Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1772                 }
1773
1774                 deferred = 1;
1775         }
1776
1777         /* Turn on the interrupt so that commands can be processed */
1778         ipw2100_enable_interrupts(priv);
1779
1780         /* Send all of the commands that must be sent prior to
1781          * HOST_COMPLETE */
1782         if (ipw2100_adapter_setup(priv)) {
1783                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784                        priv->net_dev->name);
1785                 rc = 1;
1786                 goto exit;
1787         }
1788
1789         if (!deferred) {
1790                 /* Enable the adapter - sends HOST_COMPLETE */
1791                 if (ipw2100_enable_adapter(priv)) {
1792                         printk(KERN_ERR DRV_NAME ": "
1793                                "%s: failed in call to enable adapter.\n",
1794                                priv->net_dev->name);
1795                         ipw2100_hw_stop_adapter(priv);
1796                         rc = 1;
1797                         goto exit;
1798                 }
1799
1800                 /* Start a scan . . . */
1801                 ipw2100_set_scan_options(priv);
1802                 ipw2100_start_scan(priv);
1803         }
1804
1805       exit:
1806         return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812         struct ipw2100_priv *priv = ieee80211_priv(dev);
1813         return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818         unsigned long flags;
1819         union iwreq_data wrqu = {
1820                 .ap_addr = {
1821                             .sa_family = ARPHRD_ETHER}
1822         };
1823         int associated = priv->status & STATUS_ASSOCIATED;
1824
1825         /* Kill the RF switch timer */
1826         if (!priv->stop_rf_kill) {
1827                 priv->stop_rf_kill = 1;
1828                 cancel_delayed_work(&priv->rf_kill);
1829         }
1830
1831         /* Kill the firmare hang check timer */
1832         if (!priv->stop_hang_check) {
1833                 priv->stop_hang_check = 1;
1834                 cancel_delayed_work(&priv->hang_check);
1835         }
1836
1837         /* Kill any pending resets */
1838         if (priv->status & STATUS_RESET_PENDING)
1839                 cancel_delayed_work(&priv->reset_work);
1840
1841         /* Make sure the interrupt is on so that FW commands will be
1842          * processed correctly */
1843         spin_lock_irqsave(&priv->low_lock, flags);
1844         ipw2100_enable_interrupts(priv);
1845         spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847         if (ipw2100_hw_stop_adapter(priv))
1848                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849                        priv->net_dev->name);
1850
1851         /* Do not disable the interrupt until _after_ we disable
1852          * the adaptor.  Otherwise the CARD_DISABLE command will never
1853          * be ack'd by the firmware */
1854         spin_lock_irqsave(&priv->low_lock, flags);
1855         ipw2100_disable_interrupts(priv);
1856         spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861         if (priv->config & CFG_C3_DISABLED) {
1862                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863                 acpi_set_cstate_limit(priv->cstate_limit);
1864                 priv->config &= ~CFG_C3_DISABLED;
1865         }
1866 #endif
1867
1868         /* We have to signal any supplicant if we are disassociating */
1869         if (associated)
1870                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871
1872         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873         netif_carrier_off(priv->net_dev);
1874         netif_stop_queue(priv->net_dev);
1875 }
1876
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1878 {
1879         struct ipw2100_priv *priv =
1880                 container_of(work, struct ipw2100_priv, reset_work.work);
1881         unsigned long flags;
1882         union iwreq_data wrqu = {
1883                 .ap_addr = {
1884                             .sa_family = ARPHRD_ETHER}
1885         };
1886         int associated = priv->status & STATUS_ASSOCIATED;
1887
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890         priv->resets++;
1891         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892         priv->status |= STATUS_SECURITY_UPDATED;
1893
1894         /* Force a power cycle even if interface hasn't been opened
1895          * yet */
1896         cancel_delayed_work(&priv->reset_work);
1897         priv->status |= STATUS_RESET_PENDING;
1898         spin_unlock_irqrestore(&priv->low_lock, flags);
1899
1900         mutex_lock(&priv->action_mutex);
1901         /* stop timed checks so that they don't interfere with reset */
1902         priv->stop_hang_check = 1;
1903         cancel_delayed_work(&priv->hang_check);
1904
1905         /* We have to signal any supplicant if we are disassociating */
1906         if (associated)
1907                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1908
1909         ipw2100_up(priv, 0);
1910         mutex_unlock(&priv->action_mutex);
1911
1912 }
1913
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1915 {
1916
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918         int ret, len, essid_len;
1919         char essid[IW_ESSID_MAX_SIZE];
1920         u32 txrate;
1921         u32 chan;
1922         char *txratename;
1923         u8 bssid[ETH_ALEN];
1924
1925         /*
1926          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927          *      an actual MAC of the AP. Seems like FW sets this
1928          *      address too late. Read it later and expose through
1929          *      /proc or schedule a later task to query and update
1930          */
1931
1932         essid_len = IW_ESSID_MAX_SIZE;
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934                                   essid, &essid_len);
1935         if (ret) {
1936                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937                                __LINE__);
1938                 return;
1939         }
1940
1941         len = sizeof(u32);
1942         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943         if (ret) {
1944                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945                                __LINE__);
1946                 return;
1947         }
1948
1949         len = sizeof(u32);
1950         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951         if (ret) {
1952                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953                                __LINE__);
1954                 return;
1955         }
1956         len = ETH_ALEN;
1957         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958         if (ret) {
1959                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960                                __LINE__);
1961                 return;
1962         }
1963         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1964
1965         switch (txrate) {
1966         case TX_RATE_1_MBIT:
1967                 txratename = "1Mbps";
1968                 break;
1969         case TX_RATE_2_MBIT:
1970                 txratename = "2Mbsp";
1971                 break;
1972         case TX_RATE_5_5_MBIT:
1973                 txratename = "5.5Mbps";
1974                 break;
1975         case TX_RATE_11_MBIT:
1976                 txratename = "11Mbps";
1977                 break;
1978         default:
1979                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980                 txratename = "unknown rate";
1981                 break;
1982         }
1983
1984         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985                        MAC_FMT ")\n",
1986                        priv->net_dev->name, escape_essid(essid, essid_len),
1987                        txratename, chan, MAC_ARG(bssid));
1988
1989         /* now we copy read ssid into dev */
1990         if (!(priv->config & CFG_STATIC_ESSID)) {
1991                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992                 memcpy(priv->essid, essid, priv->essid_len);
1993         }
1994         priv->channel = chan;
1995         memcpy(priv->bssid, bssid, ETH_ALEN);
1996
1997         priv->status |= STATUS_ASSOCIATING;
1998         priv->connect_start = get_seconds();
1999
2000         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2001 }
2002
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004                              int length, int batch_mode)
2005 {
2006         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007         struct host_command cmd = {
2008                 .host_command = SSID,
2009                 .host_command_sequence = 0,
2010                 .host_command_length = ssid_len
2011         };
2012         int err;
2013
2014         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2015
2016         if (ssid_len)
2017                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2018
2019         if (!batch_mode) {
2020                 err = ipw2100_disable_adapter(priv);
2021                 if (err)
2022                         return err;
2023         }
2024
2025         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026          * disable auto association -- so we cheat by setting a bogus SSID */
2027         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028                 int i;
2029                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031                         bogus[i] = 0x18 + i;
2032                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2033         }
2034
2035         /* NOTE:  We always send the SSID command even if the provided ESSID is
2036          * the same as what we currently think is set. */
2037
2038         err = ipw2100_hw_send_command(priv, &cmd);
2039         if (!err) {
2040                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041                 memcpy(priv->essid, essid, ssid_len);
2042                 priv->essid_len = ssid_len;
2043         }
2044
2045         if (!batch_mode) {
2046                 if (ipw2100_enable_adapter(priv))
2047                         err = -EIO;
2048         }
2049
2050         return err;
2051 }
2052
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2054 {
2055         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056                   "disassociated: '%s' " MAC_FMT " \n",
2057                   escape_essid(priv->essid, priv->essid_len),
2058                   MAC_ARG(priv->bssid));
2059
2060         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2061
2062         if (priv->status & STATUS_STOPPING) {
2063                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064                 return;
2065         }
2066
2067         memset(priv->bssid, 0, ETH_ALEN);
2068         memset(priv->ieee->bssid, 0, ETH_ALEN);
2069
2070         netif_carrier_off(priv->net_dev);
2071         netif_stop_queue(priv->net_dev);
2072
2073         if (!(priv->status & STATUS_RUNNING))
2074                 return;
2075
2076         if (priv->status & STATUS_SECURITY_UPDATED)
2077                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2078
2079         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2080 }
2081
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2083 {
2084         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085                        priv->net_dev->name);
2086
2087         /* RF_KILL is now enabled (else we wouldn't be here) */
2088         priv->status |= STATUS_RF_KILL_HW;
2089
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091         if (priv->config & CFG_C3_DISABLED) {
2092                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093                 acpi_set_cstate_limit(priv->cstate_limit);
2094                 priv->config &= ~CFG_C3_DISABLED;
2095         }
2096 #endif
2097
2098         /* Make sure the RF Kill check timer is running */
2099         priv->stop_rf_kill = 0;
2100         cancel_delayed_work(&priv->rf_kill);
2101         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2102 }
2103
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2105 {
2106         IPW_DEBUG_SCAN("scan complete\n");
2107         /* Age the scan results... */
2108         priv->ieee->scans++;
2109         priv->status &= ~STATUS_SCANNING;
2110 }
2111
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115         int status;
2116         void (*cb) (struct ipw2100_priv * priv, u32 status);
2117         char *name;
2118 };
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122         int status;
2123         void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 };
2125 #endif                          /* CONFIG_IPW2100_DEBUG */
2126
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2128 {
2129         IPW_DEBUG_SCAN("Scanning...\n");
2130         priv->status |= STATUS_SCANNING;
2131 }
2132
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146         IPW2100_HANDLER(-1, NULL)
2147 };
2148
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2150 {
2151         int i;
2152
2153         if (status == IPW_STATE_SCANNING &&
2154             priv->status & STATUS_ASSOCIATED &&
2155             !(priv->status & STATUS_SCANNING)) {
2156                 IPW_DEBUG_INFO("Scan detected while associated, with "
2157                                "no scan request.  Restarting firmware.\n");
2158
2159                 /* Wake up any sleeping jobs */
2160                 schedule_reset(priv);
2161         }
2162
2163         for (i = 0; status_handlers[i].status != -1; i++) {
2164                 if (status == status_handlers[i].status) {
2165                         IPW_DEBUG_NOTIF("Status change: %s\n",
2166                                         status_handlers[i].name);
2167                         if (status_handlers[i].cb)
2168                                 status_handlers[i].cb(priv, status);
2169                         priv->wstats.status = status;
2170                         return;
2171                 }
2172         }
2173
2174         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2175 }
2176
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178                                     struct ipw2100_cmd_header *cmd)
2179 {
2180 #ifdef CONFIG_IPW2100_DEBUG
2181         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183                              command_types[cmd->host_command_reg],
2184                              cmd->host_command_reg);
2185         }
2186 #endif
2187         if (cmd->host_command_reg == HOST_COMPLETE)
2188                 priv->status |= STATUS_ENABLED;
2189
2190         if (cmd->host_command_reg == CARD_DISABLE)
2191                 priv->status &= ~STATUS_ENABLED;
2192
2193         priv->status &= ~STATUS_CMD_ACTIVE;
2194
2195         wake_up_interruptible(&priv->wait_command_queue);
2196 }
2197
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200         "COMMAND_STATUS_VAL",
2201         "STATUS_CHANGE_VAL",
2202         "P80211_DATA_VAL",
2203         "P8023_DATA_VAL",
2204         "HOST_NOTIFICATION_VAL"
2205 };
2206 #endif
2207
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209                                     struct ipw2100_rx_packet *packet)
2210 {
2211         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212         if (!packet->skb)
2213                 return -ENOMEM;
2214
2215         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217                                           sizeof(struct ipw2100_rx),
2218                                           PCI_DMA_FROMDEVICE);
2219         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220          *       dma_addr */
2221
2222         return 0;
2223 }
2224
2225 #define SEARCH_ERROR   0xffffffff
2226 #define SEARCH_FAIL    0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2230
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2233 {
2234         int i;
2235         if (!priv->snapshot[0])
2236                 return;
2237         for (i = 0; i < 0x30; i++)
2238                 kfree(priv->snapshot[i]);
2239         priv->snapshot[0] = NULL;
2240 }
2241
2242 #ifdef CONFIG_IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2244 {
2245         int i;
2246         if (priv->snapshot[0])
2247                 return 1;
2248         for (i = 0; i < 0x30; i++) {
2249                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2250                 if (!priv->snapshot[i]) {
2251                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252                                        "buffer %d\n", priv->net_dev->name, i);
2253                         while (i > 0)
2254                                 kfree(priv->snapshot[--i]);
2255                         priv->snapshot[0] = NULL;
2256                         return 0;
2257                 }
2258         }
2259
2260         return 1;
2261 }
2262
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264                                     size_t len, int mode)
2265 {
2266         u32 i, j;
2267         u32 tmp;
2268         u8 *s, *d;
2269         u32 ret;
2270
2271         s = in_buf;
2272         if (mode == SEARCH_SNAPSHOT) {
2273                 if (!ipw2100_snapshot_alloc(priv))
2274                         mode = SEARCH_DISCARD;
2275         }
2276
2277         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278                 read_nic_dword(priv->net_dev, i, &tmp);
2279                 if (mode == SEARCH_SNAPSHOT)
2280                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281                 if (ret == SEARCH_FAIL) {
2282                         d = (u8 *) & tmp;
2283                         for (j = 0; j < 4; j++) {
2284                                 if (*s != *d) {
2285                                         s = in_buf;
2286                                         continue;
2287                                 }
2288
2289                                 s++;
2290                                 d++;
2291
2292                                 if ((s - in_buf) == len)
2293                                         ret = (i + j) - len + 1;
2294                         }
2295                 } else if (mode == SEARCH_DISCARD)
2296                         return ret;
2297         }
2298
2299         return ret;
2300 }
2301 #endif
2302
2303 /*
2304  *
2305  * 0) Disconnect the SKB from the firmware (just unmap)
2306  * 1) Pack the ETH header into the SKB
2307  * 2) Pass the SKB to the network stack
2308  *
2309  * When packet is provided by the firmware, it contains the following:
2310  *
2311  * .  ieee80211_hdr
2312  * .  ieee80211_snap_hdr
2313  *
2314  * The size of the constructed ethernet
2315  *
2316  */
2317 #ifdef CONFIG_IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2320
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2322 {
2323 #ifdef CONFIG_IPW2100_DEBUG_C3
2324         struct ipw2100_status *status = &priv->status_queue.drv[i];
2325         u32 match, reg;
2326         int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329         int limit;
2330 #endif
2331
2332         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333                        i * sizeof(struct ipw2100_status));
2334
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337         limit = acpi_get_cstate_limit();
2338         if (limit > 2) {
2339                 priv->cstate_limit = limit;
2340                 acpi_set_cstate_limit(2);
2341                 priv->config |= CFG_C3_DISABLED;
2342         }
2343 #endif
2344
2345 #ifdef CONFIG_IPW2100_DEBUG_C3
2346         /* Halt the fimrware so we can get a good image */
2347         write_register(priv->net_dev, IPW_REG_RESET_REG,
2348                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349         j = 5;
2350         do {
2351                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2353
2354                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355                         break;
2356         } while (j--);
2357
2358         match = ipw2100_match_buf(priv, (u8 *) status,
2359                                   sizeof(struct ipw2100_status),
2360                                   SEARCH_SNAPSHOT);
2361         if (match < SEARCH_SUCCESS)
2362                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363                                "offset 0x%06X, length %d:\n",
2364                                priv->net_dev->name, match,
2365                                sizeof(struct ipw2100_status));
2366         else
2367                 IPW_DEBUG_INFO("%s: No DMA status match in "
2368                                "Firmware.\n", priv->net_dev->name);
2369
2370         printk_buf((u8 *) priv->status_queue.drv,
2371                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2373
2374         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375         priv->ieee->stats.rx_errors++;
2376         schedule_reset(priv);
2377 }
2378
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380                           struct ieee80211_rx_stats *stats)
2381 {
2382         struct ipw2100_status *status = &priv->status_queue.drv[i];
2383         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2384
2385         IPW_DEBUG_RX("Handler...\n");
2386
2387         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389                                "  Dropping.\n",
2390                                priv->net_dev->name,
2391                                status->frame_size, skb_tailroom(packet->skb));
2392                 priv->ieee->stats.rx_errors++;
2393                 return;
2394         }
2395
2396         if (unlikely(!netif_running(priv->net_dev))) {
2397                 priv->ieee->stats.rx_errors++;
2398                 priv->wstats.discard.misc++;
2399                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400                 return;
2401         }
2402
2403         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404                      !(priv->status & STATUS_ASSOCIATED))) {
2405                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406                 priv->wstats.discard.misc++;
2407                 return;
