4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
11 * Copyright 2002 MontaVista Software Inc.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
41 #include <linux/config.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
58 #ifdef CONFIG_HIGH_RES_TIMERS
59 #include <linux/hrtime.h>
60 # if defined(schedule_next_int)
61 /* Old high-res timer code, do translations. */
62 # define get_arch_cycles(a) quick_update_jiffies_sub(a)
63 # define arch_cycles_per_jiffy cycles_per_jiffies
65 static inline void add_usec_to_timer(struct timer_list *t, long v)
67 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
68 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
71 t->arch_cycle_expires -= arch_cycles_per_jiffy;
75 #include <linux/interrupt.h>
76 #include <linux/rcupdate.h>
77 #include <linux/ipmi_smi.h>
79 #include "ipmi_si_sm.h"
80 #include <linux/init.h>
81 #include <linux/dmi.h>
83 /* Measure times between events in the driver. */
86 /* Call every 10 ms. */
87 #define SI_TIMEOUT_TIME_USEC 10000
88 #define SI_USEC_PER_JIFFY (1000000/HZ)
89 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
90 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
98 SI_CLEARING_FLAGS_THEN_SET_IRQ,
100 SI_ENABLE_INTERRUPTS1,
101 SI_ENABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG 2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
111 SI_KCS, SI_SMIC, SI_BT
113 static char *si_to_str[] = { "KCS", "SMIC", "BT" };
115 #define DEVICE_NAME "ipmi_si"
117 static struct device_driver ipmi_driver =
120 .bus = &platform_bus_type
127 struct si_sm_data *si_sm;
128 struct si_sm_handlers *handlers;
129 enum si_type si_type;
132 struct list_head xmit_msgs;
133 struct list_head hp_xmit_msgs;
134 struct ipmi_smi_msg *curr_msg;
135 enum si_intf_state si_state;
137 /* Used to handle the various types of I/O that can occur with
140 int (*io_setup)(struct smi_info *info);
141 void (*io_cleanup)(struct smi_info *info);
142 int (*irq_setup)(struct smi_info *info);
143 void (*irq_cleanup)(struct smi_info *info);
144 unsigned int io_size;
145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
146 void (*addr_source_cleanup)(struct smi_info *info);
147 void *addr_source_data;
149 /* Per-OEM handler, called from handle_flags().
150 Returns 1 when handle_flags() needs to be re-run
151 or 0 indicating it set si_state itself.
153 int (*oem_data_avail_handler)(struct smi_info *smi_info);
155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
156 is set to hold the flags until we are done handling everything
158 #define RECEIVE_MSG_AVAIL 0x01
159 #define EVENT_MSG_BUFFER_FULL 0x02
160 #define WDT_PRE_TIMEOUT_INT 0x08
161 #define OEM0_DATA_AVAIL 0x20
162 #define OEM1_DATA_AVAIL 0x40
163 #define OEM2_DATA_AVAIL 0x80
164 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
167 unsigned char msg_flags;
169 /* If set to true, this will request events the next time the
170 state machine is idle. */
173 /* If true, run the state machine to completion on every send
174 call. Generally used after a panic to make sure stuff goes
176 int run_to_completion;
178 /* The I/O port of an SI interface. */
181 /* The space between start addresses of the two ports. For
182 instance, if the first port is 0xca2 and the spacing is 4, then
183 the second port is 0xca6. */
184 unsigned int spacing;
186 /* zero if no irq; */
189 /* The timer for this si. */
190 struct timer_list si_timer;
192 /* The time (in jiffies) the last timeout occurred at. */
193 unsigned long last_timeout_jiffies;
195 /* Used to gracefully stop the timer without race conditions. */
196 atomic_t stop_operation;
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
202 int interrupt_disabled;
204 /* From the get device id response... */
205 struct ipmi_device_id device_id;
207 /* Driver model stuff. */
209 struct platform_device *pdev;
211 /* True if we allocated the device, false if it came from
212 * someplace else (like PCI). */
215 /* Slave address, could be reported from DMI. */
216 unsigned char slave_addr;
218 /* Counters and things for the proc filesystem. */
219 spinlock_t count_lock;
220 unsigned long short_timeouts;
221 unsigned long long_timeouts;
222 unsigned long timeout_restarts;
224 unsigned long interrupts;
225 unsigned long attentions;
226 unsigned long flag_fetches;
227 unsigned long hosed_count;
228 unsigned long complete_transactions;
229 unsigned long events;
230 unsigned long watchdog_pretimeouts;
231 unsigned long incoming_messages;
233 struct task_struct *thread;
235 struct list_head link;
238 static int try_smi_init(struct smi_info *smi);
240 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
241 static int register_xaction_notifier(struct notifier_block * nb)
243 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
246 static void si_restart_short_timer(struct smi_info *smi_info);
248 static void deliver_recv_msg(struct smi_info *smi_info,
249 struct ipmi_smi_msg *msg)
251 /* Deliver the message to the upper layer with the lock
253 spin_unlock(&(smi_info->si_lock));
254 ipmi_smi_msg_received(smi_info->intf, msg);
255 spin_lock(&(smi_info->si_lock));
258 static void return_hosed_msg(struct smi_info *smi_info)
260 struct ipmi_smi_msg *msg = smi_info->curr_msg;
262 /* Make it a reponse */
263 msg->rsp[0] = msg->data[0] | 4;
264 msg->rsp[1] = msg->data[1];
265 msg->rsp[2] = 0xFF; /* Unknown error. */
268 smi_info->curr_msg = NULL;
269 deliver_recv_msg(smi_info, msg);
272 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
275 struct list_head *entry = NULL;
280 /* No need to save flags, we aleady have interrupts off and we
281 already hold the SMI lock. */
282 spin_lock(&(smi_info->msg_lock));
284 /* Pick the high priority queue first. */
285 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
286 entry = smi_info->hp_xmit_msgs.next;
287 } else if (!list_empty(&(smi_info->xmit_msgs))) {
288 entry = smi_info->xmit_msgs.next;
292 smi_info->curr_msg = NULL;
298 smi_info->curr_msg = list_entry(entry,
303 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
305 err = atomic_notifier_call_chain(&xaction_notifier_list,
307 if (err & NOTIFY_STOP_MASK) {
308 rv = SI_SM_CALL_WITHOUT_DELAY;
311 err = smi_info->handlers->start_transaction(
313 smi_info->curr_msg->data,
314 smi_info->curr_msg->data_size);
316 return_hosed_msg(smi_info);
319 rv = SI_SM_CALL_WITHOUT_DELAY;
322 spin_unlock(&(smi_info->msg_lock));
327 static void start_enable_irq(struct smi_info *smi_info)
329 unsigned char msg[2];
331 /* If we are enabling interrupts, we have to tell the
333 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
334 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
336 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
337 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
340 static void start_clear_flags(struct smi_info *smi_info)
342 unsigned char msg[3];
344 /* Make sure the watchdog pre-timeout flag is not set at startup. */
345 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
346 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
347 msg[2] = WDT_PRE_TIMEOUT_INT;
349 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
350 smi_info->si_state = SI_CLEARING_FLAGS;
353 /* When we have a situtaion where we run out of memory and cannot
354 allocate messages, we just leave them in the BMC and run the system
355 polled until we can allocate some memory. Once we have some
356 memory, we will re-enable the interrupt. */
357 static inline void disable_si_irq(struct smi_info *smi_info)
359 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
360 disable_irq_nosync(smi_info->irq);
361 smi_info->interrupt_disabled = 1;
