache, eb);
84 if (extent_state_cache)
85 kmem_cache_destroy(extent_state_cache);
86 if (extent_buffer_cache)
87 kmem_cache_destroy(extent_buffer_cache);
90 void extent_io_tree_init(struct extent_io_tree *tree,
91 struct address_space *mapping, gfp_t mask)
93 tree->state.rb_node = NULL;
95 tree->dirty_bytes = 0;
96 spin_lock_init(&tree->lock);
97 spin_lock_init(&tree->lru_lock);
98 tree->mapping = mapping;
99 INIT_LIST_HEAD(&tree->buffer_lru);
103 EXPORT_SYMBOL(extent_io_tree_init);
105 void extent_io_tree_empty_lru(struct extent_io_tree *tree)
107 struct extent_buffer *eb;
108 while(!list_empty(&tree->buffer_lru)) {
109 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
111 list_del_init(&eb->lru);
112 free_extent_buffer(eb);
115 EXPORT_SYMBOL(extent_io_tree_empty_lru);
117 struct extent_state *alloc_extent_state(gfp_t mask)
119 struct extent_state *state;
122 state = kmem_cache_alloc(extent_state_cache, mask);
128 spin_lock_irqsave(&leak_lock, flags);
129 list_add(&state->leak_list, &states);
130 spin_unlock_irqrestore(&leak_lock, flags);
132 atomic_set(&state->refs, 1);
133 init_waitqueue_head(&state->wq);
136 EXPORT_SYMBOL(alloc_extent_state);
138 void free_extent_state(struct extent_state *state)
142 if (atomic_dec_and_test(&state->refs)) {
144 WARN_ON(state->tree);
145 spin_lock_irqsave(&leak_lock, flags);
146 list_del(&state->leak_list);
147 spin_unlock_irqrestore(&leak_lock, flags);
148 kmem_cache_free(extent_state_cache, state);
151 EXPORT_SYMBOL(free_extent_state);
153 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
154 struct rb_node *node)
156 struct rb_node ** p = &root->rb_node;
157 struct rb_node * parent = NULL;
158 struct tree_entry *entry;
162 entry = rb_entry(parent, struct tree_entry, rb_node);
164 if (offset < entry->start)
166 else if (offset > entry->end)
172 entry = rb_entry(node, struct tree_entry, rb_node);
173 rb_link_node(node, parent, p);
174 rb_insert_color(node, root);
178 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
179 struct rb_node **prev_ret,
180 struct rb_node **next_ret)
182 struct rb_root *root = &tree->state;
183 struct rb_node * n = root->rb_node;
184 struct rb_node *prev = NULL;
185 struct rb_node *orig_prev = NULL;
186 struct tree_entry *entry;
187 struct tree_entry *prev_entry = NULL;
190 struct extent_state *state;
192 if (state->start <= offset && offset <= state->end)
193 return &tree->last->rb_node;
196 entry = rb_entry(n, struct tree_entry, rb_node);
200 if (offset < entry->start)
202 else if (offset > entry->end)
205 tree->last = rb_entry(n, struct extent_state, rb_node);
212 while(prev && offset > prev_entry->end) {
213 prev = rb_next(prev);
214 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
222 while(prev && offset < prev_entry->start) {
223 prev = rb_prev(prev);
224 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
234 struct rb_node *prev = NULL;
237 ret = __etree_search(tree, offset, &prev, NULL);
240 tree->last = rb_entry(prev, struct extent_state,
249 * utility function to look for merge candidates inside a given range.
250 * Any extents with matching state are merged together into a single
251 * extent in the tree. Extents with EXTENT_IO in their state field
252 * are not merged because the end_io handlers need to be able to do
253 * operations on them without sleeping (or doing allocations/splits).
255 * This should be called with the tree lock held.
257 static int merge_state(struct extent_io_tree *tree,
258 struct extent_state *state)
260 struct extent_state *other;
261 struct rb_node *other_node;
263 if (state->state & EXTENT_IOBITS)
266 other_node = rb_prev(&state->rb_node);
268 other = rb_entry(other_node, struct extent_state, rb_node);
269 if (other->end == state->start - 1 &&
270 other->state == state->state) {
271 state->start = other->start;
273 if (tree->last == other)
275 rb_erase(&other->rb_node, &tree->state);
276 free_extent_state(other);
279 other_node = rb_next(&state->rb_node);
281 other = rb_entry(other_node, struct extent_state, rb_node);
282 if (other->start == state->end + 1 &&
283 other->state == state->state) {
284 other->start = state->start;
286 if (tree->last == state)
288 rb_erase(&state->rb_node, &tree->state);
289 free_extent_state(state);
295 static void set_state_cb(struct extent_io_tree *tree,
296 struct extent_state *state,
299 if (tree->ops && tree->ops->set_bit_hook) {
300 tree->ops->set_bit_hook(tree->mapping->host, state->start,
301 state->end, state->state, bits);
305 static void clear_state_cb(struct extent_io_tree *tree,
306 struct extent_state *state,
309 if (tree->ops && tree->ops->set_bit_hook) {
310 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
311 state->end, state->state, bits);
316 * insert an extent_state struct into the tree. 'bits' are set on the
317 * struct before it is inserted.
319 * This may return -EEXIST if the extent is already there, in which case the
320 * state struct is freed.
322 * The tree lock is not taken internally. This is a utility function and
323 * probably isn't what you want to call (see set/clear_extent_bit).
325 static int insert_state(struct extent_io_tree *tree,
326 struct extent_state *state, u64 start, u64 end,
329 struct rb_node *node;
332 printk("end < start %Lu %Lu\n", end, start);
335 if (bits & EXTENT_DIRTY)
336 tree->dirty_bytes += end - start + 1;
337 set_state_cb(tree, state, bits);
338 state->state |= bits;
339 state->start = start;
341 node = tree_insert(&tree->state, end, &state->rb_node);
343 struct extent_state *found;
344 found = rb_entry(node, struct extent_state, rb_node);
345 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
346 free_extent_state(state);
351 merge_state(tree, state);
356 * split a given extent state struct in two, inserting the preallocated
357 * struct 'prealloc' as the newly created second half. 'split' indicates an
358 * offset inside 'orig' where it should be split.
361 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
362 * are two extent state structs in the tree:
363 * prealloc: [orig->start, split - 1]
364 * orig: [ split, orig->end ]
366 * The tree locks are not taken by this function. They need to be held
369 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
370 struct extent_state *prealloc, u64 split)
372 struct rb_node *node;
373 prealloc->start = orig->start;
374 prealloc->end = split - 1;
375 prealloc->state = orig->state;
378 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
380 struct extent_state *found;
381 found = rb_entry(node, struct extent_state, rb_node);
382 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
383 free_extent_state(prealloc);
386 prealloc->tree = tree;
391 * utility function to clear some bits in an extent state struct.
392 * it will optionally wake up any one waiting on this state (wake == 1), or
393 * forcibly remove the state from the tree (delete == 1).
395 * If no bits are set on the state struct after clearing things, the
396 * struct is freed and removed from the tree
398 static int clear_state_bit(struct extent_io_tree *tree,
399 struct extent_state *state, int bits, int wake,
402 int ret = state->state & bits;
404 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
405 u64 range = state->end - state->start + 1;
406 WARN_ON(range > tree->dirty_bytes);
407 tree->dirty_bytes -= range;
409 clear_state_cb(tree, state, bits);
410 state->state &= ~bits;
413 if (delete || state->state == 0) {
415 clear_state_cb(tree, state, state->state);
416 if (tree->last == state) {
417 tree->last = extent_state_next(state);
419 rb_erase(&state->rb_node, &tree->state);
421 free_extent_state(state);
426 merge_state(tree, state);
432 * clear some bits on a range in the tree. This may require splitting
433 * or inserting elements in the tree, so the gfp mask is used to
434 * indicate which allocations or sleeping are allowed.
436 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
437 * the given range from the tree regardless of state (ie for truncate).
439 * the range [start, end] is inclusive.
441 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
442 * bits were already set, or zero if none of the bits were already set.
444 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
445 int bits, int wake, int delete, gfp_t mask)
447 struct extent_state *state;
448 struct extent_state *prealloc = NULL;
449 struct rb_node *node;
455 if (!prealloc && (mask & __GFP_WAIT)) {
456 prealloc = alloc_extent_state(mask);
461 spin_lock_irqsave(&tree->lock, flags);
463 * this search will find the extents that end after
466 node = tree_search(tree, start);
469 state = rb_entry(node, struct extent_state, rb_node);
470 if (state->start > end)
472 WARN_ON(state->end < start);
475 * | ---- desired range ---- |
477 * | ------------- state -------------- |
479 * We need to split the extent we found, and may flip
480 * bits on second half.
482 * If the extent we found extends past our range, we
483 * just split and search again. It'll get split again
484 * the next time though.