2408         }
2409
2410         pci_unmap_single(priv->pci_dev,
2411                          packet->dma_addr,
2412                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414         skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef CONFIG_IPW2100_RX_DEBUG
2417         /* Make a copy of the frame so we can dump it to the logs if
2418          * ieee80211_rx fails */
2419         memcpy(packet_data, packet->skb->data,
2420                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2422
2423         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef CONFIG_IPW2100_RX_DEBUG
2425                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426                                priv->net_dev->name);
2427                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429                 priv->ieee->stats.rx_errors++;
2430
2431                 /* ieee80211_rx failed, so it didn't free the SKB */
2432                 dev_kfree_skb_any(packet->skb);
2433                 packet->skb = NULL;
2434         }
2435
2436         /* We need to allocate a new SKB and attach it to the RDB. */
2437         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438                 printk(KERN_WARNING DRV_NAME ": "
2439                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2440                        "adapter.\n", priv->net_dev->name);
2441                 /* TODO: schedule adapter shutdown */
2442                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2443         }
2444
2445         /* Update the RDB entry */
2446         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2447 }
2448
2449 #ifdef CONFIG_IPW2100_MONITOR
2450
2451 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2452                    struct ieee80211_rx_stats *stats)
2453 {
2454         struct ipw2100_status *status = &priv->status_queue.drv[i];
2455         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2456
2457         /* Magic struct that slots into the radiotap header -- no reason
2458          * to build this manually element by element, we can write it much
2459          * more efficiently than we can parse it. ORDER MATTERS HERE */
2460         struct ipw_rt_hdr {
2461                 struct ieee80211_radiotap_header rt_hdr;
2462                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2463         } *ipw_rt;
2464
2465         IPW_DEBUG_RX("Handler...\n");
2466
2467         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2468                                 sizeof(struct ipw_rt_hdr))) {
2469                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2470                                "  Dropping.\n",
2471                                priv->net_dev->name,
2472                                status->frame_size,
2473                                skb_tailroom(packet->skb));
2474                 priv->ieee->stats.rx_errors++;
2475                 return;
2476         }
2477
2478         if (unlikely(!netif_running(priv->net_dev))) {
2479                 priv->ieee->stats.rx_errors++;
2480                 priv->wstats.discard.misc++;
2481                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2482                 return;
2483         }
2484
2485         if (unlikely(priv->config & CFG_CRC_CHECK &&
2486                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2487                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2488                 priv->ieee->stats.rx_errors++;
2489                 return;
2490         }
2491
2492         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2493                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2494         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2495                 packet->skb->data, status->frame_size);
2496
2497         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2498
2499         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2500         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2501         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2502
2503         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2504
2505         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2506
2507         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2508
2509         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2510                 priv->ieee->stats.rx_errors++;
2511
2512                 /* ieee80211_rx failed, so it didn't free the SKB */
2513                 dev_kfree_skb_any(packet->skb);
2514                 packet->skb = NULL;
2515         }
2516
2517         /* We need to allocate a new SKB and attach it to the RDB. */
2518         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2519                 IPW_DEBUG_WARNING(
2520                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2521                         "adapter.\n", priv->net_dev->name);
2522                 /* TODO: schedule adapter shutdown */
2523                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2524         }
2525
2526         /* Update the RDB entry */
2527         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2528 }
2529
2530 #endif
2531
2532 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2533 {
2534         struct ipw2100_status *status = &priv->status_queue.drv[i];
2535         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2536         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2537
2538         switch (frame_type) {
2539         case COMMAND_STATUS_VAL:
2540                 return (status->frame_size != sizeof(u->rx_data.command));
2541         case STATUS_CHANGE_VAL:
2542                 return (status->frame_size != sizeof(u->rx_data.status));
2543         case HOST_NOTIFICATION_VAL:
2544                 return (status->frame_size < sizeof(u->rx_data.notification));
2545         case P80211_DATA_VAL:
2546         case P8023_DATA_VAL:
2547 #ifdef CONFIG_IPW2100_MONITOR
2548                 return 0;
2549 #else
2550                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2551                 case IEEE80211_FTYPE_MGMT:
2552                 case IEEE80211_FTYPE_CTL:
2553                         return 0;
2554                 case IEEE80211_FTYPE_DATA:
2555                         return (status->frame_size >
2556                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2557                 }
2558 #endif
2559         }
2560
2561         return 1;
2562 }
2563
2564 /*
2565  * ipw2100 interrupts are disabled at this point, and the ISR
2566  * is the only code that calls this method.  So, we do not need
2567  * to play with any locks.
2568  *
2569  * RX Queue works as follows:
2570  *
2571  * Read index - firmware places packet in entry identified by the
2572  *              Read index and advances Read index.  In this manner,
2573  *              Read index will always point to the next packet to
2574  *              be filled--but not yet valid.
2575  *
2576  * Write index - driver fills this entry with an unused RBD entry.
2577  *               This entry has not filled by the firmware yet.
2578  *
2579  * In between the W and R indexes are the RBDs that have been received
2580  * but not yet processed.
2581  *
2582  * The process of handling packets will start at WRITE + 1 and advance
2583  * until it reaches the READ index.
2584  *
2585  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2586  *
2587  */
2588 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2589 {
2590         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2591         struct ipw2100_status_queue *sq = &priv->status_queue;
2592         struct ipw2100_rx_packet *packet;
2593         u16 frame_type;
2594         u32 r, w, i, s;
2595         struct ipw2100_rx *u;
2596         struct ieee80211_rx_stats stats = {
2597                 .mac_time = jiffies,
2598         };
2599
2600         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2601         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2602
2603         if (r >= rxq->entries) {
2604                 IPW_DEBUG_RX("exit - bad read index\n");
2605                 return;
2606         }
2607
2608         i = (rxq->next + 1) % rxq->entries;
2609         s = i;
2610         while (i != r) {
2611                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2612                    r, rxq->next, i); */
2613
2614                 packet = &priv->rx_buffers[i];
2615
2616                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2617                  * the correct values */
2618                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2619                                             sq->nic +
2620                                             sizeof(struct ipw2100_status) * i,
2621                                             sizeof(struct ipw2100_status),
2622                                             PCI_DMA_FROMDEVICE);
2623
2624                 /* Sync the DMA for the RX buffer so CPU is sure to get
2625                  * the correct values */
2626                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2627                                             sizeof(struct ipw2100_rx),
2628                                             PCI_DMA_FROMDEVICE);
2629
2630                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2631                         ipw2100_corruption_detected(priv, i);
2632                         goto increment;
2633                 }
2634
2635                 u = packet->rxp;
2636                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2637                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2638                 stats.len = sq->drv[i].frame_size;
2639
2640                 stats.mask = 0;
2641                 if (stats.rssi != 0)
2642                         stats.mask |= IEEE80211_STATMASK_RSSI;
2643                 stats.freq = IEEE80211_24GHZ_BAND;
2644
2645                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2646                              priv->net_dev->name, frame_types[frame_type],
2647                              stats.len);
2648
2649                 switch (frame_type) {
2650                 case COMMAND_STATUS_VAL:
2651                         /* Reset Rx watchdog */
2652                         isr_rx_complete_command(priv, &u->rx_data.command);
2653                         break;
2654
2655                 case STATUS_CHANGE_VAL:
2656                         isr_status_change(priv, u->rx_data.status);
2657                         break;
2658
2659                 case P80211_DATA_VAL:
2660                 case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2663                                 isr_rx_monitor(priv, i, &stats);
2664                                 break;
2665                         }
2666 #endif
2667                         if (stats.len < sizeof(u->rx_data.header))
2668                                 break;
2669                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2670                         case IEEE80211_FTYPE_MGMT:
2671                                 ieee80211_rx_mgt(priv->ieee,
2672                                                  &u->rx_data.header, &stats);
2673                                 break;
2674
2675                         case IEEE80211_FTYPE_CTL:
2676                                 break;
2677
2678                         case IEEE80211_FTYPE_DATA:
2679                                 isr_rx(priv, i, &stats);
2680                                 break;
2681
2682                         }
2683                         break;
2684                 }
2685
2686               increment:
2687                 /* clear status field associated with this RBD */
2688                 rxq->drv[i].status.info.field = 0;
2689
2690                 i = (i + 1) % rxq->entries;
2691         }
2692
2693         if (i != s) {
2694                 /* backtrack one entry, wrapping to end if at 0 */
2695                 rxq->next = (i ? i : rxq->entries) - 1;
2696
2697                 write_register(priv->net_dev,
2698                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2699         }
2700 }
2701
2702 /*
2703  * __ipw2100_tx_process
2704  *
2705  * This routine will determine whether the next packet on
2706  * the fw_pend_list has been processed by the firmware yet.
2707  *
2708  * If not, then it does nothing and returns.
2709  *
2710  * If so, then it removes the item from the fw_pend_list, frees
2711  * any associated storage, and places the item back on the
2712  * free list of its source (either msg_free_list or tx_free_list)
2713  *
2714  * TX Queue works as follows:
2715  *
2716  * Read index - points to the next TBD that the firmware will
2717  *              process.  The firmware will read the data, and once
2718  *              done processing, it will advance the Read index.
2719  *
2720  * Write index - driver fills this entry with an constructed TBD
2721  *               entry.  The Write index is not advanced until the
2722  *               packet has been configured.
2723  *
2724  * In between the W and R indexes are the TBDs that have NOT been
2725  * processed.  Lagging behind the R index are packets that have
2726  * been processed but have not been freed by the driver.
2727  *
2728  * In order to free old storage, an internal index will be maintained
2729  * that points to the next packet to be freed.  When all used
2730  * packets have been freed, the oldest index will be the same as the
2731  * firmware's read index.
2732  *
2733  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2734  *
2735  * Because the TBD structure can not contain arbitrary data, the
2736  * driver must keep an internal queue of cached allocations such that
2737  * it can put that data back into the tx_free_list and msg_free_list
2738  * for use by future command and data packets.
2739  *
2740  */
2741 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2742 {
2743         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2744         struct ipw2100_bd *tbd;
2745         struct list_head *element;
2746         struct ipw2100_tx_packet *packet;
2747         int descriptors_used;
2748         int e, i;
2749         u32 r, w, frag_num = 0;
2750
2751         if (list_empty(&priv->fw_pend_list))
2752                 return 0;
2753
2754         element = priv->fw_pend_list.next;
2755
2756         packet = list_entry(element, struct ipw2100_tx_packet, list);
2757         tbd = &txq->drv[packet->index];
2758
2759         /* Determine how many TBD entries must be finished... */
2760         switch (packet->type) {
2761         case COMMAND:
2762                 /* COMMAND uses only one slot; don't advance */
2763                 descriptors_used = 1;
2764                 e = txq->oldest;
2765                 break;
2766
2767         case DATA:
2768                 /* DATA uses two slots; advance and loop position. */
2769                 descriptors_used = tbd->num_fragments;
2770                 frag_num = tbd->num_fragments - 1;
2771                 e = txq->oldest + frag_num;
2772                 e %= txq->entries;
2773                 break;
2774
2775         default:
2776                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2777                        priv->net_dev->name);
2778                 return 0;
2779         }
2780
2781         /* if the last TBD is not done by NIC yet, then packet is
2782          * not ready to be released.
2783          *
2784          */
2785         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2786                       &r);
2787         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2788                       &w);
2789         if (w != txq->next)
2790                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2791                        priv->net_dev->name);
2792
2793         /*
2794          * txq->next is the index of the last packet written txq->oldest is
2795          * the index of the r is the index of the next packet to be read by
2796          * firmware
2797          */
2798
2799         /*
2800          * Quick graphic to help you visualize the following
2801          * if / else statement
2802          *
2803          * ===>|                     s---->|===============
2804          *                               e>|
2805          * | a | b | c | d | e | f | g | h | i | j | k | l
2806          *       r---->|
2807          *               w
2808          *
2809          * w - updated by driver
2810          * r - updated by firmware
2811          * s - start of oldest BD entry (txq->oldest)
2812          * e - end of oldest BD entry
2813          *
2814          */
2815         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2816                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2817                 return 0;
2818         }
2819
2820         list_del(element);
2821         DEC_STAT(&priv->fw_pend_stat);
2822
2823 #ifdef CONFIG_IPW2100_DEBUG
2824         {
2825                 int i = txq->oldest;
2826                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2827                              &txq->drv[i],
2828                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2829                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2830
2831                 if (packet->type == DATA) {
2832                         i = (i + 1) % txq->entries;
2833
2834                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2835                                      &txq->drv[i],
2836                                      (u32) (txq->nic + i *
2837                                             sizeof(struct ipw2100_bd)),
2838                                      (u32) txq->drv[i].host_addr,
2839                                      txq->drv[i].buf_length);
2840                 }
2841         }
2842 #endif
2843
2844         switch (packet->type) {
2845         case DATA:
2846                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2847                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2848                                "Expecting DATA TBD but pulled "
2849                                "something else: ids %d=%d.\n",
2850                                priv->net_dev->name, txq->oldest, packet->index);
2851
2852                 /* DATA packet; we have to unmap and free the SKB */
2853                 for (i = 0; i < frag_num; i++) {
2854                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2855
2856                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2857                                      (packet->index + 1 + i) % txq->entries,
2858                                      tbd->host_addr, tbd->buf_length);
2859
2860                         pci_unmap_single(priv->pci_dev,
2861                                          tbd->host_addr,
2862                                          tbd->buf_length, PCI_DMA_TODEVICE);
2863                 }
2864
2865                 ieee80211_txb_free(packet->info.d_struct.txb);
2866                 packet->info.d_struct.txb = NULL;
2867
2868                 list_add_tail(element, &priv->tx_free_list);
2869                 INC_STAT(&priv->tx_free_stat);
2870
2871                 /* We have a free slot in the Tx queue, so wake up the
2872                  * transmit layer if it is stopped. */
2873                 if (priv->status & STATUS_ASSOCIATED)
2874                         netif_wake_queue(priv->net_dev);
2875
2876                 /* A packet was processed by the hardware, so update the
2877                  * watchdog */
2878                 priv->net_dev->trans_start = jiffies;
2879
2880                 break;
2881
2882         case COMMAND:
2883                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2884                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2885                                "Expecting COMMAND TBD but pulled "
2886                                "something else: ids %d=%d.\n",
2887                                priv->net_dev->name, txq->oldest, packet->index);
2888
2889 #ifdef CONFIG_IPW2100_DEBUG
2890                 if (packet->info.c_struct.cmd->host_command_reg <
2891                     sizeof(command_types) / sizeof(*command_types))
2892                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2893                                      command_types[packet->info.c_struct.cmd->
2894                                                    host_command_reg],
2895                                      packet->info.c_struct.cmd->
2896                                      host_command_reg,
2897                                      packet->info.c_struct.cmd->cmd_status_reg);
2898 #endif
2899
2900                 list_add_tail(element, &priv->msg_free_list);
2901                 INC_STAT(&priv->msg_free_stat);
2902                 break;
2903         }
2904
2905         /* advance oldest used TBD pointer to start of next entry */
2906         txq->oldest = (e + 1) % txq->entries;
2907         /* increase available TBDs number */
2908         txq->available += descriptors_used;
2909         SET_STAT(&priv->txq_stat, txq->available);
2910
2911         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2912                      jiffies - packet->jiffy_start);
2913
2914         return (!list_empty(&priv->fw_pend_list));
2915 }
2916
2917 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2918 {
2919         int i = 0;
2920
2921         while (__ipw2100_tx_process(priv) && i < 200)
2922                 i++;
2923
2924         if (i == 200) {
2925                 printk(KERN_WARNING DRV_NAME ": "
2926                        "%s: Driver is running slow (%d iters).\n",
2927                        priv->net_dev->name, i);
2928         }
2929 }
2930
2931 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2932 {
2933         struct list_head *element;
2934         struct ipw2100_tx_packet *packet;
2935         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2936         struct ipw2100_bd *tbd;
2937         int next = txq->next;
2938
2939         while (!list_empty(&priv->msg_pend_list)) {
2940                 /* if there isn't enough space in TBD queue, then
2941                  * don't stuff a new one in.