365 static inline void enable_si_irq(struct smi_info *smi_info)
367 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
368 enable_irq(smi_info->irq);
369 smi_info->interrupt_disabled = 0;
373 static void handle_flags(struct smi_info *smi_info)
376 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
377 /* Watchdog pre-timeout */
378 spin_lock(&smi_info->count_lock);
379 smi_info->watchdog_pretimeouts++;
380 spin_unlock(&smi_info->count_lock);
382 start_clear_flags(smi_info);
383 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
384 spin_unlock(&(smi_info->si_lock));
385 ipmi_smi_watchdog_pretimeout(smi_info->intf);
386 spin_lock(&(smi_info->si_lock));
387 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
388 /* Messages available. */
389 smi_info->curr_msg = ipmi_alloc_smi_msg();
390 if (!smi_info->curr_msg) {
391 disable_si_irq(smi_info);
392 smi_info->si_state = SI_NORMAL;
395 enable_si_irq(smi_info);
397 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
398 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
399 smi_info->curr_msg->data_size = 2;
401 smi_info->handlers->start_transaction(
403 smi_info->curr_msg->data,
404 smi_info->curr_msg->data_size);
405 smi_info->si_state = SI_GETTING_MESSAGES;
406 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
407 /* Events available. */
408 smi_info->curr_msg = ipmi_alloc_smi_msg();
409 if (!smi_info->curr_msg) {
410 disable_si_irq(smi_info);
411 smi_info->si_state = SI_NORMAL;
414 enable_si_irq(smi_info);
416 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
417 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
418 smi_info->curr_msg->data_size = 2;
420 smi_info->handlers->start_transaction(
422 smi_info->curr_msg->data,
423 smi_info->curr_msg->data_size);
424 smi_info->si_state = SI_GETTING_EVENTS;
425 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
426 if (smi_info->oem_data_avail_handler)
427 if (smi_info->oem_data_avail_handler(smi_info))
430 smi_info->si_state = SI_NORMAL;
434 static void handle_transaction_done(struct smi_info *smi_info)
436 struct ipmi_smi_msg *msg;
441 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
443 switch (smi_info->si_state) {
445 if (!smi_info->curr_msg)
448 smi_info->curr_msg->rsp_size
449 = smi_info->handlers->get_result(
451 smi_info->curr_msg->rsp,
452 IPMI_MAX_MSG_LENGTH);
454 /* Do this here becase deliver_recv_msg() releases the
455 lock, and a new message can be put in during the
456 time the lock is released. */
457 msg = smi_info->curr_msg;
458 smi_info->curr_msg = NULL;
459 deliver_recv_msg(smi_info, msg);
462 case SI_GETTING_FLAGS:
464 unsigned char msg[4];
467 /* We got the flags from the SMI, now handle them. */
468 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
470 /* Error fetching flags, just give up for
472 smi_info->si_state = SI_NORMAL;
473 } else if (len < 4) {
474 /* Hmm, no flags. That's technically illegal, but
475 don't use uninitialized data. */
476 smi_info->si_state = SI_NORMAL;
478 smi_info->msg_flags = msg[3];
479 handle_flags(smi_info);
484 case SI_CLEARING_FLAGS:
485 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
487 unsigned char msg[3];
489 /* We cleared the flags. */
490 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
492 /* Error clearing flags */
494 "ipmi_si: Error clearing flags: %2.2x\n",
497 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
498 start_enable_irq(smi_info);
500 smi_info->si_state = SI_NORMAL;
504 case SI_GETTING_EVENTS:
506 smi_info->curr_msg->rsp_size
507 = smi_info->handlers->get_result(
509 smi_info->curr_msg->rsp,
510 IPMI_MAX_MSG_LENGTH);
512 /* Do this here becase deliver_recv_msg() releases the
513 lock, and a new message can be put in during the
514 time the lock is released. */
515 msg = smi_info->curr_msg;
516 smi_info->curr_msg = NULL;
517 if (msg->rsp[2] != 0) {
518 /* Error getting event, probably done. */
521 /* Take off the event flag. */
522 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
523 handle_flags(smi_info);
525 spin_lock(&smi_info->count_lock);
527 spin_unlock(&smi_info->count_lock);
529 /* Do this before we deliver the message
530 because delivering the message releases the
531 lock and something else can mess with the
533 handle_flags(smi_info);
535 deliver_recv_msg(smi_info, msg);
540 case SI_GETTING_MESSAGES:
542 smi_info->curr_msg->rsp_size
543 = smi_info->handlers->get_result(
545 smi_info->curr_msg->rsp,
546 IPMI_MAX_MSG_LENGTH);
548 /* Do this here becase deliver_recv_msg() releases the
549 lock, and a new message can be put in during the
550 time the lock is released. */
551 msg = smi_info->curr_msg;
552 smi_info->curr_msg = NULL;
553 if (msg->rsp[2] != 0) {
554 /* Error getting event, probably done. */
557 /* Take off the msg flag. */
558 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
559 handle_flags(smi_info);
561 spin_lock(&smi_info->count_lock);
562 smi_info->incoming_messages++;
563 spin_unlock(&smi_info->count_lock);
565 /* Do this before we deliver the message
566 because delivering the message releases the
567 lock and something else can mess with the
569 handle_flags(smi_info);
571 deliver_recv_msg(smi_info, msg);
576 case SI_ENABLE_INTERRUPTS1:
578 unsigned char msg[4];
580 /* We got the flags from the SMI, now handle them. */
581 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
584 "ipmi_si: Could not enable interrupts"
585 ", failed get, using polled mode.\n");
586 smi_info->si_state = SI_NORMAL;
588 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
589 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
590 msg[2] = msg[3] | 1; /* enable msg queue int */
591 smi_info->handlers->start_transaction(
592 smi_info->si_sm, msg, 3);
593 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
598 case SI_ENABLE_INTERRUPTS2:
600 unsigned char msg[4];
602 /* We got the flags from the SMI, now handle them. */
603 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
606 "ipmi_si: Could not enable interrupts"
607 ", failed set, using polled mode.\n");
609 smi_info->si_state = SI_NORMAL;
615 /* Called on timeouts and events. Timeouts should pass the elapsed
616 time, interrupts should pass in zero. */
617 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
620 enum si_sm_result si_sm_result;
623 /* There used to be a loop here that waited a little while
624 (around 25us) before giving up. That turned out to be
625 pointless, the minimum delays I was seeing were in the 300us
626 range, which is far too long to wait in an interrupt. So
627 we just run until the state machine tells us something
628 happened or it needs a delay. */
629 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
631 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
633 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
636 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
638 spin_lock(&smi_info->count_lock);
639 smi_info->complete_transactions++;
640 spin_unlock(&smi_info->count_lock);
642 handle_transaction_done(smi_info);
643 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
645 else if (si_sm_result == SI_SM_HOSED)
647 spin_lock(&smi_info->count_lock);
648 smi_info->hosed_count++;
649 spin_unlock(&smi_info->count_lock);
651 /* Do the before return_hosed_msg, because that
652 releases the lock. */
653 smi_info->si_state = SI_NORMAL;
654 if (smi_info->curr_msg != NULL) {
655 /* If we were handling a user message, format
656 a response to send to the upper layer to
657 tell it about the error. */
658 return_hosed_msg(smi_info);
660 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
663 /* We prefer handling attn over new messages. */