486 * If the extent we found is inside our range, we clear
487 * the desired bit on it.
490 if (state->start < start) {
492 prealloc = alloc_extent_state(GFP_ATOMIC);
493 err = split_state(tree, state, prealloc, start);
494 BUG_ON(err == -EEXIST);
498 if (state->end <= end) {
499 start = state->end + 1;
500 set |= clear_state_bit(tree, state, bits,
503 start = state->start;
508 * | ---- desired range ---- |
510 * We need to split the extent, and clear the bit
513 if (state->start <= end && state->end > end) {
515 prealloc = alloc_extent_state(GFP_ATOMIC);
516 err = split_state(tree, state, prealloc, end + 1);
517 BUG_ON(err == -EEXIST);
521 set |= clear_state_bit(tree, prealloc, bits,
527 start = state->end + 1;
528 set |= clear_state_bit(tree, state, bits, wake, delete);
532 spin_unlock_irqrestore(&tree->lock, flags);
534 free_extent_state(prealloc);
541 spin_unlock_irqrestore(&tree->lock, flags);
542 if (mask & __GFP_WAIT)
546 EXPORT_SYMBOL(clear_extent_bit);
548 static int wait_on_state(struct extent_io_tree *tree,
549 struct extent_state *state)
552 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
553 spin_unlock_irq(&tree->lock);
555 spin_lock_irq(&tree->lock);
556 finish_wait(&state->wq, &wait);
561 * waits for one or more bits to clear on a range in the state tree.
562 * The range [start, end] is inclusive.
563 * The tree lock is taken by this function
565 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
567 struct extent_state *state;
568 struct rb_node *node;
570 spin_lock_irq(&tree->lock);
574 * this search will find all the extents that end after
577 node = tree_search(tree, start);
581 state = rb_entry(node, struct extent_state, rb_node);
583 if (state->start > end)
586 if (state->state & bits) {
587 start = state->start;
588 atomic_inc(&state->refs);
589 wait_on_state(tree, state);
590 free_extent_state(state);
593 start = state->end + 1;
598 if (need_resched()) {
599 spin_unlock_irq(&tree->lock);
601 spin_lock_irq(&tree->lock);
605 spin_unlock_irq(&tree->lock);
608 EXPORT_SYMBOL(wait_extent_bit);
610 static void set_state_bits(struct extent_io_tree *tree,
611 struct extent_state *state,
614 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
615 u64 range = state->end - state->start + 1;
616 tree->dirty_bytes += range;
618 set_state_cb(tree, state, bits);
619 state->state |= bits;
623 * set some bits on a range in the tree. This may require allocations
624 * or sleeping, so the gfp mask is used to indicate what is allowed.
626 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
627 * range already has the desired bits set. The start of the existing
628 * range is returned in failed_start in this case.
630 * [start, end] is inclusive
631 * This takes the tree lock.
633 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
634 int exclusive, u64 *failed_start, gfp_t mask)
636 struct extent_state *state;
637 struct extent_state *prealloc = NULL;
638 struct rb_node *node;
645 if (!prealloc && (mask & __GFP_WAIT)) {
646 prealloc = alloc_extent_state(mask);
651 spin_lock_irqsave(&tree->lock, flags);
653 * this search will find all the extents that end after
656 node = tree_search(tree, start);
658 err = insert_state(tree, prealloc, start, end, bits);
660 BUG_ON(err == -EEXIST);
664 state = rb_entry(node, struct extent_state, rb_node);
665 last_start = state->start;
666 last_end = state->end;
669 * | ---- desired range ---- |
672 * Just lock what we found and keep going
674 if (state->start == start && state->end <= end) {
675 set = state->state & bits;
676 if (set && exclusive) {
677 *failed_start = state->start;
681 set_state_bits(tree, state, bits);
682 start = state->end + 1;
683 merge_state(tree, state);
688 * | ---- desired range ---- |
691 * | ------------- state -------------- |
693 * We need to split the extent we found, and may flip bits on
696 * If the extent we found extends past our
697 * range, we just split and search again. It'll get split
698 * again the next time though.
700 * If the extent we found is inside our range, we set the
703 if (state->start < start) {
704 set = state->state & bits;
705 if (exclusive && set) {
706 *failed_start = start;
710 err = split_state(tree, state, prealloc, start);
711 BUG_ON(err == -EEXIST);
715 if (state->end <= end) {
716 set_state_bits(tree, state, bits);
717 start = state->end + 1;
718 merge_state(tree, state);
720 start = state->start;
725 * | ---- desired range ---- |
726 * | state | or | state |
728 * There's a hole, we need to insert something in it and
729 * ignore the extent we found.
731 if (state->start > start) {
733 if (end < last_start)
736 this_end = last_start -1;
737 err = insert_state(tree, prealloc, start, this_end,
740 BUG_ON(err == -EEXIST);
743 start = this_end + 1;
747 * | ---- desired range ---- |
749 * We need to split the extent, and set the bit
752 if (state->start <= end && state->end > end) {
753 set = state->state & bits;
754 if (exclusive && set) {
755 *failed_start = start;
759 err = split_state(tree, state, prealloc, end + 1);
760 BUG_ON(err == -EEXIST);
762 set_state_bits(tree, prealloc, bits);
763 merge_state(tree, prealloc);
771 spin_unlock_irqrestore(&tree->lock, flags);
773 free_extent_state(prealloc);
780 spin_unlock_irqrestore(&tree->lock, flags);
781 if (mask & __GFP_WAIT)
785 EXPORT_SYMBOL(set_extent_bit);
787 /* wrappers around set/clear extent bit */
788 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
791 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
794 EXPORT_SYMBOL(set_extent_dirty);
796 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
797 int bits, gfp_t mask)
799 return set_extent_bit(tree, start, end, bits, 0, NULL,
802 EXPORT_SYMBOL(set_extent_bits);
804 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
805 int bits, gfp_t mask)
807 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
809 EXPORT_SYMBOL(clear_extent_bits);
811 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
814 return set_extent_bit(tree, start, end,
815 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
818 EXPORT_SYMBOL(set_extent_delalloc);
820 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
823 return clear_extent_bit(tree, start, end,
824 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
826 EXPORT_SYMBOL(clear_extent_dirty);
828 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
831 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
834 EXPORT_SYMBOL(set_extent_new);
836 int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
839 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
841 EXPORT_SYMBOL(clear_extent_new);
843 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
846 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
849 EXPORT_SYMBOL(set_extent_uptodate);
851 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
854 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
856 EXPORT_SYMBOL(clear_extent_uptodate);
858 int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
861 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
864 EXPORT_SYMBOL(set_extent_writeback);
866 int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
869 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
871 EXPORT_SYMBOL(clear_extent_writeback);
873 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
875 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
877 EXPORT_SYMBOL(wait_on_extent_writeback);
879 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
884 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
885 &failed_start, mask);
886 if (err == -EEXIST && (mask & __GFP_WAIT)) {
887 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
888 start = failed_start;
892 WARN_ON(start > end);
896 EXPORT_SYMBOL(lock_extent);
898 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
901 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
903 EXPORT_SYMBOL(unlock_extent);
906 * helper function to set pages and extents in the tree dirty
908 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
910 unsigned long index = start >> PAGE_CACHE_SHIFT;
911 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
914 while (index <= end_index) {
915 page = find_get_page(tree->mapping, index);
917 __set_page_dirty_nobuffers(page);
918 page_cache_release(page);
921 set_extent_dirty(tree, start, end, GFP_NOFS);
924 EXPORT_SYMBOL(set_range_dirty);
927 * helper function to set both pages and extents in the tree writeback
929 int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
931 unsigned long index = start >> PAGE_CACHE_SHIFT;
932 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
935 while (index <= end_index) {
936 page = find_get_page(tree->mapping, index);
938 set_page_writeback(page);
939 page_cache_release(page);
942 set_extent_writeback(tree, start, end, GFP_NOFS);
945 EXPORT_SYMBOL(set_range_writeback);
947 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
948 u64 *start_ret, u64 *end_ret, int bits)
950 struct rb_node *node;
951 struct extent_state *state;
954 spin_lock_irq(&tree->lock);
956 * this search will find all the extents that end after
959 node = tree_search(tree, start);
965 state = rb_entry(node, struct extent_state, rb_node);
966 if (state->end >= start && (state->state & bits)) {
967 *start_ret = state->start;
968 *end_ret = state->end;
972 node = rb_next(node);
977 spin_unlock_irq(&tree->lock);
980 EXPORT_SYMBOL(find_first_extent_bit);
982 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
985 struct rb_node *node;
986 struct extent_state *state;
989 * this search will find all the extents that end after
992 node = tree_search(tree, start);
998 state = rb_entry(node, struct extent_state, rb_node);
999 if (state->end >= start && (state->state & bits)) {
1002 node = rb_next(node);
1009 EXPORT_SYMBOL(find_first_extent_bit_state);
1011 u64 find_lock_delalloc_range(struct extent_io_tree *tree,
1012 u64 *start, u64 *end, u64 max_bytes)
1014 struct rb_node *node;
1015 struct extent_state *state;
1016 u64 cur_start = *start;
1018 u64 total_bytes = 0;
1020 spin_lock_irq(&tree->lock);
1022 * this search will find all the extents that end after
1026 node = tree_search(tree, cur_start);
1034 state = rb_entry(node, struct extent_state, rb_node);
1035 if (found && state->start != cur_start) {
1038 if (!(state->state & EXTENT_DELALLOC)) {
1044 struct extent_state *prev_state;
1045 struct rb_node *prev_node = node;
1047 prev_node = rb_prev(prev_node);
1050 prev_state = rb_entry(prev_node,
1051 struct extent_state,
1053 if (!(prev_state->state & EXTENT_DELALLOC))
1059 if (state->state & EXTENT_LOCKED) {
1061 atomic_inc(&state->refs);
1062 prepare_to_wait(&state->wq, &wait,
1063 TASK_UNINTERRUPTIBLE);
1064 spin_unlock_irq(&tree->lock);
1066 spin_lock_irq(&tree->lock);
1067 finish_wait(&state->wq, &wait);
1068 free_extent_state(state);
1071 set_state_cb(tree, state, EXTENT_LOCKED);
1072 state->state |= EXTENT_LOCKED;
1074 *start = state->start;
1077 cur_start = state->end + 1;
1078 node = rb_next(node);
1081 total_bytes += state->end - state->start + 1;
1082 if (total_bytes >= max_bytes)
1086 spin_unlock_irq(&tree->lock);
1090 u64 count_range_bits(struct extent_io_tree *tree,
1091 u64 *start, u64 search_end, u64 max_bytes,
1094 struct rb_node *node;
1095 struct extent_state *state;
1096 u64 cur_start = *start;
1097 u64 total_bytes = 0;
1100 if (search_end <= cur_start) {
1101 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1106 spin_lock_irq(&tree->lock);
1107 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1108 total_bytes = tree->dirty_bytes;
1112 * this search will find all the extents that end after
1115 node = tree_search(tree, cur_start);
1121 state = rb_entry(node, struct extent_state, rb_node);
1122 if (state->start > search_end)
1124 if (state->end >= cur_start && (state->state & bits)) {
1125 total_bytes += min(search_end, state->end) + 1 -
1126 max(cur_start, state->start);
1127 if (total_bytes >= max_bytes)
1130 *start = state->start;
1134 node = rb_next(node);
1139 spin_unlock_irq(&tree->lock);
1143 * helper function to lock both pages and extents in the tree.