2942                  * NOTE: 3 are needed as a command will take one,
2943                  *       and there is a minimum of 2 that must be
2944                  *       maintained between the r and w indexes
2945                  */
2946                 if (txq->available <= 3) {
2947                         IPW_DEBUG_TX("no room in tx_queue\n");
2948                         break;
2949                 }
2950
2951                 element = priv->msg_pend_list.next;
2952                 list_del(element);
2953                 DEC_STAT(&priv->msg_pend_stat);
2954
2955                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2956
2957                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2958                              &txq->drv[txq->next],
2959                              (void *)(txq->nic + txq->next *
2960                                       sizeof(struct ipw2100_bd)));
2961
2962                 packet->index = txq->next;
2963
2964                 tbd = &txq->drv[txq->next];
2965
2966                 /* initialize TBD */
2967                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2969                 /* not marking number of fragments causes problems
2970                  * with f/w debug version */
2971                 tbd->num_fragments = 1;
2972                 tbd->status.info.field =
2973                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2974                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2975
2976                 /* update TBD queue counters */
2977                 txq->next++;
2978                 txq->next %= txq->entries;
2979                 txq->available--;
2980                 DEC_STAT(&priv->txq_stat);
2981
2982                 list_add_tail(element, &priv->fw_pend_list);
2983                 INC_STAT(&priv->fw_pend_stat);
2984         }
2985
2986         if (txq->next != next) {
2987                 /* kick off the DMA by notifying firmware the
2988                  * write index has moved; make sure TBD stores are sync'd */
2989                 wmb();
2990                 write_register(priv->net_dev,
2991                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2992                                txq->next);
2993         }
2994 }
2995
2996 /*
2997  * ipw2100_tx_send_data
2998  *
2999  */
3000 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3001 {
3002         struct list_head *element;
3003         struct ipw2100_tx_packet *packet;
3004         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3005         struct ipw2100_bd *tbd;
3006         int next = txq->next;
3007         int i = 0;
3008         struct ipw2100_data_header *ipw_hdr;
3009         struct ieee80211_hdr_3addr *hdr;
3010
3011         while (!list_empty(&priv->tx_pend_list)) {
3012                 /* if there isn't enough space in TBD queue, then
3013                  * don't stuff a new one in.
3014                  * NOTE: 4 are needed as a data will take two,
3015                  *       and there is a minimum of 2 that must be
3016                  *       maintained between the r and w indexes
3017                  */
3018                 element = priv->tx_pend_list.next;
3019                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3020
3021                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3022                              IPW_MAX_BDS)) {
3023                         /* TODO: Support merging buffers if more than
3024                          * IPW_MAX_BDS are used */
3025                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3026                                        "Increase fragmentation level.\n",
3027                                        priv->net_dev->name);
3028                 }
3029
3030                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3031                         IPW_DEBUG_TX("no room in tx_queue\n");
3032                         break;
3033                 }
3034
3035                 list_del(element);
3036                 DEC_STAT(&priv->tx_pend_stat);
3037
3038                 tbd = &txq->drv[txq->next];
3039
3040                 packet->index = txq->next;
3041
3042                 ipw_hdr = packet->info.d_struct.data;
3043                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3044                     fragments[0]->data;
3045
3046                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3047                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3048                            Addr3 = DA */
3049                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3050                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3051                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3052                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3053                            Addr3 = BSSID */
3054                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3056                 }
3057
3058                 ipw_hdr->host_command_reg = SEND;
3059                 ipw_hdr->host_command_reg1 = 0;
3060
3061                 /* For now we only support host based encryption */
3062                 ipw_hdr->needs_encryption = 0;
3063                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3064                 if (packet->info.d_struct.txb->nr_frags > 1)
3065                         ipw_hdr->fragment_size =
3066                             packet->info.d_struct.txb->frag_size -
3067                             IEEE80211_3ADDR_LEN;
3068                 else
3069                         ipw_hdr->fragment_size = 0;
3070
3071                 tbd->host_addr = packet->info.d_struct.data_phys;
3072                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3073                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3074                 tbd->status.info.field =
3075                     IPW_BD_STATUS_TX_FRAME_802_3 |
3076                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3077                 txq->next++;
3078                 txq->next %= txq->entries;
3079
3080                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3081                              packet->index, tbd->host_addr, tbd->buf_length);
3082 #ifdef CONFIG_IPW2100_DEBUG
3083                 if (packet->info.d_struct.txb->nr_frags > 1)
3084                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3085                                        packet->info.d_struct.txb->nr_frags);
3086 #endif
3087
3088                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3089                         tbd = &txq->drv[txq->next];
3090                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3091                                 tbd->status.info.field =
3092                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3093                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3094                         else
3095                                 tbd->status.info.field =
3096                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3097                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3098
3099                         tbd->buf_length = packet->info.d_struct.txb->
3100                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3101
3102                         tbd->host_addr = pci_map_single(priv->pci_dev,
3103                                                         packet->info.d_struct.
3104                                                         txb->fragments[i]->
3105                                                         data +
3106                                                         IEEE80211_3ADDR_LEN,
3107                                                         tbd->buf_length,
3108                                                         PCI_DMA_TODEVICE);
3109
3110                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3111                                      txq->next, tbd->host_addr,
3112                                      tbd->buf_length);
3113
3114                         pci_dma_sync_single_for_device(priv->pci_dev,
3115                                                        tbd->host_addr,
3116                                                        tbd->buf_length,
3117                                                        PCI_DMA_TODEVICE);
3118
3119                         txq->next++;
3120                         txq->next %= txq->entries;
3121                 }
3122
3123                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3124                 SET_STAT(&priv->txq_stat, txq->available);
3125
3126                 list_add_tail(element, &priv->fw_pend_list);
3127                 INC_STAT(&priv->fw_pend_stat);
3128         }
3129
3130         if (txq->next != next) {
3131                 /* kick off the DMA by notifying firmware the
3132                  * write index has moved; make sure TBD stores are sync'd */
3133                 write_register(priv->net_dev,
3134                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3135                                txq->next);
3136         }
3137         return;
3138 }
3139
3140 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3141 {
3142         struct net_device *dev = priv->net_dev;
3143         unsigned long flags;
3144         u32 inta, tmp;
3145
3146         spin_lock_irqsave(&priv->low_lock, flags);
3147         ipw2100_disable_interrupts(priv);
3148
3149         read_register(dev, IPW_REG_INTA, &inta);
3150
3151         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3152                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3153
3154         priv->in_isr++;
3155         priv->interrupts++;
3156
3157         /* We do not loop and keep polling for more interrupts as this
3158          * is frowned upon and doesn't play nicely with other potentially
3159          * chained IRQs */
3160         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3161                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3162
3163         if (inta & IPW2100_INTA_FATAL_ERROR) {
3164                 printk(KERN_WARNING DRV_NAME
3165                        ": Fatal interrupt. Scheduling firmware restart.\n");
3166                 priv->inta_other++;
3167                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3168
3169                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3170                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3171                                priv->net_dev->name, priv->fatal_error);
3172
3173                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3174                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3175                                priv->net_dev->name, tmp);
3176
3177                 /* Wake up any sleeping jobs */
3178                 schedule_reset(priv);
3179         }
3180
3181         if (inta & IPW2100_INTA_PARITY_ERROR) {
3182                 printk(KERN_ERR DRV_NAME
3183                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3184                 priv->inta_other++;
3185                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3186         }
3187
3188         if (inta & IPW2100_INTA_RX_TRANSFER) {
3189                 IPW_DEBUG_ISR("RX interrupt\n");
3190
3191                 priv->rx_interrupts++;
3192
3193                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3194
3195                 __ipw2100_rx_process(priv);
3196                 __ipw2100_tx_complete(priv);
3197         }
3198
3199         if (inta & IPW2100_INTA_TX_TRANSFER) {
3200                 IPW_DEBUG_ISR("TX interrupt\n");
3201
3202                 priv->tx_interrupts++;
3203
3204                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3205
3206                 __ipw2100_tx_complete(priv);
3207                 ipw2100_tx_send_commands(priv);
3208                 ipw2100_tx_send_data(priv);
3209         }
3210
3211         if (inta & IPW2100_INTA_TX_COMPLETE) {
3212                 IPW_DEBUG_ISR("TX complete\n");
3213                 priv->inta_other++;
3214                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3215
3216                 __ipw2100_tx_complete(priv);
3217         }
3218
3219         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3220                 /* ipw2100_handle_event(dev); */
3221                 priv->inta_other++;
3222                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3223         }
3224
3225         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3226                 IPW_DEBUG_ISR("FW init done interrupt\n");
3227                 priv->inta_other++;
3228
3229                 read_register(dev, IPW_REG_INTA, &tmp);
3230                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3231                            IPW2100_INTA_PARITY_ERROR)) {
3232                         write_register(dev, IPW_REG_INTA,
3233                                        IPW2100_INTA_FATAL_ERROR |
3234                                        IPW2100_INTA_PARITY_ERROR);
3235                 }
3236
3237                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3238         }
3239
3240         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3241                 IPW_DEBUG_ISR("Status change interrupt\n");
3242                 priv->inta_other++;
3243                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3244         }
3245
3246         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3247                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3248                 priv->inta_other++;
3249                 write_register(dev, IPW_REG_INTA,
3250                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3251         }
3252
3253         priv->in_isr--;
3254         ipw2100_enable_interrupts(priv);
3255
3256         spin_unlock_irqrestore(&priv->low_lock, flags);
3257
3258         IPW_DEBUG_ISR("exit\n");
3259 }
3260
3261 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3262 {
3263         struct ipw2100_priv *priv = data;
3264         u32 inta, inta_mask;
3265
3266         if (!data)
3267                 return IRQ_NONE;
3268
3269         spin_lock(&priv->low_lock);
3270
3271         /* We check to see if we should be ignoring interrupts before
3272          * we touch the hardware.  During ucode load if we try and handle
3273          * an interrupt we can cause keyboard problems as well as cause
3274          * the ucode to fail to initialize */
3275         if (!(priv->status & STATUS_INT_ENABLED)) {
3276                 /* Shared IRQ */
3277                 goto none;
3278         }
3279
3280         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3281         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3282
3283         if (inta == 0xFFFFFFFF) {
3284                 /* Hardware disappeared */
3285                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3286                 goto none;
3287         }
3288
3289         inta &= IPW_INTERRUPT_MASK;
3290
3291         if (!(inta & inta_mask)) {
3292                 /* Shared interrupt */
3293                 goto none;
3294         }
3295
3296         /* We disable the hardware interrupt here just to prevent unneeded
3297          * calls to be made.  We disable this again within the actual
3298          * work tasklet, so if another part of the code re-enables the
3299          * interrupt, that is fine */
3300         ipw2100_disable_interrupts(priv);
3301
3302         tasklet_schedule(&priv->irq_tasklet);
3303         spin_unlock(&priv->low_lock);
3304
3305         return IRQ_HANDLED;
3306       none:
3307         spin_unlock(&priv->low_lock);
3308         return IRQ_NONE;
3309 }
3310
3311 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3312                       int pri)
3313 {
3314         struct ipw2100_priv *priv = ieee80211_priv(dev);
3315         struct list_head *element;
3316         struct ipw2100_tx_packet *packet;
3317         unsigned long flags;
3318
3319         spin_lock_irqsave(&priv->low_lock, flags);
3320
3321         if (!(priv->status & STATUS_ASSOCIATED)) {
3322                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3323                 priv->ieee->stats.tx_carrier_errors++;
3324                 netif_stop_queue(dev);
3325                 goto fail_unlock;
3326         }
3327
3328         if (list_empty(&priv->tx_free_list))
3329                 goto fail_unlock;
3330
3331         element = priv->tx_free_list.next;
3332         packet = list_entry(element, struct ipw2100_tx_packet, list);
3333
3334         packet->info.d_struct.txb = txb;
3335
3336         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3337         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3338
3339         packet->jiffy_start = jiffies;
3340
3341         list_del(element);
3342         DEC_STAT(&priv->tx_free_stat);
3343
3344         list_add_tail(element, &priv->tx_pend_list);
3345         INC_STAT(&priv->tx_pend_stat);
3346
3347         ipw2100_tx_send_data(priv);
3348
3349         spin_unlock_irqrestore(&priv->low_lock, flags);
3350         return 0;
3351
3352       fail_unlock:
3353         netif_stop_queue(dev);
3354         spin_unlock_irqrestore(&priv->low_lock, flags);
3355         return 1;
3356 }
3357
3358 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3359 {
3360         int i, j, err = -EINVAL;
3361         void *v;
3362         dma_addr_t p;
3363
3364         priv->msg_buffers =
3365             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3366                                                 sizeof(struct
3367                                                        ipw2100_tx_packet),
3368                                                 GFP_KERNEL);
3369         if (!priv->msg_buffers) {
3370                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3371                        "buffers.\n", priv->net_dev->name);
3372                 return -ENOMEM;
3373         }
3374
3375         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3376                 v = pci_alloc_consistent(priv->pci_dev,
3377                                          sizeof(struct ipw2100_cmd_header), &p);
3378                 if (!v) {
3379                         printk(KERN_ERR DRV_NAME ": "
3380                                "%s: PCI alloc failed for msg "
3381                                "buffers.\n", priv->net_dev->name);
3382                         err = -ENOMEM;
3383                         break;
3384                 }
3385
3386                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3387
3388                 priv->msg_buffers[i].type = COMMAND;
3389                 priv->msg_buffers[i].info.c_struct.cmd =
3390                     (struct ipw2100_cmd_header *)v;
3391                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3392         }
3393
3394         if (i == IPW_COMMAND_POOL_SIZE)
3395                 return 0;
3396
3397         for (j = 0; j < i; j++) {
3398                 pci_free_consistent(priv->pci_dev,
3399                                     sizeof(struct ipw2100_cmd_header),
3400                                     priv->msg_buffers[j].info.c_struct.cmd,
3401                                     priv->msg_buffers[j].info.c_struct.