664 if (si_sm_result == SI_SM_ATTN)
666 unsigned char msg[2];
668 spin_lock(&smi_info->count_lock);
669 smi_info->attentions++;
670 spin_unlock(&smi_info->count_lock);
672 /* Got a attn, send down a get message flags to see
673 what's causing it. It would be better to handle
674 this in the upper layer, but due to the way
675 interrupts work with the SMI, that's not really
677 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
680 smi_info->handlers->start_transaction(
681 smi_info->si_sm, msg, 2);
682 smi_info->si_state = SI_GETTING_FLAGS;
686 /* If we are currently idle, try to start the next message. */
687 if (si_sm_result == SI_SM_IDLE) {
688 spin_lock(&smi_info->count_lock);
690 spin_unlock(&smi_info->count_lock);
692 si_sm_result = start_next_msg(smi_info);
693 if (si_sm_result != SI_SM_IDLE)
697 if ((si_sm_result == SI_SM_IDLE)
698 && (atomic_read(&smi_info->req_events)))
700 /* We are idle and the upper layer requested that I fetch
702 unsigned char msg[2];
704 spin_lock(&smi_info->count_lock);
705 smi_info->flag_fetches++;
706 spin_unlock(&smi_info->count_lock);
708 atomic_set(&smi_info->req_events, 0);
709 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
710 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
712 smi_info->handlers->start_transaction(
713 smi_info->si_sm, msg, 2);
714 smi_info->si_state = SI_GETTING_FLAGS;
721 static void sender(void *send_info,
722 struct ipmi_smi_msg *msg,
725 struct smi_info *smi_info = send_info;
726 enum si_sm_result result;
732 spin_lock_irqsave(&(smi_info->msg_lock), flags);
735 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
738 if (smi_info->run_to_completion) {
739 /* If we are running to completion, then throw it in
740 the list and run transactions until everything is
741 clear. Priority doesn't matter here. */
742 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
744 /* We have to release the msg lock and claim the smi
745 lock in this case, because of race conditions. */
746 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
748 spin_lock_irqsave(&(smi_info->si_lock), flags);
749 result = smi_event_handler(smi_info, 0);
750 while (result != SI_SM_IDLE) {
751 udelay(SI_SHORT_TIMEOUT_USEC);
752 result = smi_event_handler(smi_info,
753 SI_SHORT_TIMEOUT_USEC);
755 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
759 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
761 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
764 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
766 spin_lock_irqsave(&(smi_info->si_lock), flags);
767 if ((smi_info->si_state == SI_NORMAL)
768 && (smi_info->curr_msg == NULL))
770 start_next_msg(smi_info);
771 si_restart_short_timer(smi_info);
773 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
776 static void set_run_to_completion(void *send_info, int i_run_to_completion)
778 struct smi_info *smi_info = send_info;
779 enum si_sm_result result;
782 spin_lock_irqsave(&(smi_info->si_lock), flags);
784 smi_info->run_to_completion = i_run_to_completion;
785 if (i_run_to_completion) {
786 result = smi_event_handler(smi_info, 0);
787 while (result != SI_SM_IDLE) {
788 udelay(SI_SHORT_TIMEOUT_USEC);
789 result = smi_event_handler(smi_info,
790 SI_SHORT_TIMEOUT_USEC);
794 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
797 static int ipmi_thread(void *data)
799 struct smi_info *smi_info = data;
801 enum si_sm_result smi_result;
803 set_user_nice(current, 19);
804 while (!kthread_should_stop()) {
805 spin_lock_irqsave(&(smi_info->si_lock), flags);
806 smi_result=smi_event_handler(smi_info, 0);
807 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
808 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
811 else if (smi_result == SI_SM_CALL_WITH_DELAY)
814 schedule_timeout_interruptible(1);
820 static void poll(void *send_info)
822 struct smi_info *smi_info = send_info;
824 smi_event_handler(smi_info, 0);
827 static void request_events(void *send_info)
829 struct smi_info *smi_info = send_info;
831 atomic_set(&smi_info->req_events, 1);
834 static int initialized = 0;
836 /* Must be called with interrupts off and with the si_lock held. */
837 static void si_restart_short_timer(struct smi_info *smi_info)
839 #if defined(CONFIG_HIGH_RES_TIMERS)
841 unsigned long jiffies_now;
844 if (del_timer(&(smi_info->si_timer))) {
845 /* If we don't delete the timer, then it will go off
846 immediately, anyway. So we only process if we
847 actually delete the timer. */
850 seq = read_seqbegin_irqsave(&xtime_lock, flags);
851 jiffies_now = jiffies;
852 smi_info->si_timer.expires = jiffies_now;
853 smi_info->si_timer.arch_cycle_expires
854 = get_arch_cycles(jiffies_now);
855 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
857 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
859 add_timer(&(smi_info->si_timer));
860 spin_lock_irqsave(&smi_info->count_lock, flags);
861 smi_info->timeout_restarts++;
862 spin_unlock_irqrestore(&smi_info->count_lock, flags);
867 static void smi_timeout(unsigned long data)
869 struct smi_info *smi_info = (struct smi_info *) data;
870 enum si_sm_result smi_result;
872 unsigned long jiffies_now;
878 if (atomic_read(&smi_info->stop_operation))
881 spin_lock_irqsave(&(smi_info->si_lock), flags);
884 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
886 jiffies_now = jiffies;
887 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
888 * SI_USEC_PER_JIFFY);
889 smi_result = smi_event_handler(smi_info, time_diff);
891 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
893 smi_info->last_timeout_jiffies = jiffies_now;
895 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
896 /* Running with interrupts, only do long timeouts. */
897 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
898 spin_lock_irqsave(&smi_info->count_lock, flags);
899 smi_info->long_timeouts++;
900 spin_unlock_irqrestore(&smi_info->count_lock, flags);
904 /* If the state machine asks for a short delay, then shorten
905 the timer timeout. */
906 if (smi_result == SI_SM_CALL_WITH_DELAY) {
907 #if defined(CONFIG_HIGH_RES_TIMERS)
910 spin_lock_irqsave(&smi_info->count_lock, flags);
911 smi_info->short_timeouts++;
912 spin_unlock_irqrestore(&smi_info->count_lock, flags);
913 #if defined(CONFIG_HIGH_RES_TIMERS)
915 seq = read_seqbegin_irqsave(&xtime_lock, flags);
916 smi_info->si_timer.expires = jiffies;
917 smi_info->si_timer.arch_cycle_expires
918 = get_arch_cycles(smi_info->si_timer.expires);
919 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
920 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
922 smi_info->si_timer.expires = jiffies + 1;
925 spin_lock_irqsave(&smi_info->count_lock, flags);
926 smi_info->long_timeouts++;
927 spin_unlock_irqrestore(&smi_info->count_lock, flags);
928 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
929 #if defined(CONFIG_HIGH_RES_TIMERS)
930 smi_info->si_timer.arch_cycle_expires = 0;
935 add_timer(&(smi_info->si_timer));
938 static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
940 struct smi_info *smi_info = data;
946 spin_lock_irqsave(&(smi_info->si_lock), flags);
948 spin_lock(&smi_info->count_lock);
949 smi_info->interrupts++;
950 spin_unlock(&smi_info->count_lock);
952 if (atomic_read(&smi_info->stop_operation))
957 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
959 smi_event_handler(smi_info, 0);
961 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
965 static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
967 struct smi_info *smi_info = data;
968 /* We need to clear the IRQ flag for the BT interface. */
969 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
970 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
