4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
54 #include <xen/interface/xen.h>
56 #include "multicalls.h"
59 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
61 pte_t *pte = lookup_address(address);
62 unsigned offset = address & PAGE_MASK;
66 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
69 void make_lowmem_page_readonly(void *vaddr)
72 unsigned long address = (unsigned long)vaddr;
74 pte = lookup_address(address);
77 ptev = pte_wrprotect(*pte);
79 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
83 void make_lowmem_page_readwrite(void *vaddr)
86 unsigned long address = (unsigned long)vaddr;
88 pte = lookup_address(address);
91 ptev = pte_mkwrite(*pte);
93 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
98 void xen_set_pmd(pmd_t *ptr, pmd_t val)
100 struct multicall_space mcs;
101 struct mmu_update *u;
105 mcs = xen_mc_entry(sizeof(*u));
107 u->ptr = virt_to_machine(ptr).maddr;
108 u->val = pmd_val_ma(val);
109 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
111 xen_mc_issue(PARAVIRT_LAZY_MMU);
117 * Associate a virtual page frame with a given physical page frame
118 * and protection flags for that frame.
120 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
127 pgd = swapper_pg_dir + pgd_index(vaddr);
128 if (pgd_none(*pgd)) {
132 pud = pud_offset(pgd, vaddr);
133 if (pud_none(*pud)) {
137 pmd = pmd_offset(pud, vaddr);
138 if (pmd_none(*pmd)) {
142 pte = pte_offset_kernel(pmd, vaddr);
143 /* <mfn,flags> stored as-is, to permit clearing entries */
144 xen_set_pte(pte, mfn_pte(mfn, flags));
147 * It's enough to flush this one mapping.
148 * (PGE mappings get flushed as well)
150 __flush_tlb_one(vaddr);
153 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
154 pte_t *ptep, pte_t pteval)
156 if (mm == current->mm || mm == &init_mm) {
157 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
158 struct multicall_space mcs;
159 mcs = xen_mc_entry(0);
161 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
162 xen_mc_issue(PARAVIRT_LAZY_MMU);
165 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
168 xen_set_pte(ptep, pteval);
171 #ifdef CONFIG_X86_PAE
172 void xen_set_pud(pud_t *ptr, pud_t val)
174 struct multicall_space mcs;
175 struct mmu_update *u;
179 mcs = xen_mc_entry(sizeof(*u));
181 u->ptr = virt_to_machine(ptr).maddr;
182 u->val = pud_val_ma(val);
183 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF);
185 xen_mc_issue(PARAVIRT_LAZY_MMU);
190 void xen_set_pte(pte_t *ptep, pte_t pte)
192 ptep->pte_high = pte.pte_high;
194 ptep->pte_low = pte.pte_low;
197 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
199 set_64bit((u64 *)ptep, pte_val_ma(pte));
202 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
205 smp_wmb(); /* make sure low gets written first */
209 void xen_pmd_clear(pmd_t *pmdp)
211 xen_set_pmd(pmdp, __pmd(0));
214 unsigned long long xen_pte_val(pte_t pte)
216 unsigned long long ret = 0;
219 ret = ((unsigned long long)pte.pte_high << 32) | pte.pte_low;
220 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
226 unsigned long long xen_pmd_val(pmd_t pmd)
228 unsigned long long ret = pmd.pmd;
230 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
234 unsigned long long xen_pgd_val(pgd_t pgd)
236 unsigned long long ret = pgd.pgd;
238 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
242 pte_t xen_make_pte(unsigned long long pte)
245 pte = phys_to_machine(XPADDR(pte)).maddr;
249 return (pte_t){ pte, pte >> 32 };
252 pmd_t xen_make_pmd(unsigned long long pmd)
255 pmd = phys_to_machine(XPADDR(pmd)).maddr;
257 return (pmd_t){ pmd };
260 pgd_t xen_make_pgd(unsigned long long pgd)
262 if (pgd & _PAGE_PRESENT)
263 pgd = phys_to_machine(XPADDR(pgd)).maddr;
265 return (pgd_t){ pgd };
268 void xen_set_pte(pte_t *ptep, pte_t pte)
273 unsigned long xen_pte_val(pte_t pte)
275 unsigned long ret = pte.pte_low;