3402                                     cmd_phys);
3403         }
3404
3405         kfree(priv->msg_buffers);
3406         priv->msg_buffers = NULL;
3407
3408         return err;
3409 }
3410
3411 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3412 {
3413         int i;
3414
3415         INIT_LIST_HEAD(&priv->msg_free_list);
3416         INIT_LIST_HEAD(&priv->msg_pend_list);
3417
3418         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3419                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3420         SET_STAT(&priv->msg_free_stat, i);
3421
3422         return 0;
3423 }
3424
3425 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3426 {
3427         int i;
3428
3429         if (!priv->msg_buffers)
3430                 return;
3431
3432         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3433                 pci_free_consistent(priv->pci_dev,
3434                                     sizeof(struct ipw2100_cmd_header),
3435                                     priv->msg_buffers[i].info.c_struct.cmd,
3436                                     priv->msg_buffers[i].info.c_struct.
3437                                     cmd_phys);
3438         }
3439
3440         kfree(priv->msg_buffers);
3441         priv->msg_buffers = NULL;
3442 }
3443
3444 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3445                         char *buf)
3446 {
3447         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3448         char *out = buf;
3449         int i, j;
3450         u32 val;
3451
3452         for (i = 0; i < 16; i++) {
3453                 out += sprintf(out, "[%08X] ", i * 16);
3454                 for (j = 0; j < 16; j += 4) {
3455                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3456                         out += sprintf(out, "%08X ", val);
3457                 }
3458                 out += sprintf(out, "\n");
3459         }
3460
3461         return out - buf;
3462 }
3463
3464 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3465
3466 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3467                         char *buf)
3468 {
3469         struct ipw2100_priv *p = d->driver_data;
3470         return sprintf(buf, "0x%08x\n", (int)p->config);
3471 }
3472
3473 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3474
3475 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3476                            char *buf)
3477 {
3478         struct ipw2100_priv *p = d->driver_data;
3479         return sprintf(buf, "0x%08x\n", (int)p->status);
3480 }
3481
3482 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3483
3484 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3485                                char *buf)
3486 {
3487         struct ipw2100_priv *p = d->driver_data;
3488         return sprintf(buf, "0x%08x\n", (int)p->capability);
3489 }
3490
3491 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3492
3493 #define IPW2100_REG(x) { IPW_ ##x, #x }
3494 static const struct {
3495         u32 addr;
3496         const char *name;
3497 } hw_data[] = {
3498 IPW2100_REG(REG_GP_CNTRL),
3499             IPW2100_REG(REG_GPIO),
3500             IPW2100_REG(REG_INTA),
3501             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3502 #define IPW2100_NIC(x, s) { x, #x, s }
3503 static const struct {
3504         u32 addr;
3505         const char *name;
3506         size_t size;
3507 } nic_data[] = {
3508 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3509             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3510 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3511 static const struct {
3512         u8 index;
3513         const char *name;
3514         const char *desc;
3515 } ord_data[] = {
3516 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3517             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3518                                 "successful Host Tx's (MSDU)"),
3519             IPW2100_ORD(STAT_TX_DIR_DATA,
3520                                 "successful Directed Tx's (MSDU)"),
3521             IPW2100_ORD(STAT_TX_DIR_DATA1,
3522                                 "successful Directed Tx's (MSDU) @ 1MB"),
3523             IPW2100_ORD(STAT_TX_DIR_DATA2,
3524                                 "successful Directed Tx's (MSDU) @ 2MB"),
3525             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3526                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3527             IPW2100_ORD(STAT_TX_DIR_DATA11,
3528                                 "successful Directed Tx's (MSDU) @ 11MB"),
3529             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3530                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3531             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3532                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3533             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3534                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3535             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3536                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3537             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3538             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3539             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3540             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3541             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3542             IPW2100_ORD(STAT_TX_ASSN_RESP,
3543                                 "successful Association response Tx's"),
3544             IPW2100_ORD(STAT_TX_REASSN,
3545                                 "successful Reassociation Tx's"),
3546             IPW2100_ORD(STAT_TX_REASSN_RESP,
3547                                 "successful Reassociation response Tx's"),
3548             IPW2100_ORD(STAT_TX_PROBE,
3549                                 "probes successfully transmitted"),
3550             IPW2100_ORD(STAT_TX_PROBE_RESP,
3551                                 "probe responses successfully transmitted"),
3552             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3553             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3554             IPW2100_ORD(STAT_TX_DISASSN,
3555                                 "successful Disassociation TX"),
3556             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3557             IPW2100_ORD(STAT_TX_DEAUTH,
3558                                 "successful Deauthentication TX"),
3559             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3560                                 "Total successful Tx data bytes"),
3561             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3562             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3563             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3564             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3565             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3566             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3567             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3568                                 "times max tries in a hop failed"),
3569             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3570                                 "times disassociation failed"),
3571             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3572             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3573             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3574             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3575             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3576             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3577             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3578                                 "directed packets at 5.5MB"),
3579             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3580             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3581             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3582                                 "nondirected packets at 1MB"),
3583             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3584                                 "nondirected packets at 2MB"),
3585             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3586                                 "nondirected packets at 5.5MB"),
3587             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3588                                 "nondirected packets at 11MB"),
3589             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3590             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3591                                                                     "Rx CTS"),
3592             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3593             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3594             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3595             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3596             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3597             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3598             IPW2100_ORD(STAT_RX_REASSN_RESP,
3599                                 "Reassociation response Rx's"),
3600             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3601             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3602             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3603             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3604             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3605             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3606             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3607             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3608                                 "Total rx data bytes received"),
3609             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3610             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3611             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3612             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3613             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3614             IPW2100_ORD(STAT_RX_DUPLICATE1,
3615                                 "duplicate rx packets at 1MB"),
3616             IPW2100_ORD(STAT_RX_DUPLICATE2,
3617                                 "duplicate rx packets at 2MB"),
3618             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3619                                 "duplicate rx packets at 5.5MB"),
3620             IPW2100_ORD(STAT_RX_DUPLICATE11,
3621                                 "duplicate rx packets at 11MB"),
3622             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3623             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3624             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3625             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3626             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3627                                 "rx frames with invalid protocol"),
3628             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3629             IPW2100_ORD(STAT_RX_NO_BUFFER,
3630                                 "rx frames rejected due to no buffer"),
3631             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3632                                 "rx frames dropped due to missing fragment"),
3633             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3634                                 "rx frames dropped due to non-sequential fragment"),
3635             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3636                                 "rx frames dropped due to unmatched 1st frame"),
3637             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3638                                 "rx frames dropped due to uncompleted frame"),
3639             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3640                                 "ICV errors during decryption"),
3641             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3642             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3643             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3644                                 "poll response timeouts"),
3645             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3646                                 "timeouts waiting for last {broad,multi}cast pkt"),
3647             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3648             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3649             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3650             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3651             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3652                                 "current calculation of % missed beacons"),
3653             IPW2100_ORD(STAT_PERCENT_RETRIES,
3654                                 "current calculation of % missed tx retries"),
3655             IPW2100_ORD(ASSOCIATED_AP_PTR,
3656                                 "0 if not associated, else pointer to AP table entry"),
3657             IPW2100_ORD(AVAILABLE_AP_CNT,
3658                                 "AP's decsribed in the AP table"),
3659             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3660             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3661             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3662             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3663                                 "failures due to response fail"),
3664             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3665             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3666             IPW2100_ORD(STAT_ROAM_INHIBIT,
3667                                 "times roaming was inhibited due to activity"),
3668             IPW2100_ORD(RSSI_AT_ASSN,
3669                                 "RSSI of associated AP at time of association"),
3670             IPW2100_ORD(STAT_ASSN_CAUSE1,
3671                                 "reassociation: no probe response or TX on hop"),
3672             IPW2100_ORD(STAT_ASSN_CAUSE2,
3673                                 "reassociation: poor tx/rx quality"),
3674             IPW2100_ORD(STAT_ASSN_CAUSE3,
3675                                 "reassociation: tx/rx quality (excessive AP load"),
3676             IPW2100_ORD(STAT_ASSN_CAUSE4,
3677                                 "reassociation: AP RSSI level"),
3678             IPW2100_ORD(STAT_ASSN_CAUSE5,
3679                                 "reassociations due to load leveling"),
3680             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3681             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3682                                 "times authentication response failed"),
3683             IPW2100_ORD(STATION_TABLE_CNT,
3684                                 "entries in association table"),
3685             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3686             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3687             IPW2100_ORD(COUNTRY_CODE,
3688                                 "IEEE country code as recv'd from beacon"),
3689             IPW2100_ORD(COUNTRY_CHANNELS,
3690                                 "channels suported by country"),
3691             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3692             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3693             IPW2100_ORD(ANTENNA_DIVERSITY,
3694                                 "TRUE if antenna diversity is disabled"),
3695             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3696             IPW2100_ORD(OUR_FREQ,
3697                                 "current radio freq lower digits - channel ID"),
3698             IPW2100_ORD(RTC_TIME, "current RTC time"),
3699             IPW2100_ORD(PORT_TYPE, "operating mode"),
3700             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3701             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3702             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3703             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3704             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3705             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3706             IPW2100_ORD(CAPABILITIES,
3707                                 "Management frame capability field"),
3708             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3709             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3710             IPW2100_ORD(RTS_THRESHOLD,
3711                                 "Min packet length for RTS handshaking"),
3712             IPW2100_ORD(INT_MODE, "International mode"),
3713             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3714                                 "protocol frag threshold"),
3715             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3716                                 "EEPROM offset in SRAM"),
3717             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3718                                 "EEPROM size in SRAM"),
3719             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3720             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3721                                 "EEPROM IBSS 11b channel set"),
3722             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3723             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3724             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3725             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3726             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3727
3728 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3729                               char *buf)
3730 {
3731         int i;
3732         struct ipw2100_priv *priv = dev_get_drvdata(d);
3733         struct net_device *dev = priv->net_dev;
3734         char *out = buf;
3735         u32 val = 0;
3736
3737         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3738
3739         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3740                 read_register(dev, hw_data[i].addr, &val);
3741                 out += sprintf(out, "%30s [%08X] : %08X\n",
3742                                hw_data[i].name, hw_data[i].addr, val);
3743         }
3744
3745         return out - buf;
3746 }
3747
3748 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3749
3750 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3751                              char *buf)
3752 {
3753         struct ipw2100_priv *priv = dev_get_drvdata(d);
3754         struct net_device *dev = priv->net_dev;
3755         char *out = buf;
3756         int i;
3757
3758         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3759
3760         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3761                 u8 tmp8;
3762                 u16 tmp16;
3763                 u32 tmp32;
3764
3765                 switch (nic_data[i].size) {
3766                 case 1:
3767                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3768                         out += sprintf(out, "%30s [%08X] : %02X\n",
3769                                        nic_data[i].name, nic_data[i].addr,
3770                                        tmp8);
3771                         break;
3772                 case 2:
3773                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3774                         out += sprintf(out, "%30s [%08X] : %04X\n",
3775                                        nic_data[i].name, nic_data[i].addr,
3776                                        tmp16);
3777                         break;
3778                 case 4:
3779                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3780                         out += sprintf(out, "%30s [%08X] : %08X\n",
3781                                        nic_data[i].name, nic_data[i].addr,
3782                                        tmp32);
3783                         break;
3784                 }
3785         }
3786         return out - buf;
3787 }
3788
3789 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3790
3791 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3792                            char *buf)
3793 {
3794         struct ipw2100_priv *priv = dev_get_drvdata(d);
3795         struct net_device *dev = priv->net_dev;
3796         static unsigned long loop = 0;
3797         int len = 0;
3798         u32 buffer[4];
3799         int i;
3800         char line[81];
3801
3802         if (loop >= 0x30000)
3803                 loop = 0;
3804
3805         /* sysfs provides us PAGE_SIZE buffer */
3806         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3807
3808                 if (priv->snapshot[0])
3809                         for (i = 0; i < 4; i++)
3810                                 buffer[i] =
3811                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3812                 else
3813                         for (i = 0; i < 4; i++)
3814                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3815
3816                 if (priv->dump_raw)
3817                         len += sprintf(buf + len,
3818                                        "%c%c%c%c"
3819                                        "%c%c%c%c"
3820                                        "%c%c%c%c"
3821                                        "%c%c%c%c",
3822                                        ((u8 *) buffer)[0x0],
3823                                        ((u8 *) buffer)[0x1],
3824                                        ((u8 *) buffer)[0x2],
3825                                        ((u8 *) buffer)[0x3],
3826                                        ((u8 *) buffer)[0x4],
3827                                        ((u8 *) buffer)[0x5],
3828                                        ((u8 *) buffer)[0x6],
3829                                        ((u8 *) buffer)[0x7],
3830                                        ((u8 *) buffer)[0x8],
3831                                        ((u8 *) buffer)[0x9],
3832                                        ((u8 *) buffer)[0xa],
3833                                        ((u8 *) buffer)[0xb],
3834                                        ((u8 *) buffer)[0xc],
3835                                        ((u8 *) buffer)[0xd],
3836                                        ((u8 *) buffer)[0xe],
3837                                        ((u8 *) buffer)[0xf]);
3838                 else
3839                         len += sprintf(buf + len, "%s\n",
3840                                        snprint_line(line, sizeof(line),
3841                                                     (u8 *) buffer, 16, loop));
3842                 loop += 16;
3843         }
3844
3845         return len;
3846 }
3847
3848 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3849                             const char *buf, size_t count)
3850 {
3851         struct ipw2100_priv *priv = dev_get_drvdata(d);
3852         struct net_device *dev = priv->net_dev;
3853         const char *p = buf;
3854
3855         (void)dev;              /* kill unused-var warning for debug-only code */
3856
3857         if (count < 1)
3858                 return count;
3859
3860         if (p[0] == '1' ||
3861             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3862                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3863                                dev->name);