971 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
972 return si_irq_handler(irq, data, regs);
976 static struct ipmi_smi_handlers handlers =
978 .owner = THIS_MODULE,
980 .request_events = request_events,
981 .set_run_to_completion = set_run_to_completion,
985 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
986 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
988 #define SI_MAX_PARMS 4
989 static LIST_HEAD(smi_infos);
990 static DECLARE_MUTEX(smi_infos_lock);
991 static int smi_num; /* Used to sequence the SMIs */
993 #define DEFAULT_REGSPACING 1
995 static int si_trydefaults = 1;
996 static char *si_type[SI_MAX_PARMS];
997 #define MAX_SI_TYPE_STR 30
998 static char si_type_str[MAX_SI_TYPE_STR];
999 static unsigned long addrs[SI_MAX_PARMS];
1000 static int num_addrs;
1001 static unsigned int ports[SI_MAX_PARMS];
1002 static int num_ports;
1003 static int irqs[SI_MAX_PARMS];
1004 static int num_irqs;
1005 static int regspacings[SI_MAX_PARMS];
1006 static int num_regspacings = 0;
1007 static int regsizes[SI_MAX_PARMS];
1008 static int num_regsizes = 0;
1009 static int regshifts[SI_MAX_PARMS];
1010 static int num_regshifts = 0;
1011 static int slave_addrs[SI_MAX_PARMS];
1012 static int num_slave_addrs = 0;
1015 module_param_named(trydefaults, si_trydefaults, bool, 0);
1016 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1017 " default scan of the KCS and SMIC interface at the standard"
1019 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1020 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1021 " interface separated by commas. The types are 'kcs',"
1022 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1023 " the first interface to kcs and the second to bt");
1024 module_param_array(addrs, long, &num_addrs, 0);
1025 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1026 " addresses separated by commas. Only use if an interface"
1027 " is in memory. Otherwise, set it to zero or leave"
1029 module_param_array(ports, int, &num_ports, 0);
1030 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1031 " addresses separated by commas. Only use if an interface"
1032 " is a port. Otherwise, set it to zero or leave"
1034 module_param_array(irqs, int, &num_irqs, 0);
1035 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1036 " addresses separated by commas. Only use if an interface"
1037 " has an interrupt. Otherwise, set it to zero or leave"
1039 module_param_array(regspacings, int, &num_regspacings, 0);
1040 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1041 " and each successive register used by the interface. For"
1042 " instance, if the start address is 0xca2 and the spacing"
1043 " is 2, then the second address is at 0xca4. Defaults"
1045 module_param_array(regsizes, int, &num_regsizes, 0);
1046 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1047 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1048 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1049 " the 8-bit IPMI register has to be read from a larger"
1051 module_param_array(regshifts, int, &num_regshifts, 0);
1052 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1053 " IPMI register, in bits. For instance, if the data"
1054 " is read from a 32-bit word and the IPMI data is in"
1055 " bit 8-15, then the shift would be 8");
1056 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1057 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1058 " the controller. Normally this is 0x20, but can be"
1059 " overridden by this parm. This is an array indexed"
1060 " by interface number.");
1063 #define IPMI_IO_ADDR_SPACE 0
1064 #define IPMI_MEM_ADDR_SPACE 1
1065 static char *addr_space_to_str[] = { "I/O", "memory" };
1067 static void std_irq_cleanup(struct smi_info *info)
1069 if (info->si_type == SI_BT)
1070 /* Disable the interrupt in the BT interface. */
1071 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1072 free_irq(info->irq, info);
1075 static int std_irq_setup(struct smi_info *info)
1082 if (info->si_type == SI_BT) {
1083 rv = request_irq(info->irq,
1089 /* Enable the interrupt in the BT interface. */
1090 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1091 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1093 rv = request_irq(info->irq,
1100 "ipmi_si: %s unable to claim interrupt %d,"
1101 " running polled\n",
1102 DEVICE_NAME, info->irq);
1105 info->irq_cleanup = std_irq_cleanup;
1106 printk(" Using irq %d\n", info->irq);
1112 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1114 unsigned int addr = io->addr_data;
1116 return inb(addr + (offset * io->regspacing));
1119 static void port_outb(struct si_sm_io *io, unsigned int offset,
1122 unsigned int addr = io->addr_data;
1124 outb(b, addr + (offset * io->regspacing));
1127 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1129 unsigned int addr = io->addr_data;
1131 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1134 static void port_outw(struct si_sm_io *io, unsigned int offset,
1137 unsigned int addr = io->addr_data;
1139 outw(b << io->regshift, addr + (offset * io->regspacing));
1142 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1144 unsigned int addr = io->addr_data;
1146 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1149 static void port_outl(struct si_sm_io *io, unsigned int offset,
1152 unsigned int addr = io->addr_data;
1154 outl(b << io->regshift, addr+(offset * io->regspacing));
1157 static void port_cleanup(struct smi_info *info)
1159 unsigned int addr = info->io.addr_data;
1163 mapsize = ((info->io_size * info->io.regspacing)
1164 - (info->io.regspacing - info->io.regsize));
1166 release_region (addr, mapsize);
1170 static int port_setup(struct smi_info *info)
1172 unsigned int addr = info->io.addr_data;
1178 info->io_cleanup = port_cleanup;
1180 /* Figure out the actual inb/inw/inl/etc routine to use based
1181 upon the register size. */
1182 switch (info->io.regsize) {
1184 info->io.inputb = port_inb;
1185 info->io.outputb = port_outb;
1188 info->io.inputb = port_inw;
1189 info->io.outputb = port_outw;
1192 info->io.inputb = port_inl;
1193 info->io.outputb = port_outl;
1196 printk("ipmi_si: Invalid register size: %d\n",
1201 /* Calculate the total amount of memory to claim. This is an
1202 * unusual looking calculation, but it avoids claiming any
1203 * more memory than it has to. It will claim everything
1204 * between the first address to the end of the last full
1206 mapsize = ((info->io_size * info->io.regspacing)
1207 - (info->io.regspacing - info->io.regsize));
1209 if (request_region(addr, mapsize, DEVICE_NAME) == NULL)
1214 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1216 return readb((io->addr)+(offset * io->regspacing));
1219 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1222 writeb(b, (io->addr)+(offset * io->regspacing));
1225 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1227 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1231 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1234 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1237 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1239 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1243 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1246 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1250 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1252 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1256 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1259 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1263 static void mem_cleanup(struct smi_info *info)
1265 unsigned long addr = info->io.addr_data;
1268 if (info->io.addr) {