1144 * pages must be locked first.
1146 int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1148 unsigned long index = start >> PAGE_CACHE_SHIFT;
1149 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1153 while (index <= end_index) {
1154 page = grab_cache_page(tree->mapping, index);
1160 err = PTR_ERR(page);
1165 lock_extent(tree, start, end, GFP_NOFS);
1170 * we failed above in getting the page at 'index', so we undo here
1171 * up to but not including the page at 'index'
1174 index = start >> PAGE_CACHE_SHIFT;
1175 while (index < end_index) {
1176 page = find_get_page(tree->mapping, index);
1178 page_cache_release(page);
1183 EXPORT_SYMBOL(lock_range);
1186 * helper function to unlock both pages and extents in the tree.
1188 int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1190 unsigned long index = start >> PAGE_CACHE_SHIFT;
1191 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1194 while (index <= end_index) {
1195 page = find_get_page(tree->mapping, index);
1197 page_cache_release(page);
1200 unlock_extent(tree, start, end, GFP_NOFS);
1203 EXPORT_SYMBOL(unlock_range);
1205 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1207 struct rb_node *node;
1208 struct extent_state *state;
1211 spin_lock_irq(&tree->lock);
1213 * this search will find all the extents that end after
1216 node = tree_search(tree, start);
1221 state = rb_entry(node, struct extent_state, rb_node);
1222 if (state->start != start) {
1226 state->private = private;
1228 spin_unlock_irq(&tree->lock);
1232 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1234 struct rb_node *node;
1235 struct extent_state *state;
1238 spin_lock_irq(&tree->lock);
1240 * this search will find all the extents that end after
1243 node = tree_search(tree, start);
1248 state = rb_entry(node, struct extent_state, rb_node);
1249 if (state->start != start) {
1253 *private = state->private;
1255 spin_unlock_irq(&tree->lock);
1260 * searches a range in the state tree for a given mask.
1261 * If 'filled' == 1, this returns 1 only if every extent in the tree
1262 * has the bits set. Otherwise, 1 is returned if any bit in the
1263 * range is found set.
1265 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1266 int bits, int filled)
1268 struct extent_state *state = NULL;
1269 struct rb_node *node;
1271 unsigned long flags;
1273 spin_lock_irqsave(&tree->lock, flags);
1274 node = tree_search(tree, start);
1275 while (node && start <= end) {
1276 state = rb_entry(node, struct extent_state, rb_node);
1278 if (filled && state->start > start) {
1283 if (state->start > end)
1286 if (state->state & bits) {
1290 } else if (filled) {
1294 start = state->end + 1;
1297 node = rb_next(node);
1304 spin_unlock_irqrestore(&tree->lock, flags);
1307 EXPORT_SYMBOL(test_range_bit);
1310 * helper function to set a given page up to date if all the
1311 * extents in the tree for that page are up to date
1313 static int check_page_uptodate(struct extent_io_tree *tree,
1316 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1317 u64 end = start + PAGE_CACHE_SIZE - 1;
1318 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1319 SetPageUptodate(page);
1324 * helper function to unlock a page if all the extents in the tree
1325 * for that page are unlocked
1327 static int check_page_locked(struct extent_io_tree *tree,
1330 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1331 u64 end = start + PAGE_CACHE_SIZE - 1;
1332 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1338 * helper function to end page writeback if all the extents
1339 * in the tree for that page are done with writeback
1341 static int check_page_writeback(struct extent_io_tree *tree,
1344 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1345 u64 end = start + PAGE_CACHE_SIZE - 1;
1346 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1347 end_page_writeback(page);
1351 /* lots and lots of room for performance fixes in the end_bio funcs */
1354 * after a writepage IO is done, we need to:
1355 * clear the uptodate bits on error
1356 * clear the writeback bits in the extent tree for this IO
1357 * end_page_writeback if the page has no more pending IO
1359 * Scheduling is not allowed, so the extent state tree is expected
1360 * to have one and only one object corresponding to this IO.
1362 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1363 static void end_bio_extent_writepage(struct bio *bio, int err)
1365 static int end_bio_extent_writepage(struct bio *bio,
1366 unsigned int bytes_done, int err)
1369 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1370 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1371 struct extent_state *state = bio->bi_private;
1372 struct extent_io_tree *tree = state->tree;
1373 struct rb_node *node;
1378 unsigned long flags;
1380 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1385 struct page *page = bvec->bv_page;
1386 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1388 end = start + bvec->bv_len - 1;
1390 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1395 if (--bvec >= bio->bi_io_vec)
1396 prefetchw(&bvec->bv_page->flags);
1399 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1400 ClearPageUptodate(page);
1404 if (tree->ops && tree->ops->writepage_end_io_hook) {
1405 tree->ops->writepage_end_io_hook(page, start, end,
1410 * bios can get merged in funny ways, and so we need to
1411 * be careful with the state variable. We know the
1412 * state won't be merged with others because it has
1413 * WRITEBACK set, but we can't be sure each biovec is
1414 * sequential in the file. So, if our cached state
1415 * doesn't match the expected end, search the tree
1416 * for the correct one.
1419 spin_lock_irqsave(&tree->lock, flags);
1420 if (!state || state->end != end) {
1422 node = __etree_search(tree, start, NULL, NULL);
1424 state = rb_entry(node, struct extent_state,
1426 if (state->end != end ||
1427 !(state->state & EXTENT_WRITEBACK))
1431 spin_unlock_irqrestore(&tree->lock, flags);
1432 clear_extent_writeback(tree, start,
1439 struct extent_state *clear = state;
1441 node = rb_prev(&state->rb_node);
1443 state = rb_entry(node,
1444 struct extent_state,
1450 clear_state_bit(tree, clear, EXTENT_WRITEBACK,
1461 /* before releasing the lock, make sure the next state
1462 * variable has the expected bits set and corresponds
1463 * to the correct offsets in the file
1465 if (state && (state->end + 1 != start ||
1466 !(state->state & EXTENT_WRITEBACK))) {
1469 spin_unlock_irqrestore(&tree->lock, flags);
1473 end_page_writeback(page);
1475 check_page_writeback(tree, page);
1476 } while (bvec >= bio->bi_io_vec);
1478 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1484 * after a readpage IO is done, we need to:
1485 * clear the uptodate bits on error
1486 * set the uptodate bits if things worked
1487 * set the page up to date if all extents in the tree are uptodate
1488 * clear the lock bit in the extent tree
1489 * unlock the page if there are no other extents locked for it
1491 * Scheduling is not allowed, so the extent state tree is expected
1492 * to have one and only one object corresponding to this IO.