3864                 priv->dump_raw = 1;
3865
3866         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3867                                    tolower(p[1]) == 'f')) {
3868                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3869                                dev->name);
3870                 priv->dump_raw = 0;
3871
3872         } else if (tolower(p[0]) == 'r') {
3873                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3874                 ipw2100_snapshot_free(priv);
3875
3876         } else
3877                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3878                                "reset = clear memory snapshot\n", dev->name);
3879
3880         return count;
3881 }
3882
3883 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3884
3885 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3886                              char *buf)
3887 {
3888         struct ipw2100_priv *priv = dev_get_drvdata(d);
3889         u32 val = 0;
3890         int len = 0;
3891         u32 val_len;
3892         static int loop = 0;
3893
3894         if (priv->status & STATUS_RF_KILL_MASK)
3895                 return 0;
3896
3897         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3898                 loop = 0;
3899
3900         /* sysfs provides us PAGE_SIZE buffer */
3901         while (len < PAGE_SIZE - 128 &&
3902                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3903
3904                 val_len = sizeof(u32);
3905
3906                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907                                         &val_len))
3908                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3909                                        ord_data[loop].index,
3910                                        ord_data[loop].desc);
3911                 else
3912                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913                                        ord_data[loop].index, val,
3914                                        ord_data[loop].desc);
3915                 loop++;
3916         }
3917
3918         return len;
3919 }
3920
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3922
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3924                           char *buf)
3925 {
3926         struct ipw2100_priv *priv = dev_get_drvdata(d);
3927         char *out = buf;
3928
3929         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930                        priv->interrupts, priv->tx_interrupts,
3931                        priv->rx_interrupts, priv->inta_other);
3932         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935         out += sprintf(out, "packet mismatch image: %s\n",
3936                        priv->snapshot[0] ? "YES" : "NO");
3937 #endif
3938
3939         return out - buf;
3940 }
3941
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3943
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3945 {
3946         int err;
3947
3948         if (mode == priv->ieee->iw_mode)
3949                 return 0;
3950
3951         err = ipw2100_disable_adapter(priv);
3952         if (err) {
3953                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954                        priv->net_dev->name, err);
3955                 return err;
3956         }
3957
3958         switch (mode) {
3959         case IW_MODE_INFRA:
3960                 priv->net_dev->type = ARPHRD_ETHER;
3961                 break;
3962         case IW_MODE_ADHOC:
3963                 priv->net_dev->type = ARPHRD_ETHER;
3964                 break;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966         case IW_MODE_MONITOR:
3967                 priv->last_mode = priv->ieee->iw_mode;
3968                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969                 break;
3970 #endif                          /* CONFIG_IPW2100_MONITOR */
3971         }
3972
3973         priv->ieee->iw_mode = mode;
3974
3975 #ifdef CONFIG_PM
3976         /* Indicate ipw2100_download_firmware download firmware
3977          * from disk instead of memory. */
3978         ipw2100_firmware.version = 0;
3979 #endif
3980
3981         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982         priv->reset_backoff = 0;
3983         schedule_reset(priv);
3984
3985         return 0;
3986 }
3987
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3989                               char *buf)
3990 {
3991         struct ipw2100_priv *priv = dev_get_drvdata(d);
3992         int len = 0;
3993
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3995
3996         if (priv->status & STATUS_ASSOCIATED)
3997                 len += sprintf(buf + len, "connected: %lu\n",
3998                                get_seconds() - priv->connect_start);
3999         else
4000                 len += sprintf(buf + len, "not connected\n");
4001
4002         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003         DUMP_VAR(status, "08lx");
4004         DUMP_VAR(config, "08lx");
4005         DUMP_VAR(capability, "08lx");
4006
4007         len +=
4008             sprintf(buf + len, "last_rtc: %lu\n",
4009                     (unsigned long)priv->last_rtc);
4010
4011         DUMP_VAR(fatal_error, "d");
4012         DUMP_VAR(stop_hang_check, "d");
4013         DUMP_VAR(stop_rf_kill, "d");
4014         DUMP_VAR(messages_sent, "d");
4015
4016         DUMP_VAR(tx_pend_stat.value, "d");
4017         DUMP_VAR(tx_pend_stat.hi, "d");
4018
4019         DUMP_VAR(tx_free_stat.value, "d");
4020         DUMP_VAR(tx_free_stat.lo, "d");
4021
4022         DUMP_VAR(msg_free_stat.value, "d");
4023         DUMP_VAR(msg_free_stat.lo, "d");
4024
4025         DUMP_VAR(msg_pend_stat.value, "d");
4026         DUMP_VAR(msg_pend_stat.hi, "d");
4027
4028         DUMP_VAR(fw_pend_stat.value, "d");
4029         DUMP_VAR(fw_pend_stat.hi, "d");
4030
4031         DUMP_VAR(txq_stat.value, "d");
4032         DUMP_VAR(txq_stat.lo, "d");
4033
4034         DUMP_VAR(ieee->scans, "d");
4035         DUMP_VAR(reset_backoff, "d");
4036
4037         return len;
4038 }
4039
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4041
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4043                             char *buf)
4044 {
4045         struct ipw2100_priv *priv = dev_get_drvdata(d);
4046         char essid[IW_ESSID_MAX_SIZE + 1];
4047         u8 bssid[ETH_ALEN];
4048         u32 chan = 0;
4049         char *out = buf;
4050         int length;
4051         int ret;
4052
4053         if (priv->status & STATUS_RF_KILL_MASK)
4054                 return 0;
4055
4056         memset(essid, 0, sizeof(essid));
4057         memset(bssid, 0, sizeof(bssid));
4058
4059         length = IW_ESSID_MAX_SIZE;
4060         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061         if (ret)
4062                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4063                                __LINE__);
4064
4065         length = sizeof(bssid);
4066         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4067                                   bssid, &length);
4068         if (ret)
4069                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4070                                __LINE__);
4071
4072         length = sizeof(u32);
4073         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074         if (ret)
4075                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076                                __LINE__);
4077
4078         out += sprintf(out, "ESSID: %s\n", essid);
4079         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4080                        bssid[0], bssid[1], bssid[2],
4081                        bssid[3], bssid[4], bssid[5]);
4082         out += sprintf(out, "Channel: %d\n", chan);
4083
4084         return out - buf;
4085 }
4086
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4088
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4091 {
4092         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4093 }
4094
4095 static ssize_t store_debug_level(struct device_driver *d,
4096                                  const char *buf, size_t count)
4097 {
4098         char *p = (char *)buf;
4099         u32 val;
4100
4101         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102                 p++;
4103                 if (p[0] == 'x' || p[0] == 'X')
4104                         p++;
4105                 val = simple_strtoul(p, &p, 16);
4106         } else
4107                 val = simple_strtoul(p, &p, 10);
4108         if (p == buf)
4109                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110         else
4111                 ipw2100_debug_level = val;
4112
4113         return strnlen(buf, count);
4114 }
4115
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117                    store_debug_level);
4118 #endif                          /* CONFIG_IPW2100_DEBUG */
4119
4120 static ssize_t show_fatal_error(struct device *d,
4121                                 struct device_attribute *attr, char *buf)
4122 {
4123         struct ipw2100_priv *priv = dev_get_drvdata(d);
4124         char *out = buf;
4125         int i;
4126
4127         if (priv->fatal_error)
4128                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129         else
4130                 out += sprintf(out, "0\n");
4131
4132         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134                                         IPW2100_ERROR_QUEUE])
4135                         continue;
4136
4137                 out += sprintf(out, "%d. 0x%08X\n", i,
4138                                priv->fatal_errors[(priv->fatal_index - i) %
4139                                                   IPW2100_ERROR_QUEUE]);
4140         }
4141
4142         return out - buf;
4143 }
4144
4145 static ssize_t store_fatal_error(struct device *d,
4146                                  struct device_attribute *attr, const char *buf,
4147                                  size_t count)
4148 {
4149         struct ipw2100_priv *priv = dev_get_drvdata(d);
4150         schedule_reset(priv);
4151         return count;
4152 }
4153
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4155                    store_fatal_error);
4156
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4158                              char *buf)
4159 {
4160         struct ipw2100_priv *priv = dev_get_drvdata(d);
4161         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4162 }
4163
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165                               const char *buf, size_t count)
4166 {
4167         struct ipw2100_priv *priv = dev_get_drvdata(d);
4168         struct net_device *dev = priv->net_dev;
4169         char buffer[] = "00000000";
4170         unsigned long len =
4171             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4172         unsigned long val;
4173         char *p = buffer;
4174
4175         (void)dev;              /* kill unused-var warning for debug-only code */
4176
4177         IPW_DEBUG_INFO("enter\n");
4178
4179         strncpy(buffer, buf, len);
4180         buffer[len] = 0;
4181
4182         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183                 p++;
4184                 if (p[0] == 'x' || p[0] == 'X')
4185                         p++;
4186                 val = simple_strtoul(p, &p, 16);
4187         } else
4188                 val = simple_strtoul(p, &p, 10);
4189         if (p == buffer) {
4190                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191         } else {
4192                 priv->ieee->scan_age = val;
4193                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4194         }
4195
4196         IPW_DEBUG_INFO("exit\n");
4197         return len;
4198 }
4199
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4201
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4203                             char *buf)
4204 {
4205         /* 0 - RF kill not enabled
4206            1 - SW based RF kill active (sysfs)
4207            2 - HW based RF kill active
4208            3 - Both HW and SW baed RF kill active */
4209         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211             (rf_kill_active(priv) ? 0x2 : 0x0);
4212         return sprintf(buf, "%i\n", val);
4213 }
4214
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4216 {
4217         if ((disable_radio ? 1 : 0) ==
4218             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4219                 return 0;
4220
4221         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4222                           disable_radio ? "OFF" : "ON");
4223
4224         mutex_lock(&priv->action_mutex);
4225
4226         if (disable_radio) {
4227                 priv->status |= STATUS_RF_KILL_SW;
4228                 ipw2100_down(priv);
4229         } else {
4230                 priv->status &= ~STATUS_RF_KILL_SW;
4231                 if (rf_kill_active(priv)) {
4232                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233                                           "disabled by HW switch\n");
4234                         /* Make sure the RF_KILL check timer is running */
4235                         priv->stop_rf_kill = 0;
4236                         cancel_delayed_work(&priv->rf_kill);
4237                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4238                 } else
4239                         schedule_reset(priv);
4240         }
4241
4242         mutex_unlock(&priv->action_mutex);
4243         return 1;
4244 }
4245
4246 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4247                              const char *buf, size_t count)
4248 {
4249         struct ipw2100_priv *priv = dev_get_drvdata(d);
4250         ipw_radio_kill_sw(priv, buf[0] == '1');
4251         return count;
4252 }
4253
4254 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4255
4256 static struct attribute *ipw2100_sysfs_entries[] = {
4257         &dev_attr_hardware.attr,
4258         &dev_attr_registers.attr,
4259         &dev_attr_ordinals.attr,
4260         &dev_attr_pci.attr,
4261         &dev_attr_stats.attr,
4262         &dev_attr_internals.attr,
4263         &dev_attr_bssinfo.attr,
4264         &dev_attr_memory.attr,
4265         &dev_attr_scan_age.attr,
4266         &dev_attr_fatal_error.attr,
4267         &dev_attr_rf_kill.attr,
4268         &dev_attr_cfg.attr,
4269         &dev_attr_status.attr,
4270         &dev_attr_capability.attr,
4271         NULL,
4272 };
4273
4274 static struct attribute_group ipw2100_attribute_group = {
4275         .attrs = ipw2100_sysfs_entries,
4276 };
4277
4278 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4279 {
4280         struct ipw2100_status_queue *q = &priv->status_queue;
4281
4282         IPW_DEBUG_INFO("enter\n");
4283
4284         q->size = entries * sizeof(struct ipw2100_status);
4285         q->drv =
4286             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4287                                                           q->size, &q->nic);
4288         if (!q->drv) {
4289                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4290                 return -ENOMEM;
4291         }
4292
4293         memset(q->drv, 0, q->size);
4294
4295         IPW_DEBUG_INFO("exit\n");
4296
4297         return 0;
4298 }
4299
4300 static void status_queue_free(struct ipw2100_priv *priv)
4301 {
4302         IPW_DEBUG_INFO("enter\n");
4303
4304         if (priv->status_queue.drv) {
4305                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4306                                     priv->status_queue.drv,
4307                                     priv->status_queue.nic);
4308                 priv->status_queue.drv = NULL;
4309         }
4310
4311         IPW_DEBUG_INFO("exit\n");
4312 }
4313
4314 static int bd_queue_allocate(struct ipw2100_priv *priv,
4315                              struct ipw2100_bd_queue *q, int entries)
4316 {
4317         IPW_DEBUG_INFO("enter\n");
4318
4319         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4320
4321         q->entries = entries;
4322         q->size = entries * sizeof(struct ipw2100_bd);
4323         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4324         if (!q->drv) {
4325                 IPW_DEBUG_INFO
4326                     ("can't allocate shared memory for buffer descriptors\n");
4327                 return -ENOMEM;
4328         }
4329         memset(q->drv, 0, q->size);
4330
4331         IPW_DEBUG_INFO("exit\n");
4332
4333         return 0;
4334 }
4335
4336 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4337 {
4338         IPW_DEBUG_INFO("enter\n");
4339
4340         if (!q)
4341                 return;
4342
4343         if (q->drv) {
4344                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4345                 q->drv = NULL;
4346         }
4347
4348         IPW_DEBUG_INFO("exit\n");
4349 }
4350
4351 static void bd_queue_initialize(struct ipw2100_priv *priv,
4352                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4353                                 u32 r, u32 w)
4354 {
4355         IPW_DEBUG_INFO("enter\n");
4356
4357         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4358                        (u32) q->nic);
4359
4360         write_register(priv->net_dev, base, q->nic);
4361         write_register(priv->net_dev, size, q->entries);
4362         write_register(priv->net_dev, r, q->oldest);
4363         write_register(priv->net_dev, w, q->next);
4364
4365         IPW_DEBUG_INFO("exit\n");
4366 }
4367
4368 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4369 {
4370         if (priv->workqueue) {
4371                 priv->stop_rf_kill = 1;
4372                 priv->stop_hang_check = 1;
4373                 cancel_delayed_work(&priv->reset_work);
4374                 cancel_delayed_work(&priv->security_work);
4375                 cancel_delayed_work(&priv->wx_event_work);
4376                 cancel_delayed_work(&priv->hang_check);
4377                 cancel_delayed_work(&priv->rf_kill);
4378                 destroy_workqueue(priv->workqueue);
4379                 priv->workqueue = NULL;
4380         }
4381 }
4382
4383 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4384 {
4385         int i, j, err = -EINVAL;
4386         void *v;
4387         dma_addr_t p;
4388
4389         IPW_DEBUG_INFO("enter\n");
4390
4391         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4392         if (err) {
4393                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4394                                 priv->net_dev->name);
4395                 return err;
4396         }
4397
4398         priv->tx_buffers =
4399             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4400                                                 sizeof(struct
4401                                                        ipw2100_tx_packet),
4402                                                 GFP_ATOMIC);
4403         if (!priv->tx_buffers) {
4404                 printk(KERN_ERR DRV_NAME
4405                        ": %s: alloc failed form tx buffers.\n",
4406                        priv->net_dev->name);
4407                 bd_queue_free(priv, &priv->tx_queue);
4408                 return -ENOMEM;
4409         }
4410
4411         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4412                 v = pci_alloc_consistent(priv->pci_dev,
4413                                          sizeof(struct ipw2100_data_header),
4414                                          &p);
4415                 if (!v) {
4416                         printk(KERN_ERR DRV_NAME
4417                                ": %s: PCI alloc failed for tx " "buffers.\n",
4418                                priv->net_dev->name);
4419                         err = -ENOMEM;
4420                         break;
4421                 }
4422
4423                 priv->tx_buffers[i].type = DATA;
4424                 priv->tx_buffers[i].info.d_struct.data =
4425                     (struct ipw2100_data_header *)v;
4426                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4427                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4428         }
4429
4430         if (i == TX_PENDED_QUEUE_LENGTH)
4431                 return 0;
4432
4433         for (j = 0; j < i; j++) {
4434                 pci_free_consistent(priv->pci_dev,
4435                                     sizeof(struct ipw2100_data_header),
4436                                     priv->tx_buffers[j].info.d_struct.data,
4437                                     priv->tx_buffers[j].info.d_struct.
4438                                     data_phys);
4439         }
4440
4441         kfree(priv->tx_buffers);
4442         priv->tx_buffers = NULL;
4443
4444         return err;
4445 }
4446
4447 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4448 {
4449         int i;
4450
4451         IPW_DEBUG_INFO("enter\n");
4452
4453         /*
4454          * reinitialize packet info lists
4455          */
4456         INIT_LIST_HEAD(&priv->fw_pend_list);
4457         INIT_STAT(&priv->fw_pend_stat);
4458
4459         /*
4460          * reinitialize lists
4461          */
4462         INIT_LIST_HEAD(&priv->tx_pend_list);
4463         INIT_LIST_HEAD(&priv->tx_free_list);
4464         INIT_STAT(&priv->tx_pend_stat);
4465         INIT_STAT(&priv->tx_free_stat);
4466
4467         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4468                 /* We simply drop any SKBs that have been queued for
4469                  * transmit */
4470                 if (priv->tx_buffers[i].info.d_struct.txb) {
4471                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4472                                            txb);
4473                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4474                 }
4475
4476                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4477         }
4478
4479         SET_STAT(&priv->tx_free_stat, i);
4480
4481         priv->tx_queue.oldest = 0;
4482         priv->tx_queue.available = priv->tx_queue.entries;
4483         priv->tx_queue.next = 0;
4484         INIT_STAT(&priv->txq_stat);
4485         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4486
4487         bd_queue_initialize(priv, &priv->tx_queue,
4488                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4489                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4490                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4491                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4492
4493         IPW_DEBUG_INFO("exit\n");
4494
4495 }
4496
4497 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4498 {
4499         int i;
4500
4501         IPW_DEBUG_INFO("enter\n");
4502
4503         bd_queue_free(priv, &priv->tx_queue);
4504
4505         if (!priv->tx_buffers)
4506                 return;
4507
4508         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4509                 if (priv->tx_buffers[i].info.d_struct.txb) {
4510                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4511                                            txb);
4512                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4513                 }
4514                 if (priv->tx_buffers[i].info.d_struct.data)
4515                         pci_free_consistent(priv->pci_dev,
4516                                             sizeof(struct ipw2100_data_header),
4517                                             priv->tx_buffers[i].info.d_struct.