1269 iounmap(info->io.addr);
1271 mapsize = ((info->io_size * info->io.regspacing)
1272 - (info->io.regspacing - info->io.regsize));
1274 release_mem_region(addr, mapsize);
1278 static int mem_setup(struct smi_info *info)
1280 unsigned long addr = info->io.addr_data;
1286 info->io_cleanup = mem_cleanup;
1288 /* Figure out the actual readb/readw/readl/etc routine to use based
1289 upon the register size. */
1290 switch (info->io.regsize) {
1292 info->io.inputb = intf_mem_inb;
1293 info->io.outputb = intf_mem_outb;
1296 info->io.inputb = intf_mem_inw;
1297 info->io.outputb = intf_mem_outw;
1300 info->io.inputb = intf_mem_inl;
1301 info->io.outputb = intf_mem_outl;
1305 info->io.inputb = mem_inq;
1306 info->io.outputb = mem_outq;
1310 printk("ipmi_si: Invalid register size: %d\n",
1315 /* Calculate the total amount of memory to claim. This is an
1316 * unusual looking calculation, but it avoids claiming any
1317 * more memory than it has to. It will claim everything
1318 * between the first address to the end of the last full
1320 mapsize = ((info->io_size * info->io.regspacing)
1321 - (info->io.regspacing - info->io.regsize));
1323 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1326 info->io.addr = ioremap(addr, mapsize);
1327 if (info->io.addr == NULL) {
1328 release_mem_region(addr, mapsize);
1335 static __devinit void hardcode_find_bmc(void)
1338 struct smi_info *info;
1340 for (i = 0; i < SI_MAX_PARMS; i++) {
1341 if (!ports[i] && !addrs[i])
1344 info = kzalloc(sizeof(*info), GFP_KERNEL);
1348 info->addr_source = "hardcoded";
1350 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1351 info->si_type = SI_KCS;
1352 } else if (strcmp(si_type[i], "smic") == 0) {
1353 info->si_type = SI_SMIC;
1354 } else if (strcmp(si_type[i], "bt") == 0) {
1355 info->si_type = SI_BT;
1358 "ipmi_si: Interface type specified "
1359 "for interface %d, was invalid: %s\n",
1367 info->io_setup = port_setup;
1368 info->io.addr_data = ports[i];
1369 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1370 } else if (addrs[i]) {
1372 info->io_setup = mem_setup;
1373 info->io.addr_data = addrs[i];
1374 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1377 "ipmi_si: Interface type specified "
1378 "for interface %d, "
1379 "but port and address were not set or "
1380 "set to zero.\n", i);
1385 info->io.addr = NULL;
1386 info->io.regspacing = regspacings[i];
1387 if (!info->io.regspacing)
1388 info->io.regspacing = DEFAULT_REGSPACING;
1389 info->io.regsize = regsizes[i];
1390 if (!info->io.regsize)
1391 info->io.regsize = DEFAULT_REGSPACING;
1392 info->io.regshift = regshifts[i];
1393 info->irq = irqs[i];
1395 info->irq_setup = std_irq_setup;
1403 #include <linux/acpi.h>
1405 /* Once we get an ACPI failure, we don't try any more, because we go
1406 through the tables sequentially. Once we don't find a table, there
1408 static int acpi_failure = 0;
1410 /* For GPE-type interrupts. */
1411 static u32 ipmi_acpi_gpe(void *context)
1413 struct smi_info *smi_info = context;
1414 unsigned long flags;
1419 spin_lock_irqsave(&(smi_info->si_lock), flags);
1421 spin_lock(&smi_info->count_lock);
1422 smi_info->interrupts++;
1423 spin_unlock(&smi_info->count_lock);
1425 if (atomic_read(&smi_info->stop_operation))
1429 do_gettimeofday(&t);
1430 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1432 smi_event_handler(smi_info, 0);
1434 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1436 return ACPI_INTERRUPT_HANDLED;
1439 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1444 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1447 static int acpi_gpe_irq_setup(struct smi_info *info)
1454 /* FIXME - is level triggered right? */
1455 status = acpi_install_gpe_handler(NULL,
1457 ACPI_GPE_LEVEL_TRIGGERED,
1460 if (status != AE_OK) {
1462 "ipmi_si: %s unable to claim ACPI GPE %d,"
1463 " running polled\n",
1464 DEVICE_NAME, info->irq);
1468 info->irq_cleanup = acpi_gpe_irq_cleanup;
1469 printk(" Using ACPI GPE %d\n", info->irq);
1476 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1487 s8 CreatorRevision[4];
1490 s16 SpecificationRevision;
1493 * Bit 0 - SCI interrupt supported
1494 * Bit 1 - I/O APIC/SAPIC
1498 /* If bit 0 of InterruptType is set, then this is the SCI
1499 interrupt in the GPEx_STS register. */
1504 /* If bit 1 of InterruptType is set, then this is the I/O
1505 APIC/SAPIC interrupt. */
1506 u32 GlobalSystemInterrupt;
1508 /* The actual register address. */
1509 struct acpi_generic_address addr;
1513 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1516 static __devinit int try_init_acpi(struct SPMITable *spmi)
1518 struct smi_info *info;
1522 if (spmi->IPMIlegacy != 1) {
1523 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1527 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1528 addr_space = IPMI_MEM_ADDR_SPACE;
1530 addr_space = IPMI_IO_ADDR_SPACE;
1532 info = kzalloc(sizeof(*info), GFP_KERNEL);
1534 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1538 info->addr_source = "ACPI";
1540 /* Figure out the interface type. */
1541 switch (spmi->InterfaceType)
1544 info->si_type = SI_KCS;
1547 info->si_type = SI_SMIC;
1550 info->si_type = SI_BT;
1553 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1554 spmi->InterfaceType);
1559 if (spmi->InterruptType & 1) {
1560 /* We've got a GPE interrupt. */
1561 info->irq = spmi->GPE;
1562 info->irq_setup = acpi_gpe_irq_setup;
1563 } else if (spmi->InterruptType & 2) {
1564 /* We've got an APIC/SAPIC interrupt. */
1565 info->irq = spmi->GlobalSystemInterrupt;
1566 info->irq_setup = std_irq_setup;
1568 /* Use the default interrupt setting. */
1570 info->irq_setup = NULL;
1573 if (spmi->addr.register_bit_width) {
1574 /* A (hopefully) properly formed register bit width. */
1575 info->io.regspacing = spmi->addr.register_bit_width / 8;
1577 info->io.regspacing = DEFAULT_REGSPACING;
1579 info->io.regsize = info->io.regspacing;
1580 info->io.regshift = spmi->addr.register_bit_offset;
1582 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1584 info->io_setup = mem_setup;
1585 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1586 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1588 info->io_setup = port_setup;
1589 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1592 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1595 info->io.addr_data = spmi->addr.address;
1602 static __devinit void acpi_find_bmc(void)
1605 struct SPMITable *spmi;
1614 for (i = 0; ; i++) {
1615 status = acpi_get_firmware_table("SPMI", i+1,
1616 ACPI_LOGICAL_ADDRESSING,
1617 (struct acpi_table_header **)
1619 if (status != AE_OK)
1622 try_init_acpi(spmi);
1628 struct dmi_ipmi_data
1632 unsigned long base_addr;
1638 static int __devinit decode_dmi(struct dmi_header *dm,
1639 struct dmi_ipmi_data *dmi)
1641 u8 *data = (u8 *)dm;
1642 unsigned long base_addr;
1644 u8 len = dm->length;
1646 dmi->type = data[4];
1648 memcpy(&base_addr, data+8, sizeof(unsigned long));
1650 if (base_addr & 1) {
1652 base_addr &= 0xFFFE;
1653 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1657 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1659 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1661 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1663 dmi->irq = data[0x11];
1665 /* The top two bits of byte 0x10 hold the register spacing. */
1666 reg_spacing = (data[0x10] & 0xC0) >> 6;
1667 switch(reg_spacing){
1668 case 0x00: /* Byte boundaries */
1671 case 0x01: /* 32-bit boundaries */
1674 case 0x02: /* 16-byte boundaries */
1678 /* Some other interface, just ignore it. */
1683 /* Note that technically, the lower bit of the base