1494 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1495 static void end_bio_extent_readpage(struct bio *bio, int err)
1497 static int end_bio_extent_readpage(struct bio *bio,
1498 unsigned int bytes_done, int err)
1501 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1502 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1503 struct extent_state *state = bio->bi_private;
1504 struct extent_io_tree *tree = state->tree;
1505 struct rb_node *node;
1509 unsigned long flags;
1513 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1519 struct page *page = bvec->bv_page;
1520 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1522 end = start + bvec->bv_len - 1;
1524 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1529 if (--bvec >= bio->bi_io_vec)
1530 prefetchw(&bvec->bv_page->flags);
1532 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1533 ret = tree->ops->readpage_end_io_hook(page, start, end,
1538 if (!uptodate && tree->ops &&
1539 tree->ops->readpage_io_failed_hook) {
1540 ret = tree->ops->readpage_io_failed_hook(bio, page,
1545 test_bit(BIO_UPTODATE, &bio->bi_flags);
1550 spin_lock_irqsave(&tree->lock, flags);
1551 if (!state || state->end != end) {
1553 node = __etree_search(tree, start, NULL, NULL);
1555 state = rb_entry(node, struct extent_state,
1557 if (state->end != end ||
1558 !(state->state & EXTENT_LOCKED))
1562 spin_unlock_irqrestore(&tree->lock, flags);
1564 set_extent_uptodate(tree, start, end,
1566 unlock_extent(tree, start, end, GFP_ATOMIC);
1573 struct extent_state *clear = state;
1575 node = rb_prev(&state->rb_node);
1577 state = rb_entry(node,
1578 struct extent_state,
1584 set_state_cb(tree, clear, EXTENT_UPTODATE);
1585 clear->state |= EXTENT_UPTODATE;
1587 clear_state_bit(tree, clear, EXTENT_LOCKED,
1598 /* before releasing the lock, make sure the next state
1599 * variable has the expected bits set and corresponds
1600 * to the correct offsets in the file
1602 if (state && (state->end + 1 != start ||
1603 !(state->state & EXTENT_LOCKED))) {
1606 spin_unlock_irqrestore(&tree->lock, flags);
1610 SetPageUptodate(page);
1612 ClearPageUptodate(page);
1618 check_page_uptodate(tree, page);
1620 ClearPageUptodate(page);
1623 check_page_locked(tree, page);
1625 } while (bvec >= bio->bi_io_vec);
1628 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1634 * IO done from prepare_write is pretty simple, we just unlock
1635 * the structs in the extent tree when done, and set the uptodate bits
1638 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1639 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1641 static int end_bio_extent_preparewrite(struct bio *bio,
1642 unsigned int bytes_done, int err)
1645 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1646 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1647 struct extent_state *state = bio->bi_private;
1648 struct extent_io_tree *tree = state->tree;
1652 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1658 struct page *page = bvec->bv_page;
1659 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1661 end = start + bvec->bv_len - 1;
1663 if (--bvec >= bio->bi_io_vec)
1664 prefetchw(&bvec->bv_page->flags);
1667 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1669 ClearPageUptodate(page);
1673 unlock_extent(tree, start, end, GFP_ATOMIC);
1675 } while (bvec >= bio->bi_io_vec);
1678 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1684 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1689 bio = bio_alloc(gfp_flags, nr_vecs);
1691 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1692 while (!bio && (nr_vecs /= 2))
1693 bio = bio_alloc(gfp_flags, nr_vecs);
1698 bio->bi_bdev = bdev;
1699 bio->bi_sector = first_sector;
1704 static int submit_one_bio(int rw, struct bio *bio, int mirror_num)
1707 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1708 struct page *page = bvec->bv_page;
1709 struct extent_io_tree *tree = bio->bi_private;
1710 struct rb_node *node;
1711 struct extent_state *state;
1715 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1716 end = start + bvec->bv_len - 1;
1718 spin_lock_irq(&tree->lock);
1719 node = __etree_search(tree, start, NULL, NULL);
1721 state = rb_entry(node, struct extent_state, rb_node);
1722 while(state->end < end) {
1723 node = rb_next(node);
1724 state = rb_entry(node, struct extent_state, rb_node);
1726 BUG_ON(state->end != end);
1727 spin_unlock_irq(&tree->lock);
1729 bio->bi_private = state;
1733 if (tree->ops && tree->ops->submit_bio_hook)
1734 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1737 submit_bio(rw, bio);
1738 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1744 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1745 struct page *page, sector_t sector,
1746 size_t size, unsigned long offset,
1747 struct block_device *bdev,
1748 struct bio **bio_ret,
1749 unsigned long max_pages,
1750 bio_end_io_t end_io_func,
1757 if (bio_ret && *bio_ret) {
1759 if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1760 (tree->ops && tree->ops->merge_bio_hook &&
1761 tree->ops->merge_bio_hook(page, offset, size, bio)) ||
1762 bio_add_page(bio, page, size, offset) < size) {
1763 ret = submit_one_bio(rw, bio, mirror_num);
1769 nr = bio_get_nr_vecs(bdev);
1770 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1772 printk("failed to allocate bio nr %d\n", nr);
1776 bio_add_page(bio, page, size, offset);
1777 bio->bi_end_io = end_io_func;
1778 bio->bi_private = tree;
1783 ret = submit_one_bio(rw, bio, mirror_num);
1789 void set_page_extent_mapped(struct page *page)
1791 if (!PagePrivate(page)) {
1792 SetPagePrivate(page);
1793 WARN_ON(!page->mapping->a_ops->invalidatepage);
1794 set_page_private(page, EXTENT_PAGE_PRIVATE);
1795 page_cache_get(page);
1799 void set_page_extent_head(struct page *page, unsigned long len)
1801 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1805 * basic readpage implementation. Locked extent state structs are inserted
1806 * into the tree that are removed when the IO is done (by the end_io
1809 static int __extent_read_full_page(struct extent_io_tree *tree,
1811 get_extent_t *get_extent,
1812 struct bio **bio, int mirror_num)
1814 struct inode *inode = page->mapping->host;
1815 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1816 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1820 u64 last_byte = i_size_read(inode);
1824 struct extent_map *em;
1825 struct block_device *bdev;
1828 size_t page_offset = 0;
1830 size_t blocksize = inode->i_sb->s_blocksize;
1832 set_page_extent_mapped(page);
1835 lock_extent(tree, start, end, GFP_NOFS);
1837 while (cur <= end) {
1838 if (cur >= last_byte) {
1840 iosize = PAGE_CACHE_SIZE - page_offset;
1841 userpage = kmap_atomic(page, KM_USER0);
1842 memset(userpage + page_offset, 0, iosize);
1843 flush_dcache_page(page);
1844 kunmap_atomic(userpage, KM_USER0);
1845 set_extent_uptodate(tree, cur, cur + iosize - 1,
1847 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1850 em = get_extent(inode, page, page_offset, cur,
1852 if (IS_ERR(em) || !em) {
1854 unlock_extent(tree, cur, end, GFP_NOFS);
1858 extent_offset = cur - em->start;
1859 BUG_ON(extent_map_end(em) <= cur);
1862 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1863 cur_end = min(extent_map_end(em) - 1, end);
1864 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1865 sector = (em->block_start + extent_offset) >> 9;
1867 block_start = em->block_start;
1868 free_extent_map(em);
1871 /* we've found a hole, just zero and go on */
1872 if (block_start == EXTENT_MAP_HOLE) {
1874 userpage = kmap_atomic(page, KM_USER0);
1875 memset(userpage + page_offset, 0, iosize);
1876 flush_dcache_page(page);
1877 kunmap_atomic(userpage, KM_USER0);
1879 set_extent_uptodate(tree, cur, cur + iosize - 1,
1881 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1883 page_offset += iosize;
1886 /* the get_extent function already copied into the page */
1887 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1888 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1890 page_offset += iosize;
1893 /* we have an inline extent but it didn't get marked up
1894 * to date. Error out
1896 if (block_start == EXTENT_MAP_INLINE) {
1898 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1900 page_offset += iosize;
1905 if (tree->ops && tree->ops->readpage_io_hook) {
1906 ret = tree->ops->readpage_io_hook(page, cur,
1910 unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1912 ret = submit_extent_page(READ, tree, page,
1913 sector, iosize, page_offset,
1915 end_bio_extent_readpage, mirror_num);
1920 page_offset += iosize;