4518                                             data,
4519                                             priv->tx_buffers[i].info.d_struct.
4520                                             data_phys);
4521         }
4522
4523         kfree(priv->tx_buffers);
4524         priv->tx_buffers = NULL;
4525
4526         IPW_DEBUG_INFO("exit\n");
4527 }
4528
4529 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4530 {
4531         int i, j, err = -EINVAL;
4532
4533         IPW_DEBUG_INFO("enter\n");
4534
4535         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4536         if (err) {
4537                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4538                 return err;
4539         }
4540
4541         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4542         if (err) {
4543                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4544                 bd_queue_free(priv, &priv->rx_queue);
4545                 return err;
4546         }
4547
4548         /*
4549          * allocate packets
4550          */
4551         priv->rx_buffers = (struct ipw2100_rx_packet *)
4552             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4553                     GFP_KERNEL);
4554         if (!priv->rx_buffers) {
4555                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4556
4557                 bd_queue_free(priv, &priv->rx_queue);
4558
4559                 status_queue_free(priv);
4560
4561                 return -ENOMEM;
4562         }
4563
4564         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4565                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4566
4567                 err = ipw2100_alloc_skb(priv, packet);
4568                 if (unlikely(err)) {
4569                         err = -ENOMEM;
4570                         break;
4571                 }
4572
4573                 /* The BD holds the cache aligned address */
4574                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4575                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4576                 priv->status_queue.drv[i].status_fields = 0;
4577         }
4578
4579         if (i == RX_QUEUE_LENGTH)
4580                 return 0;
4581
4582         for (j = 0; j < i; j++) {
4583                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4584                                  sizeof(struct ipw2100_rx_packet),
4585                                  PCI_DMA_FROMDEVICE);
4586                 dev_kfree_skb(priv->rx_buffers[j].skb);
4587         }
4588
4589         kfree(priv->rx_buffers);
4590         priv->rx_buffers = NULL;
4591
4592         bd_queue_free(priv, &priv->rx_queue);
4593
4594         status_queue_free(priv);
4595
4596         return err;
4597 }
4598
4599 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4600 {
4601         IPW_DEBUG_INFO("enter\n");
4602
4603         priv->rx_queue.oldest = 0;
4604         priv->rx_queue.available = priv->rx_queue.entries - 1;
4605         priv->rx_queue.next = priv->rx_queue.entries - 1;
4606
4607         INIT_STAT(&priv->rxq_stat);
4608         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4609
4610         bd_queue_initialize(priv, &priv->rx_queue,
4611                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4612                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4613                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4614                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4615
4616         /* set up the status queue */
4617         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4618                        priv->status_queue.nic);
4619
4620         IPW_DEBUG_INFO("exit\n");
4621 }
4622
4623 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4624 {
4625         int i;
4626
4627         IPW_DEBUG_INFO("enter\n");
4628
4629         bd_queue_free(priv, &priv->rx_queue);
4630         status_queue_free(priv);
4631
4632         if (!priv->rx_buffers)
4633                 return;
4634
4635         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4636                 if (priv->rx_buffers[i].rxp) {
4637                         pci_unmap_single(priv->pci_dev,
4638                                          priv->rx_buffers[i].dma_addr,
4639                                          sizeof(struct ipw2100_rx),
4640                                          PCI_DMA_FROMDEVICE);
4641                         dev_kfree_skb(priv->rx_buffers[i].skb);
4642                 }
4643         }
4644
4645         kfree(priv->rx_buffers);
4646         priv->rx_buffers = NULL;
4647
4648         IPW_DEBUG_INFO("exit\n");
4649 }
4650
4651 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4652 {
4653         u32 length = ETH_ALEN;
4654         u8 mac[ETH_ALEN];
4655
4656         int err;
4657
4658         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4659         if (err) {
4660                 IPW_DEBUG_INFO("MAC address read failed\n");
4661                 return -EIO;
4662         }
4663         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4664                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4665
4666         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4667
4668         return 0;
4669 }
4670
4671 /********************************************************************
4672  *
4673  * Firmware Commands
4674  *
4675  ********************************************************************/
4676
4677 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4678 {
4679         struct host_command cmd = {
4680                 .host_command = ADAPTER_ADDRESS,
4681                 .host_command_sequence = 0,
4682                 .host_command_length = ETH_ALEN
4683         };
4684         int err;
4685
4686         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4687
4688         IPW_DEBUG_INFO("enter\n");
4689
4690         if (priv->config & CFG_CUSTOM_MAC) {
4691                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4692                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4693         } else
4694                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4695                        ETH_ALEN);
4696
4697         err = ipw2100_hw_send_command(priv, &cmd);
4698
4699         IPW_DEBUG_INFO("exit\n");
4700         return err;
4701 }
4702
4703 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4704                                  int batch_mode)
4705 {
4706         struct host_command cmd = {
4707                 .host_command = PORT_TYPE,
4708                 .host_command_sequence = 0,
4709                 .host_command_length = sizeof(u32)
4710         };
4711         int err;
4712
4713         switch (port_type) {
4714         case IW_MODE_INFRA:
4715                 cmd.host_command_parameters[0] = IPW_BSS;
4716                 break;
4717         case IW_MODE_ADHOC:
4718                 cmd.host_command_parameters[0] = IPW_IBSS;
4719                 break;
4720         }
4721
4722         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4723                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4724
4725         if (!batch_mode) {
4726                 err = ipw2100_disable_adapter(priv);
4727                 if (err) {
4728                         printk(KERN_ERR DRV_NAME
4729                                ": %s: Could not disable adapter %d\n",
4730                                priv->net_dev->name, err);
4731                         return err;
4732                 }
4733         }
4734
4735         /* send cmd to firmware */
4736         err = ipw2100_hw_send_command(priv, &cmd);
4737
4738         if (!batch_mode)
4739                 ipw2100_enable_adapter(priv);
4740
4741         return err;
4742 }
4743
4744 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4745                                int batch_mode)
4746 {
4747         struct host_command cmd = {
4748                 .host_command = CHANNEL,
4749                 .host_command_sequence = 0,
4750                 .host_command_length = sizeof(u32)
4751         };
4752         int err;
4753
4754         cmd.host_command_parameters[0] = channel;
4755
4756         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4757
4758         /* If BSS then we don't support channel selection */
4759         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4760                 return 0;
4761
4762         if ((channel != 0) &&
4763             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4764                 return -EINVAL;
4765
4766         if (!batch_mode) {
4767                 err = ipw2100_disable_adapter(priv);
4768                 if (err)
4769                         return err;
4770         }
4771
4772         err = ipw2100_hw_send_command(priv, &cmd);
4773         if (err) {
4774                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4775                 return err;
4776         }
4777
4778         if (channel)
4779                 priv->config |= CFG_STATIC_CHANNEL;
4780         else
4781                 priv->config &= ~CFG_STATIC_CHANNEL;
4782
4783         priv->channel = channel;
4784
4785         if (!batch_mode) {
4786                 err = ipw2100_enable_adapter(priv);
4787                 if (err)
4788                         return err;
4789         }
4790
4791         return 0;
4792 }
4793
4794 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4795 {
4796         struct host_command cmd = {
4797                 .host_command = SYSTEM_CONFIG,
4798                 .host_command_sequence = 0,
4799                 .host_command_length = 12,
4800         };
4801         u32 ibss_mask, len = sizeof(u32);
4802         int err;
4803
4804         /* Set system configuration */
4805
4806         if (!batch_mode) {
4807                 err = ipw2100_disable_adapter(priv);
4808                 if (err)
4809                         return err;
4810         }
4811
4812         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4813                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4814
4815         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4816             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4817
4818         if (!(priv->config & CFG_LONG_PREAMBLE))
4819                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4820
4821         err = ipw2100_get_ordinal(priv,
4822                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4823                                   &ibss_mask, &len);
4824         if (err)
4825                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4826
4827         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4828         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4829
4830         /* 11b only */
4831         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4832
4833         err = ipw2100_hw_send_command(priv, &cmd);
4834         if (err)
4835                 return err;
4836
4837 /* If IPv6 is configured in the kernel then we don't want to filter out all
4838  * of the multicast packets as IPv6 needs some. */
4839 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4840         cmd.host_command = ADD_MULTICAST;
4841         cmd.host_command_sequence = 0;
4842         cmd.host_command_length = 0;
4843
4844         ipw2100_hw_send_command(priv, &cmd);
4845 #endif
4846         if (!batch_mode) {
4847                 err = ipw2100_enable_adapter(priv);
4848                 if (err)
4849                         return err;
4850         }
4851
4852         return 0;
4853 }
4854
4855 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4856                                 int batch_mode)
4857 {
4858         struct host_command cmd = {
4859                 .host_command = BASIC_TX_RATES,
4860                 .host_command_sequence = 0,
4861                 .host_command_length = 4
4862         };
4863         int err;
4864
4865         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4866
4867         if (!batch_mode) {
4868                 err = ipw2100_disable_adapter(priv);
4869                 if (err)
4870                         return err;
4871         }
4872
4873         /* Set BASIC TX Rate first */
4874         ipw2100_hw_send_command(priv, &cmd);
4875
4876         /* Set TX Rate */
4877         cmd.host_command = TX_RATES;
4878         ipw2100_hw_send_command(priv, &cmd);
4879
4880         /* Set MSDU TX Rate */
4881         cmd.host_command = MSDU_TX_RATES;
4882         ipw2100_hw_send_command(priv, &cmd);
4883
4884         if (!batch_mode) {
4885                 err = ipw2100_enable_adapter(priv);
4886                 if (err)
4887                         return err;
4888         }
4889
4890         priv->tx_rates = rate;
4891
4892         return 0;
4893 }
4894
4895 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4896 {
4897         struct host_command cmd = {
4898                 .host_command = POWER_MODE,
4899                 .host_command_sequence = 0,
4900                 .host_command_length = 4
4901         };
4902         int err;
4903
4904         cmd.host_command_parameters[0] = power_level;
4905
4906         err = ipw2100_hw_send_command(priv, &cmd);
4907         if (err)
4908                 return err;
4909
4910         if (power_level == IPW_POWER_MODE_CAM)
4911                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4912         else
4913                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4914
4915 #ifdef CONFIG_IPW2100_TX_POWER
4916         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4917                 /* Set beacon interval */
4918                 cmd.host_command = TX_POWER_INDEX;
4919                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4920
4921                 err = ipw2100_hw_send_command(priv, &cmd);
4922                 if (err)
4923                         return err;
4924         }
4925 #endif
4926
4927         return 0;
4928 }
4929
4930 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4931 {
4932         struct host_command cmd = {
4933                 .host_command = RTS_THRESHOLD,
4934                 .host_command_sequence = 0,
4935                 .host_command_length = 4
4936         };
4937         int err;
4938
4939         if (threshold & RTS_DISABLED)
4940                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4941         else
4942                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4943
4944         err = ipw2100_hw_send_command(priv, &cmd);
4945         if (err)
4946                 return err;
4947
4948         priv->rts_threshold = threshold;
4949
4950         return 0;
4951 }
4952
4953 #if 0
4954 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4955                                         u32 threshold, int batch_mode)
4956 {
4957         struct host_command cmd = {
4958                 .host_command = FRAG_THRESHOLD,
4959                 .host_command_sequence = 0,
4960                 .host_command_length = 4,
4961                 .host_command_parameters[0] = 0,
4962         };
4963         int err;
4964
4965         if (!batch_mode) {
4966                 err = ipw2100_disable_adapter(priv);
4967                 if (err)
4968                         return err;
4969         }
4970
4971         if (threshold == 0)
4972                 threshold = DEFAULT_FRAG_THRESHOLD;
4973         else {
4974                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4975                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4976         }
4977
4978         cmd.host_command_parameters[0] = threshold;
4979
4980         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4981
4982         err = ipw2100_hw_send_command(priv, &cmd);
4983
4984         if (!batch_mode)
4985                 ipw2100_enable_adapter(priv);
4986
4987         if (!err)
4988                 priv->frag_threshold = threshold;
4989
4990         return err;
4991 }
4992 #endif
4993
4994 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4995 {
4996         struct host_command cmd = {
4997                 .host_command = SHORT_RETRY_LIMIT,
4998                 .host_command_sequence = 0,
4999                 .host_command_length = 4
5000         };
5001         int err;
5002
5003         cmd.host_command_parameters[0] = retry;
5004
5005         err = ipw2100_hw_send_command(priv, &cmd);
5006         if (err)
5007                 return err;
5008
5009         priv->short_retry_limit = retry;
5010
5011         return 0;
5012 }
5013
5014 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5015 {
5016         struct host_command cmd = {
5017                 .host_command = LONG_RETRY_LIMIT,
5018                 .host_command_sequence = 0,
5019                 .host_command_length = 4
5020         };
5021         int err;
5022
5023         cmd.host_command_parameters[0] = retry;
5024
5025         err = ipw2100_hw_send_command(priv, &cmd);
5026         if (err)
5027                 return err;
5028
5029         priv->long_retry_limit = retry;
5030
5031         return 0;
5032 }
5033
5034 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5035                                        int batch_mode)
5036 {
5037         struct host_command cmd = {
5038                 .host_command = MANDATORY_BSSID,
5039                 .host_command_sequence = 0,
5040                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5041         };
5042         int err;
5043
5044 #ifdef CONFIG_IPW2100_DEBUG
5045         if (bssid != NULL)
5046                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5047                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5048                              bssid[5]);
5049         else
5050                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5051 #endif
5052         /* if BSSID is empty then we disable mandatory bssid mode */
5053         if (bssid != NULL)
5054                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5055
5056         if (!batch_mode) {
5057                 err = ipw2100_disable_adapter(priv);
5058                 if (err)
5059                         return err;
5060         }
5061
5062         err = ipw2100_hw_send_command(priv, &cmd);
5063
5064         if (!batch_mode)
5065                 ipw2100_enable_adapter(priv);
5066
5067         return err;
5068 }
5069
5070 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5071 {
5072         struct host_command cmd = {
5073                 .host_command = DISASSOCIATION_BSSID,
5074                 .host_command_sequence = 0,
5075                 .host_command_length = ETH_ALEN
5076         };
5077         int err;
5078         int len;
5079
5080         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5081
5082         len = ETH_ALEN;
5083         /* The Firmware currently ignores the BSSID and just disassociates from
5084          * the currently associated AP -- but in the off chance that a future
5085          * firmware does use the BSSID provided here, we go ahead and try and
5086          * set it to the currently associated AP's BSSID */
5087         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5088
5089         err = ipw2100_hw_send_command(priv, &cmd);
5090
5091         return err;
5092 }
5093
5094 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5095                               struct ipw2100_wpa_assoc_frame *, int)
5096     __attribute__ ((unused));
5097
5098 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5099                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5100                               int batch_mode)
5101 {
5102         struct host_command cmd = {
5103                 .host_command = SET_WPA_IE,
5104                 .host_command_sequence = 0,
5105                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5106         };
5107         int err;
5108
5109         IPW_DEBUG_HC("SET_WPA_IE\n");
5110
5111         if (!batch_mode) {
5112                 err = ipw2100_disable_adapter(priv);
5113                 if (err)
5114                         return err;
5115         }
5116
5117         memcpy(cmd.host_command_parameters, wpa_frame,
5118                sizeof(struct ipw2100_wpa_assoc_frame));
5119
5120         err = ipw2100_hw_send_command(priv, &cmd);
5121
5122         if (!batch_mode) {
5123                 if (ipw2100_enable_adapter(priv))
5124                         err = -EIO;
5125         }
5126
5127         return err;
5128 }
5129
5130 struct security_info_params {
5131         u32 allowed_ciphers;
5132         u16 version;
5133         u8 auth_mode;
5134         u8 replay_counters_number;
5135         u8 unicast_using_group;
5136 } __attribute__ ((packed));
5137
5138 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5139                                             int auth_mode,
5140                                             int security_level,
5141                                             int unicast_using_group,
5142                                             int batch_mode)
5143 {
5144         struct host_command cmd = {
5145                 .host_command = SET_SECURITY_INFORMATION,
5146                 .host_command_sequence = 0,
5147                 .host_command_length = sizeof(struct security_info_params)
5148         };
5149         struct security_info_params *security =
5150             (struct security_info_params *)&cmd.host_command_parameters;
5151         int err;
5152         memset(security, 0, sizeof(*security));
5153
5154         /* If shared key AP authentication is turned on, then we need to
5155          * configure the firmware to try and use it.