1684 * address should be 1 if the address is I/O and 0 if
1685 * the address is in memory. So many systems get that
1686 * wrong (and all that I have seen are I/O) so we just
1687 * ignore that bit and assume I/O. Systems that use
1688 * memory should use the newer spec, anyway. */
1689 dmi->base_addr = base_addr & 0xfffe;
1690 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1694 dmi->slave_addr = data[6];
1699 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1701 struct smi_info *info;
1703 info = kzalloc(sizeof(*info), GFP_KERNEL);
1706 "ipmi_si: Could not allocate SI data\n");
1710 info->addr_source = "SMBIOS";
1712 switch (ipmi_data->type) {
1713 case 0x01: /* KCS */
1714 info->si_type = SI_KCS;
1716 case 0x02: /* SMIC */
1717 info->si_type = SI_SMIC;
1720 info->si_type = SI_BT;
1726 switch (ipmi_data->addr_space) {
1727 case IPMI_MEM_ADDR_SPACE:
1728 info->io_setup = mem_setup;
1729 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1732 case IPMI_IO_ADDR_SPACE:
1733 info->io_setup = port_setup;
1734 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1740 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1741 ipmi_data->addr_space);
1744 info->io.addr_data = ipmi_data->base_addr;
1746 info->io.regspacing = ipmi_data->offset;
1747 if (!info->io.regspacing)
1748 info->io.regspacing = DEFAULT_REGSPACING;
1749 info->io.regsize = DEFAULT_REGSPACING;
1750 info->io.regshift = 0;
1752 info->slave_addr = ipmi_data->slave_addr;
1754 info->irq = ipmi_data->irq;
1756 info->irq_setup = std_irq_setup;
1761 static void __devinit dmi_find_bmc(void)
1763 struct dmi_device *dev = NULL;
1764 struct dmi_ipmi_data data;
1767 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1768 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1770 try_init_dmi(&data);
1773 #endif /* CONFIG_DMI */
1777 #define PCI_ERMC_CLASSCODE 0x0C0700
1778 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1779 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1780 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1781 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1782 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1784 #define PCI_HP_VENDOR_ID 0x103C
1785 #define PCI_MMC_DEVICE_ID 0x121A
1786 #define PCI_MMC_ADDR_CW 0x10
1788 static void ipmi_pci_cleanup(struct smi_info *info)
1790 struct pci_dev *pdev = info->addr_source_data;
1792 pci_disable_device(pdev);
1795 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1796 const struct pci_device_id *ent)
1799 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1800 struct smi_info *info;
1801 int first_reg_offset = 0;
1803 info = kzalloc(sizeof(*info), GFP_KERNEL);
1807 info->addr_source = "PCI";
1809 switch (class_type) {
1810 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1811 info->si_type = SI_SMIC;
1814 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1815 info->si_type = SI_KCS;
1818 case PCI_ERMC_CLASSCODE_TYPE_BT:
1819 info->si_type = SI_BT;
1824 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1825 pci_name(pdev), class_type);
1829 rv = pci_enable_device(pdev);
1831 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1837 info->addr_source_cleanup = ipmi_pci_cleanup;
1838 info->addr_source_data = pdev;
1840 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1841 first_reg_offset = 1;
1843 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1844 info->io_setup = port_setup;
1845 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1847 info->io_setup = mem_setup;
1848 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1850 info->io.addr_data = pci_resource_start(pdev, 0);
1852 info->io.regspacing = DEFAULT_REGSPACING;
1853 info->io.regsize = DEFAULT_REGSPACING;
1854 info->io.regshift = 0;
1856 info->irq = pdev->irq;
1858 info->irq_setup = std_irq_setup;
1860 info->dev = &pdev->dev;
1862 return try_smi_init(info);
1865 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1870 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1875 static int ipmi_pci_resume(struct pci_dev *pdev)
1881 static struct pci_device_id ipmi_pci_devices[] = {
1882 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1883 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1885 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1887 static struct pci_driver ipmi_pci_driver = {
1888 .name = DEVICE_NAME,
1889 .id_table = ipmi_pci_devices,
1890 .probe = ipmi_pci_probe,
1891 .remove = __devexit_p(ipmi_pci_remove),
1893 .suspend = ipmi_pci_suspend,
1894 .resume = ipmi_pci_resume,
1897 #endif /* CONFIG_PCI */
1900 static int try_get_dev_id(struct smi_info *smi_info)
1902 unsigned char msg[2];
1903 unsigned char *resp;
1904 unsigned long resp_len;
1905 enum si_sm_result smi_result;
1908 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1912 /* Do a Get Device ID command, since it comes back with some
1914 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1915 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1916 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1918 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1921 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1922 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1923 schedule_timeout_uninterruptible(1);
1924 smi_result = smi_info->handlers->event(
1925 smi_info->si_sm, 100);
1927 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1929 smi_result = smi_info->handlers->event(
1930 smi_info->si_sm, 0);
1935 if (smi_result == SI_SM_HOSED) {
1936 /* We couldn't get the state machine to run, so whatever's at
1937 the port is probably not an IPMI SMI interface. */
1942 /* Otherwise, we got some data. */
1943 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1944 resp, IPMI_MAX_MSG_LENGTH);
1945 if (resp_len < 14) {
1946 /* That's odd, it should be longer. */
1951 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1952 /* That's odd, it shouldn't be able to fail. */
1957 /* Record info from the get device id, in case we need it. */
1958 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id);
1965 static int type_file_read_proc(char *page, char **start, off_t off,
1966 int count, int *eof, void *data)
1968 char *out = (char *) page;
1969 struct smi_info *smi = data;
1971 switch (smi->si_type) {
1973 return sprintf(out, "kcs\n");
1975 return sprintf(out, "smic\n");
1977 return sprintf(out, "bt\n");
1983 static int stat_file_read_proc(char *page, char **start, off_t off,
1984 int count, int *eof, void *data)
1986 char *out = (char *) page;
1987 struct smi_info *smi = data;
1989 out += sprintf(out, "interrupts_enabled: %d\n",
1990 smi->irq && !smi->interrupt_disabled);
1991 out += sprintf(out, "short_timeouts: %ld\n",
1992 smi->short_timeouts);
1993 out += sprintf(out, "long_timeouts: %ld\n",
1994 smi->long_timeouts);
1995 out += sprintf(out, "timeout_restarts: %ld\n",
1996 smi->timeout_restarts);
1997 out += sprintf(out, "idles: %ld\n",
1999 out += sprintf(out, "interrupts: %ld\n",
2001 out += sprintf(out, "attentions: %ld\n",
2003 out += sprintf(out, "flag_fetches: %ld\n",
2005 out += sprintf(out, "hosed_count: %ld\n",
2007 out += sprintf(out, "complete_transactions: %ld\n",
2008 smi->complete_transactions);
2009 out += sprintf(out, "events: %ld\n",
2011 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2012 smi->watchdog_pretimeouts);
2013 out += sprintf(out, "incoming_messages: %ld\n",
2014 smi->incoming_messages);
2016 return (out - ((char *) page));
2020 * oem_data_avail_to_receive_msg_avail
2021 * @info - smi_info structure with msg_flags set
2023 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2024 * Returns 1 indicating need to re-run handle_flags().