1924 if (!PageError(page))
1925 SetPageUptodate(page);
1931 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
1932 get_extent_t *get_extent)
1934 struct bio *bio = NULL;
1937 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0);
1939 submit_one_bio(READ, bio, 0);
1942 EXPORT_SYMBOL(extent_read_full_page);
1945 * the writepage semantics are similar to regular writepage. extent
1946 * records are inserted to lock ranges in the tree, and as dirty areas
1947 * are found, they are marked writeback. Then the lock bits are removed
1948 * and the end_io handler clears the writeback ranges
1950 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1953 struct inode *inode = page->mapping->host;
1954 struct extent_page_data *epd = data;
1955 struct extent_io_tree *tree = epd->tree;
1956 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1958 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1962 u64 last_byte = i_size_read(inode);
1966 struct extent_map *em;
1967 struct block_device *bdev;
1970 size_t page_offset = 0;
1972 loff_t i_size = i_size_read(inode);
1973 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1977 WARN_ON(!PageLocked(page));
1978 if (page->index > end_index) {
1979 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1984 if (page->index == end_index) {
1987 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1989 userpage = kmap_atomic(page, KM_USER0);
1990 memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1991 flush_dcache_page(page);
1992 kunmap_atomic(userpage, KM_USER0);
1995 set_page_extent_mapped(page);
1997 delalloc_start = start;
1999 while(delalloc_end < page_end) {
2000 nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
2003 if (nr_delalloc == 0) {
2004 delalloc_start = delalloc_end + 1;
2007 tree->ops->fill_delalloc(inode, delalloc_start,
2009 clear_extent_bit(tree, delalloc_start,
2011 EXTENT_LOCKED | EXTENT_DELALLOC,
2013 delalloc_start = delalloc_end + 1;
2015 lock_extent(tree, start, page_end, GFP_NOFS);
2018 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
2019 printk("found delalloc bits after lock_extent\n");
2022 if (last_byte <= start) {
2023 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2027 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2028 blocksize = inode->i_sb->s_blocksize;
2030 while (cur <= end) {
2031 if (cur >= last_byte) {
2032 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2035 em = epd->get_extent(inode, page, page_offset, cur,
2037 if (IS_ERR(em) || !em) {
2042 extent_offset = cur - em->start;
2043 BUG_ON(extent_map_end(em) <= cur);
2045 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2046 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2047 sector = (em->block_start + extent_offset) >> 9;
2049 block_start = em->block_start;
2050 free_extent_map(em);
2053 if (block_start == EXTENT_MAP_HOLE ||
2054 block_start == EXTENT_MAP_INLINE) {
2055 clear_extent_dirty(tree, cur,
2056 cur + iosize - 1, GFP_NOFS);
2058 page_offset += iosize;
2062 /* leave this out until we have a page_mkwrite call */
2063 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2066 page_offset += iosize;
2069 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2070 if (tree->ops && tree->ops->writepage_io_hook) {
2071 ret = tree->ops->writepage_io_hook(page, cur,
2079 unsigned long max_nr = end_index + 1;
2080 set_range_writeback(tree, cur, cur + iosize - 1);
2081 if (!PageWriteback(page)) {
2082 printk("warning page %lu not writeback, "
2083 "cur %llu end %llu\n", page->index,
2084 (unsigned long long)cur,
2085 (unsigned long long)end);
2088 ret = submit_extent_page(WRITE, tree, page, sector,
2089 iosize, page_offset, bdev,
2091 end_bio_extent_writepage, 0);
2096 page_offset += iosize;
2101 /* make sure the mapping tag for page dirty gets cleared */
2102 set_page_writeback(page);
2103 end_page_writeback(page);
2105 unlock_extent(tree, start, page_end, GFP_NOFS);
2110 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,20)
2111 /* Taken directly from 2.6.23 for 2.6.18 back port */
2112 typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
2116 * write_cache_pages - walk the list of dirty pages of the given address space
2117 * and write all of them.
2118 * @mapping: address space structure to write
2119 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2120 * @writepage: function called for each page
2121 * @data: data passed to writepage function
2123 * If a page is already under I/O, write_cache_pages() skips it, even
2124 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2125 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2126 * and msync() need to guarantee that all the data which was dirty at the time
2127 * the call was made get new I/O started against them. If wbc->sync_mode is
2128 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2129 * existing IO to complete.
2131 static int write_cache_pages(struct address_space *mapping,
2132 struct writeback_control *wbc, writepage_t writepage,
2135 struct backing_dev_info *bdi = mapping->backing_dev_info;
2138 struct pagevec pvec;
2141 pgoff_t end; /* Inclusive */
2143 int range_whole = 0;
2145 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2146 wbc->encountered_congestion = 1;
2150 pagevec_init(&pvec, 0);
2151 if (wbc->range_cyclic) {
2152 index = mapping->writeback_index; /* Start from prev offset */
2155 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2156 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2157 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2162 while (!done && (index <= end) &&
2163 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2164 PAGECACHE_TAG_DIRTY,
2165 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2169 for (i = 0; i < nr_pages; i++) {
2170 struct page *page = pvec.pages[i];
2173 * At this point we hold neither mapping->tree_lock nor
2174 * lock on the page itself: the page may be truncated or
2175 * invalidated (changing page->mapping to NULL), or even
2176 * swizzled back from swapper_space to tmpfs file
2181 if (unlikely(page->mapping != mapping)) {
2186 if (!wbc->range_cyclic && page->index > end) {
2192 if (wbc->sync_mode != WB_SYNC_NONE)
2193 wait_on_page_writeback(page);
2195 if (PageWriteback(page) ||
2196 !clear_page_dirty_for_io(page)) {
2201 ret = (*writepage)(page, wbc, data);
2203 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2207 if (ret || (--(wbc->nr_to_write) <= 0))
2209 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2210 wbc->encountered_congestion = 1;
2214 pagevec_release(&pvec);
2217 if (!scanned && !done) {
2219 * We hit the last page and there is more work to be done: wrap
2220 * back to the start of the file
2226 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2227 mapping->writeback_index = index;
2232 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2233 get_extent_t *get_extent,
2234 struct writeback_control *wbc)
2237 struct address_space *mapping = page->mapping;
2238 struct extent_page_data epd = {
2241 .get_extent = get_extent,
2243 struct writeback_control wbc_writepages = {
2245 .sync_mode = WB_SYNC_NONE,
2246 .older_than_this = NULL,
2248 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2249 .range_end = (loff_t)-1,
2253 ret = __extent_writepage(page, wbc, &epd);
2255 write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2257 submit_one_bio(WRITE, epd.bio, 0);
2261 EXPORT_SYMBOL(extent_write_full_page);
2264 int extent_writepages(struct extent_io_tree *tree,
2265 struct address_space *mapping,
2266 get_extent_t *get_extent,
2267 struct writeback_control *wbc)
2270 struct extent_page_data epd = {
2273 .get_extent = get_extent,
2276 ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2278 submit_one_bio(WRITE, epd.bio, 0);
2282 EXPORT_SYMBOL(extent_writepages);
2284 int extent_readpages(struct extent_io_tree *tree,
2285 struct address_space *mapping,
2286 struct list_head *pages, unsigned nr_pages,
2287 get_extent_t get_extent)
2289 struct bio *bio = NULL;
2291 struct pagevec pvec;
2293 pagevec_init(&pvec, 0);
2294 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2295 struct page *page = list_entry(pages->prev, struct page, lru);
2297 prefetchw(&page->flags);
2298 list_del(&page->lru);
2300 * what we want to do here is call add_to_page_cache_lru,
2301 * but that isn't exported, so we reproduce it here
2303 if (!add_to_page_cache(page, mapping,
2304 page->index, GFP_KERNEL)) {
2306 /* open coding of lru_cache_add, also not exported */
2307 page_cache_get(page);
2308 if (!pagevec_add(&pvec, page))
2309 __pagevec_lru_add(&pvec);