5156          *
5157          * Actual data encryption/decryption is handled by the host. */
5158         security->auth_mode = auth_mode;
5159         security->unicast_using_group = unicast_using_group;
5160
5161         switch (security_level) {
5162         default:
5163         case SEC_LEVEL_0:
5164                 security->allowed_ciphers = IPW_NONE_CIPHER;
5165                 break;
5166         case SEC_LEVEL_1:
5167                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5168                     IPW_WEP104_CIPHER;
5169                 break;
5170         case SEC_LEVEL_2:
5171                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5172                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5173                 break;
5174         case SEC_LEVEL_2_CKIP:
5175                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5177                 break;
5178         case SEC_LEVEL_3:
5179                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5181                 break;
5182         }
5183
5184         IPW_DEBUG_HC
5185             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5186              security->auth_mode, security->allowed_ciphers, security_level);
5187
5188         security->replay_counters_number = 0;
5189
5190         if (!batch_mode) {
5191                 err = ipw2100_disable_adapter(priv);
5192                 if (err)
5193                         return err;
5194         }
5195
5196         err = ipw2100_hw_send_command(priv, &cmd);
5197
5198         if (!batch_mode)
5199                 ipw2100_enable_adapter(priv);
5200
5201         return err;
5202 }
5203
5204 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5205 {
5206         struct host_command cmd = {
5207                 .host_command = TX_POWER_INDEX,
5208                 .host_command_sequence = 0,
5209                 .host_command_length = 4
5210         };
5211         int err = 0;
5212         u32 tmp = tx_power;
5213
5214         if (tx_power != IPW_TX_POWER_DEFAULT)
5215                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5216                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5217
5218         cmd.host_command_parameters[0] = tmp;
5219
5220         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5221                 err = ipw2100_hw_send_command(priv, &cmd);
5222         if (!err)
5223                 priv->tx_power = tx_power;
5224
5225         return 0;
5226 }
5227
5228 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5229                                             u32 interval, int batch_mode)
5230 {
5231         struct host_command cmd = {
5232                 .host_command = BEACON_INTERVAL,
5233                 .host_command_sequence = 0,
5234                 .host_command_length = 4
5235         };
5236         int err;
5237
5238         cmd.host_command_parameters[0] = interval;
5239
5240         IPW_DEBUG_INFO("enter\n");
5241
5242         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5243                 if (!batch_mode) {
5244                         err = ipw2100_disable_adapter(priv);
5245                         if (err)
5246                                 return err;
5247                 }
5248
5249                 ipw2100_hw_send_command(priv, &cmd);
5250
5251                 if (!batch_mode) {
5252                         err = ipw2100_enable_adapter(priv);
5253                         if (err)
5254                                 return err;
5255                 }
5256         }
5257
5258         IPW_DEBUG_INFO("exit\n");
5259
5260         return 0;
5261 }
5262
5263 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5264 {
5265         ipw2100_tx_initialize(priv);
5266         ipw2100_rx_initialize(priv);
5267         ipw2100_msg_initialize(priv);
5268 }
5269
5270 void ipw2100_queues_free(struct ipw2100_priv *priv)
5271 {
5272         ipw2100_tx_free(priv);
5273         ipw2100_rx_free(priv);
5274         ipw2100_msg_free(priv);
5275 }
5276
5277 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5278 {
5279         if (ipw2100_tx_allocate(priv) ||
5280             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5281                 goto fail;
5282
5283         return 0;
5284
5285       fail:
5286         ipw2100_tx_free(priv);
5287         ipw2100_rx_free(priv);
5288         ipw2100_msg_free(priv);
5289         return -ENOMEM;
5290 }
5291
5292 #define IPW_PRIVACY_CAPABLE 0x0008
5293
5294 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5295                                  int batch_mode)
5296 {
5297         struct host_command cmd = {
5298                 .host_command = WEP_FLAGS,
5299                 .host_command_sequence = 0,
5300                 .host_command_length = 4
5301         };
5302         int err;
5303
5304         cmd.host_command_parameters[0] = flags;
5305
5306         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5307
5308         if (!batch_mode) {
5309                 err = ipw2100_disable_adapter(priv);
5310                 if (err) {
5311                         printk(KERN_ERR DRV_NAME
5312                                ": %s: Could not disable adapter %d\n",
5313                                priv->net_dev->name, err);
5314                         return err;
5315                 }
5316         }
5317
5318         /* send cmd to firmware */
5319         err = ipw2100_hw_send_command(priv, &cmd);
5320
5321         if (!batch_mode)
5322                 ipw2100_enable_adapter(priv);
5323
5324         return err;
5325 }
5326
5327 struct ipw2100_wep_key {
5328         u8 idx;
5329         u8 len;
5330         u8 key[13];
5331 };
5332
5333 /* Macros to ease up priting WEP keys */
5334 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5335 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5336 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5337 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5338
5339 /**
5340  * Set a the wep key
5341  *
5342  * @priv: struct to work on
5343  * @idx: index of the key we want to set
5344  * @key: ptr to the key data to set
5345  * @len: length of the buffer at @key
5346  * @batch_mode: FIXME perform the operation in batch mode, not
5347  *              disabling the device.
5348  *
5349  * @returns 0 if OK, < 0 errno code on error.
5350  *
5351  * Fill out a command structure with the new wep key, length an
5352  * index and send it down the wire.
5353  */
5354 static int ipw2100_set_key(struct ipw2100_priv *priv,
5355                            int idx, char *key, int len, int batch_mode)
5356 {
5357         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5358         struct host_command cmd = {
5359                 .host_command = WEP_KEY_INFO,
5360                 .host_command_sequence = 0,
5361                 .host_command_length = sizeof(struct ipw2100_wep_key),
5362         };
5363         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5364         int err;
5365
5366         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5367                      idx, keylen, len);
5368
5369         /* NOTE: We don't check cached values in case the firmware was reset
5370          * or some other problem is occurring.  If the user is setting the key,
5371          * then we push the change */
5372
5373         wep_key->idx = idx;
5374         wep_key->len = keylen;
5375
5376         if (keylen) {
5377                 memcpy(wep_key->key, key, len);
5378                 memset(wep_key->key + len, 0, keylen - len);
5379         }
5380
5381         /* Will be optimized out on debug not being configured in */
5382         if (keylen == 0)
5383                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5384                               priv->net_dev->name, wep_key->idx);
5385         else if (keylen == 5)
5386                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5387                               priv->net_dev->name, wep_key->idx, wep_key->len,
5388                               WEP_STR_64(wep_key->key));
5389         else
5390                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5391                               "\n",
5392                               priv->net_dev->name, wep_key->idx, wep_key->len,
5393                               WEP_STR_128(wep_key->key));
5394
5395         if (!batch_mode) {
5396                 err = ipw2100_disable_adapter(priv);
5397                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5398                 if (err) {
5399                         printk(KERN_ERR DRV_NAME
5400                                ": %s: Could not disable adapter %d\n",
5401                                priv->net_dev->name, err);
5402                         return err;
5403                 }
5404         }
5405
5406         /* send cmd to firmware */
5407         err = ipw2100_hw_send_command(priv, &cmd);
5408
5409         if (!batch_mode) {
5410                 int err2 = ipw2100_enable_adapter(priv);
5411                 if (err == 0)
5412                         err = err2;
5413         }
5414         return err;
5415 }
5416
5417 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5418                                  int idx, int batch_mode)
5419 {
5420         struct host_command cmd = {
5421                 .host_command = WEP_KEY_INDEX,
5422                 .host_command_sequence = 0,
5423                 .host_command_length = 4,
5424                 .host_command_parameters = {idx},
5425         };
5426         int err;
5427
5428         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5429
5430         if (idx < 0 || idx > 3)
5431                 return -EINVAL;
5432
5433         if (!batch_mode) {
5434                 err = ipw2100_disable_adapter(priv);
5435                 if (err) {
5436                         printk(KERN_ERR DRV_NAME
5437                                ": %s: Could not disable adapter %d\n",
5438                                priv->net_dev->name, err);
5439                         return err;
5440                 }
5441         }
5442
5443         /* send cmd to firmware */
5444         err = ipw2100_hw_send_command(priv, &cmd);
5445
5446         if (!batch_mode)
5447                 ipw2100_enable_adapter(priv);
5448
5449         return err;
5450 }
5451
5452 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5453 {
5454         int i, err, auth_mode, sec_level, use_group;
5455
5456         if (!(priv->status & STATUS_RUNNING))
5457                 return 0;
5458
5459         if (!batch_mode) {
5460                 err = ipw2100_disable_adapter(priv);
5461                 if (err)
5462                         return err;
5463         }
5464
5465         if (!priv->ieee->sec.enabled) {
5466                 err =
5467                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5468                                                      SEC_LEVEL_0, 0, 1);
5469         } else {
5470                 auth_mode = IPW_AUTH_OPEN;
5471                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5472                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5473                                 auth_mode = IPW_AUTH_SHARED;
5474                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5475                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5476                 }
5477
5478                 sec_level = SEC_LEVEL_0;
5479                 if (priv->ieee->sec.flags & SEC_LEVEL)
5480                         sec_level = priv->ieee->sec.level;
5481
5482                 use_group = 0;
5483                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5484                         use_group = priv->ieee->sec.unicast_uses_group;
5485
5486                 err =
5487                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5488                                                      use_group, 1);
5489         }
5490
5491         if (err)
5492                 goto exit;
5493
5494         if (priv->ieee->sec.enabled) {
5495                 for (i = 0; i < 4; i++) {
5496                         if (!(priv->ieee->sec.flags & (1 << i))) {
5497                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5498                                 priv->ieee->sec.key_sizes[i] = 0;
5499                         } else {
5500                                 err = ipw2100_set_key(priv, i,
5501                                                       priv->ieee->sec.keys[i],
5502                                                       priv->ieee->sec.
5503                                                       key_sizes[i], 1);
5504                                 if (err)
5505                                         goto exit;
5506                         }
5507                 }
5508
5509                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5510         }
5511
5512         /* Always enable privacy so the Host can filter WEP packets if
5513          * encrypted data is sent up */
5514         err =
5515             ipw2100_set_wep_flags(priv,
5516                                   priv->ieee->sec.
5517                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5518         if (err)
5519                 goto exit;
5520
5521         priv->status &= ~STATUS_SECURITY_UPDATED;
5522
5523       exit:
5524         if (!batch_mode)
5525                 ipw2100_enable_adapter(priv);
5526
5527         return err;
5528 }
5529
5530 static void ipw2100_security_work(struct work_struct *work)
5531 {
5532         struct ipw2100_priv *priv =
5533                 container_of(work, struct ipw2100_priv, security_work.work);
5534
5535         /* If we happen to have reconnected before we get a chance to
5536          * process this, then update the security settings--which causes
5537          * a disassociation to occur */
5538         if (!(priv->status & STATUS_ASSOCIATED) &&
5539             priv->status & STATUS_SECURITY_UPDATED)
5540                 ipw2100_configure_security(priv, 0);
5541 }
5542
5543 static void shim__set_security(struct net_device *dev,
5544                                struct ieee80211_security *sec)
5545 {
5546         struct ipw2100_priv *priv = ieee80211_priv(dev);
5547         int i, force_update = 0;
5548
5549         mutex_lock(&priv->action_mutex);
5550         if (!(priv->status & STATUS_INITIALIZED))
5551                 goto done;
5552
5553         for (i = 0; i < 4; i++) {
5554                 if (sec->flags & (1 << i)) {
5555                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5556                         if (sec->key_sizes[i] == 0)
5557                                 priv->ieee->sec.flags &= ~(1 << i);
5558                         else
5559                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5560                                        sec->key_sizes[i]);
5561                         if (sec->level == SEC_LEVEL_1) {
5562                                 priv->ieee->sec.flags |= (1 << i);
5563                                 priv->status |= STATUS_SECURITY_UPDATED;
5564                         } else
5565                                 priv->ieee->sec.flags &= ~(1 << i);
5566                 }
5567         }
5568
5569         if ((sec->flags & SEC_ACTIVE_KEY) &&
5570             priv->ieee->sec.active_key != sec->active_key) {
5571                 if (sec->active_key <= 3) {
5572                         priv->ieee->sec.active_key = sec->active_key;
5573                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5574                 } else
5575                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5576
5577                 priv->status |= STATUS_SECURITY_UPDATED;
5578         }
5579
5580         if ((sec->flags & SEC_AUTH_MODE) &&
5581             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5582                 priv->ieee->sec.auth_mode = sec->auth_mode;
5583                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5584                 priv->status |= STATUS_SECURITY_UPDATED;
5585         }
5586
5587         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5588                 priv->ieee->sec.flags |= SEC_ENABLED;
5589                 priv->ieee->sec.enabled = sec->enabled;
5590                 priv->status |= STATUS_SECURITY_UPDATED;
5591                 force_update = 1;
5592         }
5593
5594         if (sec->flags & SEC_ENCRYPT)
5595                 priv->ieee->sec.encrypt = sec->encrypt;
5596
5597         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5598                 priv->ieee->sec.level = sec->level;
5599                 priv->ieee->sec.flags |= SEC_LEVEL;
5600                 priv->status |= STATUS_SECURITY_UPDATED;
5601         }
5602
5603         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5604                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5605                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5606                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5607                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5608                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5609                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5610                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5611                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5612                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5613
5614 /* As a temporary work around to enable WPA until we figure out why
5615  * wpa_supplicant toggles the security capability of the driver, which
5616  * forces a disassocation with force_update...