2026 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2028 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2034 * setup_dell_poweredge_oem_data_handler
2035 * @info - smi_info.device_id must be populated
2037 * Systems that match, but have firmware version < 1.40 may assert
2038 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2039 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2040 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2041 * as RECEIVE_MSG_AVAIL instead.
2043 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2044 * assert the OEM[012] bits, and if it did, the driver would have to
2045 * change to handle that properly, we don't actually check for the
2047 * Device ID = 0x20 BMC on PowerEdge 8G servers
2048 * Device Revision = 0x80
2049 * Firmware Revision1 = 0x01 BMC version 1.40
2050 * Firmware Revision2 = 0x40 BCD encoded
2051 * IPMI Version = 0x51 IPMI 1.5
2052 * Manufacturer ID = A2 02 00 Dell IANA
2054 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2055 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2058 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2059 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2060 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2061 #define DELL_IANA_MFR_ID 0x0002a2
2062 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2064 struct ipmi_device_id *id = &smi_info->device_id;
2065 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2066 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2067 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2068 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2069 smi_info->oem_data_avail_handler =
2070 oem_data_avail_to_receive_msg_avail;
2072 else if (ipmi_version_major(id) < 1 ||
2073 (ipmi_version_major(id) == 1 &&
2074 ipmi_version_minor(id) < 5)) {
2075 smi_info->oem_data_avail_handler =
2076 oem_data_avail_to_receive_msg_avail;
2081 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2082 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2084 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2086 /* Make it a reponse */
2087 msg->rsp[0] = msg->data[0] | 4;
2088 msg->rsp[1] = msg->data[1];
2089 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2091 smi_info->curr_msg = NULL;
2092 deliver_recv_msg(smi_info, msg);
2096 * dell_poweredge_bt_xaction_handler
2097 * @info - smi_info.device_id must be populated
2099 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2100 * not respond to a Get SDR command if the length of the data
2101 * requested is exactly 0x3A, which leads to command timeouts and no
2102 * data returned. This intercepts such commands, and causes userspace
2103 * callers to try again with a different-sized buffer, which succeeds.
2106 #define STORAGE_NETFN 0x0A
2107 #define STORAGE_CMD_GET_SDR 0x23
2108 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2109 unsigned long unused,
2112 struct smi_info *smi_info = in;
2113 unsigned char *data = smi_info->curr_msg->data;
2114 unsigned int size = smi_info->curr_msg->data_size;
2116 (data[0]>>2) == STORAGE_NETFN &&
2117 data[1] == STORAGE_CMD_GET_SDR &&
2119 return_hosed_msg_badsize(smi_info);
2125 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2126 .notifier_call = dell_poweredge_bt_xaction_handler,
2130 * setup_dell_poweredge_bt_xaction_handler
2131 * @info - smi_info.device_id must be filled in already
2133 * Fills in smi_info.device_id.start_transaction_pre_hook
2134 * when we know what function to use there.
2137 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2139 struct ipmi_device_id *id = &smi_info->device_id;
2140 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2141 smi_info->si_type == SI_BT)
2142 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2146 * setup_oem_data_handler
2147 * @info - smi_info.device_id must be filled in already
2149 * Fills in smi_info.device_id.oem_data_available_handler
2150 * when we know what function to use there.
2153 static void setup_oem_data_handler(struct smi_info *smi_info)
2155 setup_dell_poweredge_oem_data_handler(smi_info);
2158 static void setup_xaction_handlers(struct smi_info *smi_info)
2160 setup_dell_poweredge_bt_xaction_handler(smi_info);
2163 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2165 if (smi_info->thread != NULL && smi_info->thread != ERR_PTR(-ENOMEM))
2166 kthread_stop(smi_info->thread);
2167 del_timer_sync(&smi_info->si_timer);
2170 static struct ipmi_default_vals
2174 } __devinit ipmi_defaults[] =
2176 { .type = SI_KCS, .port = 0xca2 },
2177 { .type = SI_SMIC, .port = 0xca9 },
2178 { .type = SI_BT, .port = 0xe4 },
2182 static __devinit void default_find_bmc(void)
2184 struct smi_info *info;
2187 for (i = 0; ; i++) {
2188 if (!ipmi_defaults[i].port)
2191 info = kzalloc(sizeof(*info), GFP_KERNEL);
2195 info->addr_source = NULL;
2197 info->si_type = ipmi_defaults[i].type;
2198 info->io_setup = port_setup;
2199 info->io.addr_data = ipmi_defaults[i].port;
2200 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2202 info->io.addr = NULL;
2203 info->io.regspacing = DEFAULT_REGSPACING;
2204 info->io.regsize = DEFAULT_REGSPACING;
2205 info->io.regshift = 0;
2207 if (try_smi_init(info) == 0) {
2209 printk(KERN_INFO "ipmi_si: Found default %s state"
2210 " machine at %s address 0x%lx\n",
2211 si_to_str[info->si_type],
2212 addr_space_to_str[info->io.addr_type],
2213 info->io.addr_data);
2219 static int is_new_interface(struct smi_info *info)
2223 list_for_each_entry(e, &smi_infos, link) {
2224 if (e->io.addr_type != info->io.addr_type)
2226 if (e->io.addr_data == info->io.addr_data)
2233 static int try_smi_init(struct smi_info *new_smi)
2237 if (new_smi->addr_source) {
2238 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2239 " machine at %s address 0x%lx, slave address 0x%x,"
2241 new_smi->addr_source,
2242 si_to_str[new_smi->si_type],
2243 addr_space_to_str[new_smi->io.addr_type],
2244 new_smi->io.addr_data,
2245 new_smi->slave_addr, new_smi->irq);
2248 down(&smi_infos_lock);
2249 if (!is_new_interface(new_smi)) {
2250 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2255 /* So we know not to free it unless we have allocated one. */
2256 new_smi->intf = NULL;
2257 new_smi->si_sm = NULL;
2258 new_smi->handlers = NULL;
2260 switch (new_smi->si_type) {
2262 new_smi->handlers = &kcs_smi_handlers;
2266 new_smi->handlers = &smic_smi_handlers;
2270 new_smi->handlers = &bt_smi_handlers;
2274 /* No support for anything else yet. */
2279 /* Allocate the state machine's data and initialize it. */
2280 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2281 if (!new_smi->si_sm) {
2282 printk(" Could not allocate state machine memory\n");
2286 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2289 /* Now that we know the I/O size, we can set up the I/O. */