2310 __extent_read_full_page(tree, page, get_extent,
2313 page_cache_release(page);
2315 if (pagevec_count(&pvec))
2316 __pagevec_lru_add(&pvec);
2317 BUG_ON(!list_empty(pages));
2319 submit_one_bio(READ, bio, 0);
2322 EXPORT_SYMBOL(extent_readpages);
2325 * basic invalidatepage code, this waits on any locked or writeback
2326 * ranges corresponding to the page, and then deletes any extent state
2327 * records from the tree
2329 int extent_invalidatepage(struct extent_io_tree *tree,
2330 struct page *page, unsigned long offset)
2332 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2333 u64 end = start + PAGE_CACHE_SIZE - 1;
2334 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2336 start += (offset + blocksize -1) & ~(blocksize - 1);
2340 lock_extent(tree, start, end, GFP_NOFS);
2341 wait_on_extent_writeback(tree, start, end);
2342 clear_extent_bit(tree, start, end,
2343 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2347 EXPORT_SYMBOL(extent_invalidatepage);
2350 * simple commit_write call, set_range_dirty is used to mark both
2351 * the pages and the extent records as dirty
2353 int extent_commit_write(struct extent_io_tree *tree,
2354 struct inode *inode, struct page *page,
2355 unsigned from, unsigned to)
2357 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2359 set_page_extent_mapped(page);
2360 set_page_dirty(page);
2362 if (pos > inode->i_size) {
2363 i_size_write(inode, pos);
2364 mark_inode_dirty(inode);
2368 EXPORT_SYMBOL(extent_commit_write);
2370 int extent_prepare_write(struct extent_io_tree *tree,
2371 struct inode *inode, struct page *page,
2372 unsigned from, unsigned to, get_extent_t *get_extent)
2374 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2375 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2377 u64 orig_block_start;
2380 struct extent_map *em;
2381 unsigned blocksize = 1 << inode->i_blkbits;
2382 size_t page_offset = 0;
2383 size_t block_off_start;
2384 size_t block_off_end;
2390 set_page_extent_mapped(page);
2392 block_start = (page_start + from) & ~((u64)blocksize - 1);
2393 block_end = (page_start + to - 1) | (blocksize - 1);
2394 orig_block_start = block_start;
2396 lock_extent(tree, page_start, page_end, GFP_NOFS);
2397 while(block_start <= block_end) {
2398 em = get_extent(inode, page, page_offset, block_start,
2399 block_end - block_start + 1, 1);
2400 if (IS_ERR(em) || !em) {
2403 cur_end = min(block_end, extent_map_end(em) - 1);
2404 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2405 block_off_end = block_off_start + blocksize;
2406 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2408 if (!PageUptodate(page) && isnew &&
2409 (block_off_end > to || block_off_start < from)) {
2412 kaddr = kmap_atomic(page, KM_USER0);
2413 if (block_off_end > to)
2414 memset(kaddr + to, 0, block_off_end - to);
2415 if (block_off_start < from)
2416 memset(kaddr + block_off_start, 0,
2417 from - block_off_start);
2418 flush_dcache_page(page);
2419 kunmap_atomic(kaddr, KM_USER0);
2421 if ((em->block_start != EXTENT_MAP_HOLE &&
2422 em->block_start != EXTENT_MAP_INLINE) &&
2423 !isnew && !PageUptodate(page) &&
2424 (block_off_end > to || block_off_start < from) &&
2425 !test_range_bit(tree, block_start, cur_end,
2426 EXTENT_UPTODATE, 1)) {
2428 u64 extent_offset = block_start - em->start;
2430 sector = (em->block_start + extent_offset) >> 9;
2431 iosize = (cur_end - block_start + blocksize) &
2432 ~((u64)blocksize - 1);
2434 * we've already got the extent locked, but we
2435 * need to split the state such that our end_bio
2436 * handler can clear the lock.
2438 set_extent_bit(tree, block_start,
2439 block_start + iosize - 1,
2440 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2441 ret = submit_extent_page(READ, tree, page,
2442 sector, iosize, page_offset, em->bdev,
2444 end_bio_extent_preparewrite, 0);
2446 block_start = block_start + iosize;
2448 set_extent_uptodate(tree, block_start, cur_end,
2450 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2451 block_start = cur_end + 1;
2453 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2454 free_extent_map(em);
2457 wait_extent_bit(tree, orig_block_start,
2458 block_end, EXTENT_LOCKED);
2460 check_page_uptodate(tree, page);
2462 /* FIXME, zero out newly allocated blocks on error */
2465 EXPORT_SYMBOL(extent_prepare_write);
2468 * a helper for releasepage, this tests for areas of the page that
2469 * are locked or under IO and drops the related state bits if it is safe
2472 int try_release_extent_state(struct extent_map_tree *map,
2473 struct extent_io_tree *tree, struct page *page,
2476 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2477 u64 end = start + PAGE_CACHE_SIZE - 1;
2480 if (test_range_bit(tree, start, end, EXTENT_IOBITS, 0))
2483 if ((mask & GFP_NOFS) == GFP_NOFS)
2485 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2490 EXPORT_SYMBOL(try_release_extent_state);
2493 * a helper for releasepage. As long as there are no locked extents
2494 * in the range corresponding to the page, both state records and extent
2495 * map records are removed
2497 int try_release_extent_mapping(struct extent_map_tree *map,
2498 struct extent_io_tree *tree, struct page *page,
2501 struct extent_map *em;
2502 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2503 u64 end = start + PAGE_CACHE_SIZE - 1;
2505 if ((mask & __GFP_WAIT) &&
2506 page->mapping->host->i_size > 16 * 1024 * 1024) {
2508 while (start <= end) {
2509 len = end - start + 1;
2510 spin_lock(&map->lock);
2511 em = lookup_extent_mapping(map, start, len);
2512 if (!em || IS_ERR(em)) {
2513 spin_unlock(&map->lock);
2516 if (em->start != start) {
2517 spin_unlock(&map->lock);
2518 free_extent_map(em);
2521 if (!test_range_bit(tree, em->start,
2522 extent_map_end(em) - 1,
2523 EXTENT_LOCKED, 0)) {
2524 remove_extent_mapping(map, em);
2525 /* once for the rb tree */
2526 free_extent_map(em);
2528 start = extent_map_end(em);
2529 spin_unlock(&map->lock);
2532 free_extent_map(em);
2535 return try_release_extent_state(map, tree, page, mask);
2537 EXPORT_SYMBOL(try_release_extent_mapping);
2539 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2540 get_extent_t *get_extent)
2542 struct inode *inode = mapping->host;
2543 u64 start = iblock << inode->i_blkbits;
2544 sector_t sector = 0;
2545 struct extent_map *em;
2547 em = get_extent(inode, NULL, 0, start, (1 << inode->i_blkbits), 0);
2548 if (!em || IS_ERR(em))
2551 if (em->block_start == EXTENT_MAP_INLINE ||
2552 em->block_start == EXTENT_MAP_HOLE)
2555 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2557 free_extent_map(em);
2561 static int add_lru(struct extent_io_tree *tree, struct extent_buffer *eb)
2563 if (list_empty(&eb->lru)) {
2564 extent_buffer_get(eb);
2565 list_add(&eb->lru, &tree->buffer_lru);
2567 if (tree->lru_size >= BUFFER_LRU_MAX) {
2568 struct extent_buffer *rm;
2569 rm = list_entry(tree->buffer_lru.prev,
2570 struct extent_buffer, lru);
2572 list_del_init(&rm->lru);
2573 free_extent_buffer(rm);
2576 list_move(&eb->lru, &tree->buffer_lru);
2579 static struct extent_buffer *find_lru(struct extent_io_tree *tree,
2580 u64 start, unsigned long len)
2582 struct list_head *lru = &tree->buffer_lru;
2583 struct list_head *cur = lru->next;
2584 struct extent_buffer *eb;
2586 if (list_empty(lru))
2590 eb = list_entry(cur, struct extent_buffer, lru);
2591 if (eb->start == start && eb->len == len) {
2592 extent_buffer_get(eb);
2596 } while (cur != lru);
2600 static inline unsigned long num_extent_pages(u64 start, u64 len)
2602 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2603 (start >> PAGE_CACHE_SHIFT);
2606 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2610 struct address_space *mapping;
2613 return eb->first_page;
2614 i += eb->start >> PAGE_CACHE_SHIFT;
2615 mapping = eb->first_page->mapping;
2616 read_lock_irq(&mapping->tree_lock);
2617 p = radix_tree_lookup(&mapping->page_tree, i);
2618 read_unlock_irq(&mapping->tree_lock);
2622 int release_extent_buffer_tail_pages(struct extent_buffer *eb)
2624 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2630 for (i = 1; i < num_pages; i++) {
2631 page = extent_buffer_page(eb, i);
2632 page_cache_release(page);
2638 int invalidate_extent_lru(struct extent_io_tree *tree, u64 start,
2641 struct list_head *lru = &tree->buffer_lru;
2642 struct list_head *cur = lru->next;
2643 struct extent_buffer *eb;
2646 spin_lock(&tree->lru_lock);
2647 if (list_empty(lru))
2651 eb = list_entry(cur, struct extent_buffer, lru);
2652 if (eb->start <= start && eb->start + eb->len > start) {
2653 eb->flags &= ~EXTENT_UPTODATE;
2656 } while (cur != lru);