277 if (ret & _PAGE_PRESENT)
278 ret = machine_to_phys(XMADDR(ret)).paddr;
283 unsigned long xen_pgd_val(pgd_t pgd)
285 unsigned long ret = pgd.pgd;
287 ret = machine_to_phys(XMADDR(ret)).paddr | 1;
291 pte_t xen_make_pte(unsigned long pte)
293 if (pte & _PAGE_PRESENT)
294 pte = phys_to_machine(XPADDR(pte)).maddr;
298 return (pte_t){ pte };
301 pgd_t xen_make_pgd(unsigned long pgd)
303 if (pgd & _PAGE_PRESENT)
304 pgd = phys_to_machine(XPADDR(pgd)).maddr;
306 return (pgd_t){ pgd };
308 #endif /* CONFIG_X86_PAE */
318 (Yet another) pagetable walker. This one is intended for pinning a
319 pagetable. This means that it walks a pagetable and calls the
320 callback function on each page it finds making up the page table,
321 at every level. It walks the entire pagetable, but it only bothers
322 pinning pte pages which are below pte_limit. In the normal case
323 this will be TASK_SIZE, but at boot we need to pin up to
324 FIXADDR_TOP. But the important bit is that we don't pin beyond
325 there, because then we start getting into Xen's ptes.
327 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
330 pgd_t *pgd = pgd_base;
332 unsigned long addr = 0;
333 unsigned long pgd_next;
335 BUG_ON(limit > FIXADDR_TOP);
337 if (xen_feature(XENFEAT_auto_translated_physmap))
340 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
342 unsigned long pud_limit, pud_next;
344 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
349 pud = pud_offset(pgd, 0);
351 if (PTRS_PER_PUD > 1) /* not folded */
352 flush |= (*func)(virt_to_page(pud), PT_PUD);
354 for (; addr != pud_limit; pud++, addr = pud_next) {
356 unsigned long pmd_limit;
358 pud_next = pud_addr_end(addr, pud_limit);
360 if (pud_next < limit)
361 pmd_limit = pud_next;
368 pmd = pmd_offset(pud, 0);
370 if (PTRS_PER_PMD > 1) /* not folded */
371 flush |= (*func)(virt_to_page(pmd), PT_PMD);
373 for (; addr != pmd_limit; pmd++) {
374 addr += (PAGE_SIZE * PTRS_PER_PTE);
375 if ((pmd_limit-1) < (addr-1)) {
383 flush |= (*func)(pmd_page(*pmd), PT_PTE);
388 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
393 static spinlock_t *lock_pte(struct page *page)
395 spinlock_t *ptl = NULL;
397 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
398 ptl = __pte_lockptr(page);
405 static void do_unlock(void *v)
411 static void xen_do_pin(unsigned level, unsigned long pfn)
413 struct mmuext_op *op;
414 struct multicall_space mcs;
416 mcs = __xen_mc_entry(sizeof(*op));
419 op->arg1.mfn = pfn_to_mfn(pfn);
420 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
423 static int pin_page(struct page *page, enum pt_level level)
425 unsigned pgfl = test_and_set_bit(PG_pinned, &page->flags);
429 flush = 0; /* already pinned */
430 else if (PageHighMem(page))
431 /* kmaps need flushing if we found an unpinned
435 void *pt = lowmem_page_address(page);
436 unsigned long pfn = page_to_pfn(page);
437 struct multicall_space mcs = __xen_mc_entry(0);
444 ptl = lock_pte(page);
446 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
447 pfn_pte(pfn, PAGE_KERNEL_RO),
448 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
451 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
454 /* Queue a deferred unlock for when this batch
456 xen_mc_callback(do_unlock, ptl);
463 /* This is called just after a mm has been created, but it has not
464 been used yet. We need to make sure that its pagetable is all
465 read-only, and can be pinned. */
466 void xen_pgd_pin(pgd_t *pgd)
472 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
473 /* re-enable interrupts for kmap_flush_unused */
479 #ifdef CONFIG_X86_PAE
480 level = MMUEXT_PIN_L3_TABLE;
482 level = MMUEXT_PIN_L2_TABLE;
485 xen_do_pin(level, PFN_DOWN(__pa(pgd)));
490 /* The init_mm pagetable is really pinned as soon as its created, but
491 that's before we have page structures to store the bits. So do all