2290 rv = new_smi->io_setup(new_smi);
2292 printk(" Could not set up I/O space\n");
2296 spin_lock_init(&(new_smi->si_lock));
2297 spin_lock_init(&(new_smi->msg_lock));
2298 spin_lock_init(&(new_smi->count_lock));
2300 /* Do low-level detection first. */
2301 if (new_smi->handlers->detect(new_smi->si_sm)) {
2302 if (new_smi->addr_source)
2303 printk(KERN_INFO "ipmi_si: Interface detection"
2309 /* Attempt a get device id command. If it fails, we probably
2310 don't have a BMC here. */
2311 rv = try_get_dev_id(new_smi);
2313 if (new_smi->addr_source)
2314 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2315 " at this location\n");
2319 setup_oem_data_handler(new_smi);
2320 setup_xaction_handlers(new_smi);
2322 /* Try to claim any interrupts. */
2323 if (new_smi->irq_setup)
2324 new_smi->irq_setup(new_smi);
2326 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2327 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2328 new_smi->curr_msg = NULL;
2329 atomic_set(&new_smi->req_events, 0);
2330 new_smi->run_to_completion = 0;
2332 new_smi->interrupt_disabled = 0;
2333 atomic_set(&new_smi->stop_operation, 0);
2334 new_smi->intf_num = smi_num;
2337 /* Start clearing the flags before we enable interrupts or the
2338 timer to avoid racing with the timer. */
2339 start_clear_flags(new_smi);
2340 /* IRQ is defined to be set when non-zero. */
2342 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2344 /* The ipmi_register_smi() code does some operations to
2345 determine the channel information, so we must be ready to
2346 handle operations before it is called. This means we have
2347 to stop the timer if we get an error after this point. */
2348 init_timer(&(new_smi->si_timer));
2349 new_smi->si_timer.data = (long) new_smi;
2350 new_smi->si_timer.function = smi_timeout;
2351 new_smi->last_timeout_jiffies = jiffies;
2352 new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
2354 add_timer(&(new_smi->si_timer));
2355 if (new_smi->si_type != SI_BT)
2356 new_smi->thread = kthread_run(ipmi_thread, new_smi,
2357 "kipmi%d", new_smi->intf_num);
2359 if (!new_smi->dev) {
2360 /* If we don't already have a device from something
2361 * else (like PCI), then register a new one. */
2362 new_smi->pdev = platform_device_alloc("ipmi_si",
2367 " Unable to allocate platform device\n");
2368 goto out_err_stop_timer;
2370 new_smi->dev = &new_smi->pdev->dev;
2371 new_smi->dev->driver = &ipmi_driver;
2373 rv = platform_device_register(new_smi->pdev);
2377 " Unable to register system interface device:"
2380 goto out_err_stop_timer;
2382 new_smi->dev_registered = 1;
2385 rv = ipmi_register_smi(&handlers,
2387 &new_smi->device_id,
2389 new_smi->slave_addr,
2393 "ipmi_si: Unable to register device: error %d\n",
2395 goto out_err_stop_timer;
2398 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2399 type_file_read_proc, NULL,
2400 new_smi, THIS_MODULE);
2403 "ipmi_si: Unable to create proc entry: %d\n",
2405 goto out_err_stop_timer;
2408 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2409 stat_file_read_proc, NULL,
2410 new_smi, THIS_MODULE);
2413 "ipmi_si: Unable to create proc entry: %d\n",
2415 goto out_err_stop_timer;
2418 list_add_tail(&new_smi->link, &smi_infos);
2420 up(&smi_infos_lock);
2422 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
2427 atomic_inc(&new_smi->stop_operation);
2428 wait_for_timer_and_thread(new_smi);
2432 ipmi_unregister_smi(new_smi->intf);
2434 if (new_smi->irq_cleanup)
2435 new_smi->irq_cleanup(new_smi);
2437 /* Wait until we know that we are out of any interrupt
2438 handlers might have been running before we freed the
2440 synchronize_sched();
2442 if (new_smi->si_sm) {
2443 if (new_smi->handlers)
2444 new_smi->handlers->cleanup(new_smi->si_sm);
2445 kfree(new_smi->si_sm);
2447 if (new_smi->addr_source_cleanup)
2448 new_smi->addr_source_cleanup(new_smi);
2449 if (new_smi->io_cleanup)
2450 new_smi->io_cleanup(new_smi);
2452 if (new_smi->dev_registered)
2453 platform_device_unregister(new_smi->pdev);
2457 up(&smi_infos_lock);
2462 static __devinit int init_ipmi_si(void)
2472 /* Register the device drivers. */
2473 rv = driver_register(&ipmi_driver);
2476 "init_ipmi_si: Unable to register driver: %d\n",
2482 /* Parse out the si_type string into its components. */
2485 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2487 str = strchr(str, ',');
2497 printk(KERN_INFO "IPMI System Interface driver.\n");
2499 hardcode_find_bmc();
2511 pci_module_init(&ipmi_pci_driver);
2514 if (si_trydefaults) {
2515 down(&smi_infos_lock);
2516 if (list_empty(&smi_infos)) {
2517 /* No BMC was found, try defaults. */
2518 up(&smi_infos_lock);
2521 up(&smi_infos_lock);
2525 down(&smi_infos_lock);
2526 if (list_empty(&smi_infos)) {
2527 up(&smi_infos_lock);
2529 pci_unregister_driver(&ipmi_pci_driver);
2531 printk("ipmi_si: Unable to find any System Interface(s)\n");
2534 up(&smi_infos_lock);
2538 module_init(init_ipmi_si);
2540 static void __devexit cleanup_one_si(struct smi_info *to_clean)
2543 unsigned long flags;
2548 list_del(&to_clean->link);
2550 /* Tell the timer and interrupt handlers that we are shutting
2552 spin_lock_irqsave(&(to_clean->si_lock), flags);
2553 spin_lock(&(to_clean->msg_lock));
2555 atomic_inc(&to_clean->stop_operation);
2557 if (to_clean->irq_cleanup)
2558 to_clean->irq_cleanup(to_clean);
2560 spin_unlock(&(to_clean->msg_lock));
2561 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2563 /* Wait until we know that we are out of any interrupt
2564 handlers might have been running before we freed the
2566 synchronize_sched();
2568 wait_for_timer_and_thread(to_clean);
2570 /* Interrupts and timeouts are stopped, now make sure the
2571 interface is in a clean state. */
2572 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2574 schedule_timeout_uninterruptible(1);
2577 rv = ipmi_unregister_smi(to_clean->intf);
2580 "ipmi_si: Unable to unregister device: errno=%d\n",
2584 to_clean->handlers->cleanup(to_clean->si_sm);
2586 kfree(to_clean->si_sm);
2588 if (to_clean->addr_source_cleanup)
2589 to_clean->addr_source_cleanup(to_clean);
2590 if (to_clean->io_cleanup)
2591 to_clean->io_cleanup(to_clean);
2593 if (to_clean->dev_registered)
2594 platform_device_unregister(to_clean->pdev);
2599 static __exit void cleanup_ipmi_si(void)
2601 struct smi_info *e, *tmp_e;
2607 pci_unregister_driver(&ipmi_pci_driver);
2610 down(&smi_infos_lock);
2611 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2613 up(&smi_infos_lock);
2615 driver_unregister(&ipmi_driver);
2617 module_exit(cleanup_ipmi_si);
2619 MODULE_LICENSE("GPL");
2620 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2621 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");