2658 spin_unlock(&tree->lru_lock);
2662 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2667 struct extent_buffer *eb = NULL;
2668 unsigned long flags;
2670 spin_lock(&tree->lru_lock);
2671 eb = find_lru(tree, start, len);
2672 spin_unlock(&tree->lru_lock);
2677 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2678 INIT_LIST_HEAD(&eb->lru);
2681 spin_lock_irqsave(&leak_lock, flags);
2682 list_add(&eb->leak_list, &buffers);
2683 spin_unlock_irqrestore(&leak_lock, flags);
2684 atomic_set(&eb->refs, 1);
2689 static void __free_extent_buffer(struct extent_buffer *eb)
2691 unsigned long flags;
2692 spin_lock_irqsave(&leak_lock, flags);
2693 list_del(&eb->leak_list);
2694 spin_unlock_irqrestore(&leak_lock, flags);
2695 kmem_cache_free(extent_buffer_cache, eb);
2698 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2699 u64 start, unsigned long len,
2703 unsigned long num_pages = num_extent_pages(start, len);
2705 unsigned long index = start >> PAGE_CACHE_SHIFT;
2706 struct extent_buffer *eb;
2708 struct address_space *mapping = tree->mapping;
2711 eb = __alloc_extent_buffer(tree, start, len, mask);
2715 if (eb->flags & EXTENT_BUFFER_FILLED)
2719 eb->first_page = page0;
2722 page_cache_get(page0);
2723 mark_page_accessed(page0);
2724 set_page_extent_mapped(page0);
2725 set_page_extent_head(page0, len);
2726 uptodate = PageUptodate(page0);
2730 for (; i < num_pages; i++, index++) {
2731 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2736 set_page_extent_mapped(p);
2737 mark_page_accessed(p);
2740 set_page_extent_head(p, len);
2742 set_page_private(p, EXTENT_PAGE_PRIVATE);
2744 if (!PageUptodate(p))
2749 eb->flags |= EXTENT_UPTODATE;
2750 eb->flags |= EXTENT_BUFFER_FILLED;
2753 spin_lock(&tree->lru_lock);
2755 spin_unlock(&tree->lru_lock);
2759 spin_lock(&tree->lru_lock);
2760 list_del_init(&eb->lru);
2761 spin_unlock(&tree->lru_lock);
2762 if (!atomic_dec_and_test(&eb->refs))
2764 for (index = 1; index < i; index++) {
2765 page_cache_release(extent_buffer_page(eb, index));
2768 page_cache_release(extent_buffer_page(eb, 0));
2769 __free_extent_buffer(eb);
2772 EXPORT_SYMBOL(alloc_extent_buffer);
2774 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
2775 u64 start, unsigned long len,
2778 unsigned long num_pages = num_extent_pages(start, len);
2780 unsigned long index = start >> PAGE_CACHE_SHIFT;
2781 struct extent_buffer *eb;
2783 struct address_space *mapping = tree->mapping;
2786 eb = __alloc_extent_buffer(tree, start, len, mask);
2790 if (eb->flags & EXTENT_BUFFER_FILLED)
2793 for (i = 0; i < num_pages; i++, index++) {
2794 p = find_lock_page(mapping, index);
2798 set_page_extent_mapped(p);
2799 mark_page_accessed(p);
2803 set_page_extent_head(p, len);
2805 set_page_private(p, EXTENT_PAGE_PRIVATE);
2808 if (!PageUptodate(p))
2813 eb->flags |= EXTENT_UPTODATE;
2814 eb->flags |= EXTENT_BUFFER_FILLED;
2817 spin_lock(&tree->lru_lock);
2819 spin_unlock(&tree->lru_lock);
2822 spin_lock(&tree->lru_lock);
2823 list_del_init(&eb->lru);
2824 spin_unlock(&tree->lru_lock);
2825 if (!atomic_dec_and_test(&eb->refs))
2827 for (index = 1; index < i; index++) {
2828 page_cache_release(extent_buffer_page(eb, index));
2831 page_cache_release(extent_buffer_page(eb, 0));
2832 __free_extent_buffer(eb);
2835 EXPORT_SYMBOL(find_extent_buffer);
2837 void free_extent_buffer(struct extent_buffer *eb)
2840 unsigned long num_pages;
2845 if (!atomic_dec_and_test(&eb->refs))
2848 WARN_ON(!list_empty(&eb->lru));
2849 num_pages = num_extent_pages(eb->start, eb->len);
2851 for (i = 1; i < num_pages; i++) {
2852 page_cache_release(extent_buffer_page(eb, i));
2854 page_cache_release(extent_buffer_page(eb, 0));
2855 __free_extent_buffer(eb);
2857 EXPORT_SYMBOL(free_extent_buffer);
2859 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
2860 struct extent_buffer *eb)
2864 unsigned long num_pages;
2867 u64 start = eb->start;
2868 u64 end = start + eb->len - 1;
2870 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2871 num_pages = num_extent_pages(eb->start, eb->len);
2873 for (i = 0; i < num_pages; i++) {
2874 page = extent_buffer_page(eb, i);
2877 set_page_extent_head(page, eb->len);
2879 set_page_private(page, EXTENT_PAGE_PRIVATE);
2882 * if we're on the last page or the first page and the
2883 * block isn't aligned on a page boundary, do extra checks
2884 * to make sure we don't clean page that is partially dirty
2886 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2887 ((i == num_pages - 1) &&
2888 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2889 start = (u64)page->index << PAGE_CACHE_SHIFT;
2890 end = start + PAGE_CACHE_SIZE - 1;
2891 if (test_range_bit(tree, start, end,
2897 clear_page_dirty_for_io(page);
2898 read_lock_irq(&page->mapping->tree_lock);
2899 if (!PageDirty(page)) {
2900 radix_tree_tag_clear(&page->mapping->page_tree,
2902 PAGECACHE_TAG_DIRTY);
2904 read_unlock_irq(&page->mapping->tree_lock);
2909 EXPORT_SYMBOL(clear_extent_buffer_dirty);
2911 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
2912 struct extent_buffer *eb)
2914 return wait_on_extent_writeback(tree, eb->start,
2915 eb->start + eb->len - 1);
2917 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2919 int set_extent_buffer_dirty(struct extent_io_tree *tree,
2920 struct extent_buffer *eb)
2923 unsigned long num_pages;
2925 num_pages = num_extent_pages(eb->start, eb->len);
2926 for (i = 0; i < num_pages; i++) {
2927 struct page *page = extent_buffer_page(eb, i);
2928 /* writepage may need to do something special for the
2929 * first page, we have to make sure page->private is
2930 * properly set. releasepage may drop page->private
2931 * on us if the page isn't already dirty.
2935 set_page_extent_head(page, eb->len);
2936 } else if (PagePrivate(page) &&
2937 page->private != EXTENT_PAGE_PRIVATE) {
2939 set_page_extent_mapped(page);
2942 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2946 return set_extent_dirty(tree, eb->start,
2947 eb->start + eb->len - 1, GFP_NOFS);
2949 EXPORT_SYMBOL(set_extent_buffer_dirty);
2951 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
2952 struct extent_buffer *eb)
2956 unsigned long num_pages;
2958 num_pages = num_extent_pages(eb->start, eb->len);
2960 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2962 for (i = 0; i < num_pages; i++) {
2963 page = extent_buffer_page(eb, i);
2964 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2965 ((i == num_pages - 1) &&
2966 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2967 check_page_uptodate(tree, page);
2970 SetPageUptodate(page);
2974 EXPORT_SYMBOL(set_extent_buffer_uptodate);
2976 int extent_range_uptodate(struct extent_io_tree *tree,
2981 int pg_uptodate = 1;
2983 unsigned long index;
2985 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
2988 while(start <= end) {
2989 index = start >> PAGE_CACHE_SHIFT;
2990 page = find_get_page(tree->mapping, index);
2991 uptodate = PageUptodate(page);
2992 page_cache_release(page);
2997 start += PAGE_CACHE_SIZE;
3002 int extent_buffer_uptodate(struct extent_io_tree *tree,
3003 struct extent_buffer *eb)
3007 unsigned long num_pages;
3010 int pg_uptodate = 1;
3012 if (eb->flags & EXTENT_UPTODATE)
3015 ret2 = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3016 EXTENT_UPTODATE, 1);
3018 num_pages = num_extent_pages(eb->start, eb->len);
3019 for (i = 0; i < num_pages; i++) {
3020 page = extent_buffer_page(eb, i);
3021 if (!PageUptodate(page)) {
3026 if ((ret || ret2) && !pg_uptodate) {
3027 printk("uptodate error2 eb %Lu ret %d ret2 %d pg_uptodate %d\n", eb->start, ret, ret2, pg_uptodate);
3030 return (ret || ret2);
3032 EXPORT_SYMBOL(extent_buffer_uptodate);
3034 int read_extent_buffer_pages(struct extent_io_tree *tree,
3035 struct extent_buffer *eb,
3036 u64 start, int wait,
3037 get_extent_t *get_extent, int mirror_num)
3040 unsigned long start_i;
3044 int locked_pages = 0;
3045 int all_uptodate = 1;
3046 int inc_all_pages = 0;
3047 unsigned long num_pages;
3048 struct bio *bio = NULL;
3050 if (eb->flags & EXTENT_UPTODATE)
3053 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3054 EXTENT_UPTODATE, 1)) {
3059 WARN_ON(start < eb->start);
3060 start_i = (start >> PAGE_CACHE_SHIFT) -
3061 (eb->start >> PAGE_CACHE_SHIFT);
3066 num_pages = num_extent_pages(eb->start, eb->len);
3067 for (i = start_i; i < num_pages; i++) {
3068 page = extent_buffer_page(eb, i);
3070 if (TestSetPageLocked(page))
3076 if (!PageUptodate(page)) {
3082 eb->flags |= EXTENT_UPTODATE;
3086 for (i = start_i; i < num_pages; i++) {
3087 page = extent_buffer_page(eb, i);
3089 page_cache_get(page);
3090 if (!PageUptodate(page)) {