492 the book-keeping now. */
493 static __init int mark_pinned(struct page *page, enum pt_level level)
499 void __init xen_mark_init_mm_pinned(void)
501 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
504 static int unpin_page(struct page *page, enum pt_level level)
506 unsigned pgfl = test_and_clear_bit(PG_pinned, &page->flags);
508 if (pgfl && !PageHighMem(page)) {
509 void *pt = lowmem_page_address(page);
510 unsigned long pfn = page_to_pfn(page);
511 spinlock_t *ptl = NULL;
512 struct multicall_space mcs;
514 if (level == PT_PTE) {
515 ptl = lock_pte(page);
517 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
520 mcs = __xen_mc_entry(0);
522 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
523 pfn_pte(pfn, PAGE_KERNEL),
524 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
527 /* unlock when batch completed */
528 xen_mc_callback(do_unlock, ptl);
532 return 0; /* never need to flush on unpin */
535 /* Release a pagetables pages back as normal RW */
536 static void xen_pgd_unpin(pgd_t *pgd)
540 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
542 pgd_walk(pgd, unpin_page, TASK_SIZE);
547 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
549 spin_lock(&next->page_table_lock);
550 xen_pgd_pin(next->pgd);
551 spin_unlock(&next->page_table_lock);
554 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
556 spin_lock(&mm->page_table_lock);
557 xen_pgd_pin(mm->pgd);
558 spin_unlock(&mm->page_table_lock);
563 /* Another cpu may still have their %cr3 pointing at the pagetable, so
564 we need to repoint it somewhere else before we can unpin it. */
565 static void drop_other_mm_ref(void *info)
567 struct mm_struct *mm = info;
569 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
570 leave_mm(smp_processor_id());
572 /* If this cpu still has a stale cr3 reference, then make sure
573 it has been flushed. */
574 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
575 load_cr3(swapper_pg_dir);
576 arch_flush_lazy_cpu_mode();
580 static void drop_mm_ref(struct mm_struct *mm)
585 if (current->active_mm == mm) {
586 if (current->mm == mm)
587 load_cr3(swapper_pg_dir);
589 leave_mm(smp_processor_id());
590 arch_flush_lazy_cpu_mode();
593 /* Get the "official" set of cpus referring to our pagetable. */
594 mask = mm->cpu_vm_mask;
596 /* It's possible that a vcpu may have a stale reference to our
597 cr3, because its in lazy mode, and it hasn't yet flushed
598 its set of pending hypercalls yet. In this case, we can
599 look at its actual current cr3 value, and force it to flush
601 for_each_online_cpu(cpu) {
602 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
606 if (!cpus_empty(mask))
607 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
610 static void drop_mm_ref(struct mm_struct *mm)
612 if (current->active_mm == mm)
613 load_cr3(swapper_pg_dir);
618 * While a process runs, Xen pins its pagetables, which means that the
619 * hypervisor forces it to be read-only, and it controls all updates
620 * to it. This means that all pagetable updates have to go via the
621 * hypervisor, which is moderately expensive.
623 * Since we're pulling the pagetable down, we switch to use init_mm,
624 * unpin old process pagetable and mark it all read-write, which
625 * allows further operations on it to be simple memory accesses.
627 * The only subtle point is that another CPU may be still using the
628 * pagetable because of lazy tlb flushing. This means we need need to
629 * switch all CPUs off this pagetable before we can unpin it.
631 void xen_exit_mmap(struct mm_struct *mm)
633 get_cpu(); /* make sure we don't move around */
637 spin_lock(&mm->page_table_lock);
639 /* pgd may not be pinned in the error exit path of execve */
640 if (PagePinned(virt_to_page(mm->pgd)))
641 xen_pgd_unpin(mm->pgd);
643 spin_unlock(&mm->page_table_lock);