3093 ClearPageError(page);
3094 err = __extent_read_full_page(tree, page,
3106 submit_one_bio(READ, bio, mirror_num);
3111 for (i = start_i; i < num_pages; i++) {
3112 page = extent_buffer_page(eb, i);
3113 wait_on_page_locked(page);
3114 if (!PageUptodate(page)) {
3119 eb->flags |= EXTENT_UPTODATE;
3124 while(locked_pages > 0) {
3125 page = extent_buffer_page(eb, i);
3132 EXPORT_SYMBOL(read_extent_buffer_pages);
3134 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3135 unsigned long start,
3142 char *dst = (char *)dstv;
3143 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3144 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3146 WARN_ON(start > eb->len);
3147 WARN_ON(start + len > eb->start + eb->len);
3149 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3152 page = extent_buffer_page(eb, i);
3154 cur = min(len, (PAGE_CACHE_SIZE - offset));
3155 kaddr = kmap_atomic(page, KM_USER1);
3156 memcpy(dst, kaddr + offset, cur);
3157 kunmap_atomic(kaddr, KM_USER1);
3165 EXPORT_SYMBOL(read_extent_buffer);
3167 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3168 unsigned long min_len, char **token, char **map,
3169 unsigned long *map_start,
3170 unsigned long *map_len, int km)
3172 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3175 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3176 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3177 unsigned long end_i = (start_offset + start + min_len - 1) >>
3184 offset = start_offset;
3188 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3190 if (start + min_len > eb->len) {
3191 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3195 p = extent_buffer_page(eb, i);
3196 kaddr = kmap_atomic(p, km);
3198 *map = kaddr + offset;
3199 *map_len = PAGE_CACHE_SIZE - offset;
3202 EXPORT_SYMBOL(map_private_extent_buffer);
3204 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3205 unsigned long min_len,
3206 char **token, char **map,
3207 unsigned long *map_start,
3208 unsigned long *map_len, int km)
3212 if (eb->map_token) {
3213 unmap_extent_buffer(eb, eb->map_token, km);
3214 eb->map_token = NULL;
3217 err = map_private_extent_buffer(eb, start, min_len, token, map,
3218 map_start, map_len, km);
3220 eb->map_token = *token;
3222 eb->map_start = *map_start;
3223 eb->map_len = *map_len;
3227 EXPORT_SYMBOL(map_extent_buffer);
3229 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3231 kunmap_atomic(token, km);
3233 EXPORT_SYMBOL(unmap_extent_buffer);
3235 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3236 unsigned long start,
3243 char *ptr = (char *)ptrv;
3244 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3245 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3248 WARN_ON(start > eb->len);
3249 WARN_ON(start + len > eb->start + eb->len);
3251 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3254 page = extent_buffer_page(eb, i);
3256 cur = min(len, (PAGE_CACHE_SIZE - offset));
3258 kaddr = kmap_atomic(page, KM_USER0);
3259 ret = memcmp(ptr, kaddr + offset, cur);
3260 kunmap_atomic(kaddr, KM_USER0);
3271 EXPORT_SYMBOL(memcmp_extent_buffer);
3273 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3274 unsigned long start, unsigned long len)
3280 char *src = (char *)srcv;
3281 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3282 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3284 WARN_ON(start > eb->len);
3285 WARN_ON(start + len > eb->start + eb->len);
3287 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3290 page = extent_buffer_page(eb, i);
3291 WARN_ON(!PageUptodate(page));
3293 cur = min(len, PAGE_CACHE_SIZE - offset);
3294 kaddr = kmap_atomic(page, KM_USER1);
3295 memcpy(kaddr + offset, src, cur);
3296 kunmap_atomic(kaddr, KM_USER1);
3304 EXPORT_SYMBOL(write_extent_buffer);
3306 void memset_extent_buffer(struct extent_buffer *eb, char c,
3307 unsigned long start, unsigned long len)
3313 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3314 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3316 WARN_ON(start > eb->len);
3317 WARN_ON(start + len > eb->start + eb->len);
3319 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3322 page = extent_buffer_page(eb, i);
3323 WARN_ON(!PageUptodate(page));
3325 cur = min(len, PAGE_CACHE_SIZE - offset);
3326 kaddr = kmap_atomic(page, KM_USER0);
3327 memset(kaddr + offset, c, cur);
3328 kunmap_atomic(kaddr, KM_USER0);
3335 EXPORT_SYMBOL(memset_extent_buffer);
3337 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3338 unsigned long dst_offset, unsigned long src_offset,
3341 u64 dst_len = dst->len;
3346 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3347 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3349 WARN_ON(src->len != dst_len);
3351 offset = (start_offset + dst_offset) &
3352 ((unsigned long)PAGE_CACHE_SIZE - 1);
3355 page = extent_buffer_page(dst, i);
3356 WARN_ON(!PageUptodate(page));
3358 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3360 kaddr = kmap_atomic(page, KM_USER0);
3361 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3362 kunmap_atomic(kaddr, KM_USER0);
3370 EXPORT_SYMBOL(copy_extent_buffer);
3372 static void move_pages(struct page *dst_page, struct page *src_page,
3373 unsigned long dst_off, unsigned long src_off,
3376 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3377 if (dst_page == src_page) {
3378 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3380 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3381 char *p = dst_kaddr + dst_off + len;
3382 char *s = src_kaddr + src_off + len;
3387 kunmap_atomic(src_kaddr, KM_USER1);
3389 kunmap_atomic(dst_kaddr, KM_USER0);
3392 static void copy_pages(struct page *dst_page, struct page *src_page,
3393 unsigned long dst_off, unsigned long src_off,
3396 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3399 if (dst_page != src_page)
3400 src_kaddr = kmap_atomic(src_page, KM_USER1);
3402 src_kaddr = dst_kaddr;
3404 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3405 kunmap_atomic(dst_kaddr, KM_USER0);
3406 if (dst_page != src_page)
3407 kunmap_atomic(src_kaddr, KM_USER1);
3410 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3411 unsigned long src_offset, unsigned long len)
3414 size_t dst_off_in_page;
3415 size_t src_off_in_page;
3416 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3417 unsigned long dst_i;
3418 unsigned long src_i;
3420 if (src_offset + len > dst->len) {
3421 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3422 src_offset, len, dst->len);
3425 if (dst_offset + len > dst->len) {
3426 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3427 dst_offset, len, dst->len);
3432 dst_off_in_page = (start_offset + dst_offset) &
3433 ((unsigned long)PAGE_CACHE_SIZE - 1);
3434 src_off_in_page = (start_offset + src_offset) &
3435 ((unsigned long)PAGE_CACHE_SIZE - 1);
3437 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3438 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3440 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3442 cur = min_t(unsigned long, cur,
3443 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3445 copy_pages(extent_buffer_page(dst, dst_i),
3446 extent_buffer_page(dst, src_i),
3447 dst_off_in_page, src_off_in_page, cur);
3454 EXPORT_SYMBOL(memcpy_extent_buffer);
3456 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3457 unsigned long src_offset, unsigned long len)
3460 size_t dst_off_in_page;
3461 size_t src_off_in_page;
3462 unsigned long dst_end = dst_offset + len - 1;
3463 unsigned long src_end = src_offset + len - 1;
3464 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3465 unsigned long dst_i;
3466 unsigned long src_i;
3468 if (src_offset + len > dst->len) {
3469 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3470 src_offset, len, dst->len);
3473 if (dst_offset + len > dst->len) {
3474 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3475 dst_offset, len, dst->len);
3478 if (dst_offset < src_offset) {
3479 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3483 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3484 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3486 dst_off_in_page = (start_offset + dst_end) &
3487 ((unsigned long)PAGE_CACHE_SIZE - 1);
3488 src_off_in_page = (start_offset + src_end) &
3489 ((unsigned long)PAGE_CACHE_SIZE - 1);
3491 cur = min_t(unsigned long, len, src_off_in_page + 1);
3492 cur = min(cur, dst_off_in_page + 1);
3493 move_pages(extent_buffer_page(dst, dst_i),
3494 extent_buffer_page(dst, src_i),
3495 dst_off_in_page - cur + 1,
3496 src_off_in_page - cur + 1, cur);
3503 EXPORT_SYMBOL(memmove_extent_buffer);