5617  *
5618  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5619         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5620                 ipw2100_configure_security(priv, 0);
5621       done:
5622         mutex_unlock(&priv->action_mutex);
5623 }
5624
5625 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5626 {
5627         int err;
5628         int batch_mode = 1;
5629         u8 *bssid;
5630
5631         IPW_DEBUG_INFO("enter\n");
5632
5633         err = ipw2100_disable_adapter(priv);
5634         if (err)
5635                 return err;
5636 #ifdef CONFIG_IPW2100_MONITOR
5637         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5638                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5639                 if (err)
5640                         return err;
5641
5642                 IPW_DEBUG_INFO("exit\n");
5643
5644                 return 0;
5645         }
5646 #endif                          /* CONFIG_IPW2100_MONITOR */
5647
5648         err = ipw2100_read_mac_address(priv);
5649         if (err)
5650                 return -EIO;
5651
5652         err = ipw2100_set_mac_address(priv, batch_mode);
5653         if (err)
5654                 return err;
5655
5656         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5657         if (err)
5658                 return err;
5659
5660         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5661                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5662                 if (err)
5663                         return err;
5664         }
5665
5666         err = ipw2100_system_config(priv, batch_mode);
5667         if (err)
5668                 return err;
5669
5670         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5671         if (err)
5672                 return err;
5673
5674         /* Default to power mode OFF */
5675         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5676         if (err)
5677                 return err;
5678
5679         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5680         if (err)
5681                 return err;
5682
5683         if (priv->config & CFG_STATIC_BSSID)
5684                 bssid = priv->bssid;
5685         else
5686                 bssid = NULL;
5687         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5688         if (err)
5689                 return err;
5690
5691         if (priv->config & CFG_STATIC_ESSID)
5692                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5693                                         batch_mode);
5694         else
5695                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5696         if (err)
5697                 return err;
5698
5699         err = ipw2100_configure_security(priv, batch_mode);
5700         if (err)
5701                 return err;
5702
5703         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704                 err =
5705                     ipw2100_set_ibss_beacon_interval(priv,
5706                                                      priv->beacon_interval,
5707                                                      batch_mode);
5708                 if (err)
5709                         return err;
5710
5711                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5712                 if (err)
5713                         return err;
5714         }
5715
5716         /*
5717            err = ipw2100_set_fragmentation_threshold(
5718            priv, priv->frag_threshold, batch_mode);
5719            if (err)
5720            return err;
5721          */
5722
5723         IPW_DEBUG_INFO("exit\n");
5724
5725         return 0;
5726 }
5727
5728 /*************************************************************************
5729  *
5730  * EXTERNALLY CALLED METHODS
5731  *
5732  *************************************************************************/
5733
5734 /* This method is called by the network layer -- not to be confused with
5735  * ipw2100_set_mac_address() declared above called by this driver (and this
5736  * method as well) to talk to the firmware */
5737 static int ipw2100_set_address(struct net_device *dev, void *p)
5738 {
5739         struct ipw2100_priv *priv = ieee80211_priv(dev);
5740         struct sockaddr *addr = p;
5741         int err = 0;
5742
5743         if (!is_valid_ether_addr(addr->sa_data))
5744                 return -EADDRNOTAVAIL;
5745
5746         mutex_lock(&priv->action_mutex);
5747
5748         priv->config |= CFG_CUSTOM_MAC;
5749         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5750
5751         err = ipw2100_set_mac_address(priv, 0);
5752         if (err)
5753                 goto done;
5754
5755         priv->reset_backoff = 0;
5756         mutex_unlock(&priv->action_mutex);
5757         ipw2100_reset_adapter(&priv->reset_work.work);
5758         return 0;
5759
5760       done:
5761         mutex_unlock(&priv->action_mutex);
5762         return err;
5763 }
5764
5765 static int ipw2100_open(struct net_device *dev)
5766 {
5767         struct ipw2100_priv *priv = ieee80211_priv(dev);
5768         unsigned long flags;
5769         IPW_DEBUG_INFO("dev->open\n");
5770
5771         spin_lock_irqsave(&priv->low_lock, flags);
5772         if (priv->status & STATUS_ASSOCIATED) {
5773                 netif_carrier_on(dev);
5774                 netif_start_queue(dev);
5775         }
5776         spin_unlock_irqrestore(&priv->low_lock, flags);
5777
5778         return 0;
5779 }
5780
5781 static int ipw2100_close(struct net_device *dev)
5782 {
5783         struct ipw2100_priv *priv = ieee80211_priv(dev);
5784         unsigned long flags;
5785         struct list_head *element;
5786         struct ipw2100_tx_packet *packet;
5787
5788         IPW_DEBUG_INFO("enter\n");
5789
5790         spin_lock_irqsave(&priv->low_lock, flags);
5791
5792         if (priv->status & STATUS_ASSOCIATED)
5793                 netif_carrier_off(dev);
5794         netif_stop_queue(dev);
5795
5796         /* Flush the TX queue ... */
5797         while (!list_empty(&priv->tx_pend_list)) {
5798                 element = priv->tx_pend_list.next;
5799                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5800
5801                 list_del(element);
5802                 DEC_STAT(&priv->tx_pend_stat);
5803
5804                 ieee80211_txb_free(packet->info.d_struct.txb);
5805                 packet->info.d_struct.txb = NULL;
5806
5807                 list_add_tail(element, &priv->tx_free_list);
5808                 INC_STAT(&priv->tx_free_stat);
5809         }
5810         spin_unlock_irqrestore(&priv->low_lock, flags);
5811
5812         IPW_DEBUG_INFO("exit\n");
5813
5814         return 0;
5815 }
5816
5817 /*
5818  * TODO:  Fix this function... its just wrong
5819  */
5820 static void ipw2100_tx_timeout(struct net_device *dev)
5821 {
5822         struct ipw2100_priv *priv = ieee80211_priv(dev);
5823
5824         priv->ieee->stats.tx_errors++;
5825
5826 #ifdef CONFIG_IPW2100_MONITOR
5827         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5828                 return;
5829 #endif
5830
5831         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5832                        dev->name);
5833         schedule_reset(priv);
5834 }
5835
5836 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5837 {
5838         /* This is called when wpa_supplicant loads and closes the driver
5839          * interface. */
5840         priv->ieee->wpa_enabled = value;
5841         return 0;
5842 }
5843
5844 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5845 {
5846
5847         struct ieee80211_device *ieee = priv->ieee;
5848         struct ieee80211_security sec = {
5849                 .flags = SEC_AUTH_MODE,
5850         };
5851         int ret = 0;
5852
5853         if (value & IW_AUTH_ALG_SHARED_KEY) {
5854                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5855                 ieee->open_wep = 0;
5856         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5857                 sec.auth_mode = WLAN_AUTH_OPEN;
5858                 ieee->open_wep = 1;
5859         } else if (value & IW_AUTH_ALG_LEAP) {
5860                 sec.auth_mode = WLAN_AUTH_LEAP;
5861                 ieee->open_wep = 1;
5862         } else
5863                 return -EINVAL;
5864
5865         if (ieee->set_security)
5866                 ieee->set_security(ieee->dev, &sec);
5867         else
5868                 ret = -EOPNOTSUPP;
5869
5870         return ret;
5871 }
5872
5873 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5874                                     char *wpa_ie, int wpa_ie_len)
5875 {
5876
5877         struct ipw2100_wpa_assoc_frame frame;
5878
5879         frame.fixed_ie_mask = 0;
5880
5881         /* copy WPA IE */
5882         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5883         frame.var_ie_len = wpa_ie_len;
5884
5885         /* make sure WPA is enabled */
5886         ipw2100_wpa_enable(priv, 1);
5887         ipw2100_set_wpa_ie(priv, &frame, 0);
5888 }
5889
5890 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5891                                     struct ethtool_drvinfo *info)
5892 {
5893         struct ipw2100_priv *priv = ieee80211_priv(dev);
5894         char fw_ver[64], ucode_ver[64];
5895
5896         strcpy(info->driver, DRV_NAME);
5897         strcpy(info->version, DRV_VERSION);
5898
5899         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5900         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5901
5902         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5903                  fw_ver, priv->eeprom_version, ucode_ver);
5904
5905         strcpy(info->bus_info, pci_name(priv->pci_dev));
5906 }
5907
5908 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5909 {
5910         struct ipw2100_priv *priv = ieee80211_priv(dev);
5911         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5912 }
5913
5914 static const struct ethtool_ops ipw2100_ethtool_ops = {
5915         .get_link = ipw2100_ethtool_get_link,
5916         .get_drvinfo = ipw_ethtool_get_drvinfo,
5917 };
5918
5919 static void ipw2100_hang_check(struct work_struct *work)
5920 {
5921         struct ipw2100_priv *priv =
5922                 container_of(work, struct ipw2100_priv, hang_check.work);
5923         unsigned long flags;
5924         u32 rtc = 0xa5a5a5a5;
5925         u32 len = sizeof(rtc);
5926         int restart = 0;
5927
5928         spin_lock_irqsave(&priv->low_lock, flags);
5929
5930         if (priv->fatal_error != 0) {
5931                 /* If fatal_error is set then we need to restart */
5932                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5933                                priv->net_dev->name);
5934
5935                 restart = 1;
5936         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5937                    (rtc == priv->last_rtc)) {
5938                 /* Check if firmware is hung */
5939                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5940                                priv->net_dev->name);
5941
5942                 restart = 1;
5943         }
5944
5945         if (restart) {
5946                 /* Kill timer */
5947                 priv->stop_hang_check = 1;
5948                 priv->hangs++;
5949
5950                 /* Restart the NIC */
5951                 schedule_reset(priv);
5952         }
5953
5954         priv->last_rtc = rtc;
5955
5956         if (!priv->stop_hang_check)
5957                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5958
5959         spin_unlock_irqrestore(&priv->low_lock, flags);
5960 }
5961
5962 static void ipw2100_rf_kill(struct work_struct *work)
5963 {
5964         struct ipw2100_priv *priv =
5965                 container_of(work, struct ipw2100_priv, rf_kill.work);
5966         unsigned long flags;
5967
5968         spin_lock_irqsave(&priv->low_lock, flags);
5969
5970         if (rf_kill_active(priv)) {
5971                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5972                 if (!priv->stop_rf_kill)
5973                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5974                 goto exit_unlock;
5975         }
5976
5977         /* RF Kill is now disabled, so bring the device back up */
5978
5979         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5980                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5981                                   "device\n");
5982                 schedule_reset(priv);
5983         } else
5984                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5985                                   "enabled\n");
5986
5987       exit_unlock:
5988         spin_unlock_irqrestore(&priv->low_lock, flags);
5989 }
5990
5991 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5992
5993 /* Look into using netdev destructor to shutdown ieee80211? */
5994
5995 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5996                                                void __iomem * base_addr,
5997                                                unsigned long mem_start,
5998                                                unsigned long mem_len)
5999 {
6000         struct ipw2100_priv *priv;
6001         struct net_device *dev;
6002
6003         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6004         if (!dev)
6005                 return NULL;
6006         priv = ieee80211_priv(dev);
6007         priv->ieee = netdev_priv(dev);
6008         priv->pci_dev = pci_dev;
6009         priv->net_dev = dev;
6010
6011         priv->ieee->hard_start_xmit = ipw2100_tx;
6012         priv->ieee->set_security = shim__set_security;
6013
6014         priv->ieee->perfect_rssi = -20;
6015         priv->ieee->worst_rssi = -85;
6016
6017         dev->open = ipw2100_open;
6018         dev->stop = ipw2100_close;
6019         dev->init = ipw2100_net_init;
6020         dev->ethtool_ops = &ipw2100_ethtool_ops;
6021         dev->tx_timeout = ipw2100_tx_timeout;
6022         dev->wireless_handlers = &ipw2100_wx_handler_def;
6023         priv->wireless_data.ieee80211 = priv->ieee;
6024         dev->wireless_data = &priv->wireless_data;
6025         dev->set_mac_address = ipw2100_set_address;
6026         dev->watchdog_timeo = 3 * HZ;
6027         dev->irq = 0;
6028
6029         dev->base_addr = (unsigned long)base_addr;
6030         dev->mem_start = mem_start;
6031         dev->mem_end = dev->mem_start + mem_len - 1;
6032
6033         /* NOTE: We don't use the wireless_handlers hook
6034          * in dev as the system will start throwing WX requests
6035          * to us before we're actually initialized and it just
6036          * ends up causing problems.  So, we just handle
6037          * the WX extensions through the ipw2100_ioctl interface */
6038
6039         /* memset() puts everything to 0, so we only have explicitely set
6040          * those values that need to be something else */
6041
6042         /* If power management is turned on, default to AUTO mode */
6043         priv->power_mode = IPW_POWER_AUTO;
6044
6045 #ifdef CONFIG_IPW2100_MONITOR
6046         priv->config |= CFG_CRC_CHECK;
6047 #endif
6048         priv->ieee->wpa_enabled = 0;
6049         priv->ieee->drop_unencrypted = 0;
6050         priv->ieee->privacy_invoked = 0;
6051         priv->ieee->ieee802_1x = 1;
6052
6053         /* Set module parameters */
6054         switch (mode) {
6055         case 1:
6056                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6057                 break;
6058 #ifdef CONFIG_IPW2100_MONITOR
6059         case 2:
6060                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6061                 break;
6062 #endif
6063         default:
6064         case 0:
6065                 priv->ieee->iw_mode = IW_MODE_INFRA;
6066                 break;
6067         }
6068
6069         if (disable == 1)
6070                 priv->status |= STATUS_RF_KILL_SW;
6071
6072         if (channel != 0 &&
6073             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6074                 priv->config |= CFG_STATIC_CHANNEL;
6075                 priv->channel = channel;
6076         }
6077
6078         if (associate)
6079                 priv->config |= CFG_ASSOCIATE;
6080
6081         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6082         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6083         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6084         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6085         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6086         priv->tx_power = IPW_TX_POWER_DEFAULT;
6087         priv->tx_rates = DEFAULT_TX_RATES;
6088
6089         strcpy(priv->nick, "ipw2100");
6090
6091         spin_lock_init(&priv->low_lock);
6092         mutex_init(&priv->action_mutex);
6093         mutex_init(&priv->adapter_mutex);
6094
6095         init_waitqueue_head(&priv->wait_command_queue);
6096
6097         netif_carrier_off(dev);
6098
6099         INIT_LIST_HEAD(&priv->msg_free_list);
6100         INIT_LIST_HEAD(&priv->msg_pend_list);
6101         INIT_STAT(&priv->msg_free_stat);
6102         INIT_STAT(&priv->msg_pend_stat);
6103
6104         INIT_LIST_HEAD(&priv->tx_free_list);
6105         INIT_LIST_HEAD(&priv->tx_pend_list);
6106         INIT_STAT(&priv->tx_free_stat);
6107         INIT_STAT(&priv->tx_pend_stat);
6108
6109         INIT_LIST_HEAD(&priv->fw_pend_list);
6110         INIT_STAT(&priv->fw_pend_stat);
6111
6112         priv->workqueue = create_workqueue(DRV_NAME);
6113
6114         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6115         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6116         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6117         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6118         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6119
6120         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6121                      ipw2100_irq_tasklet, (unsigned long)priv);
6122
6123         /* NOTE:  We do not start the deferred work for status checks yet */
6124         priv->stop_rf_kill = 1;
6125         priv->stop_hang_check = 1;
6126
6127         return dev;
6128 }
6129
6130 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6131                                 const struct pci_device_id *ent)
6132 {
6133         unsigned long mem_start, mem_len, mem_flags;
6134         void __iomem *base_addr = NULL;
6135         struct net_device *dev = NULL;
6136         struct ipw2100_priv *priv = NULL;
6137         int err = 0;
6138         int registered = 0;
6139         u32 val;
6140
6141         IPW_DEBUG_INFO("enter\n");
6142
6143         mem_start = pci_resource_start(pci_dev, 0);
6144         mem_len = pci_resource_len(pci_dev, 0);
6145         mem_flags = pci_resource_flags(pci_dev, 0);
6146
6147         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6148                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6149                 err = -ENODEV;
6150                 goto fail;
6151         }
6152
6153         base_addr = ioremap_nocache(mem_start, mem_len);
6154         if (!base_addr) {
6155                 printk(KERN_WARNING DRV_NAME
6156                        "Error calling ioremap_nocache.\n");
6157                 err = -EIO;
6158                 goto fail;
6159         }
6160
6161         /* allocate and initialize our net_device */
6162         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6163         if (!dev) {
6164                 printk(KERN_WARNING DRV_NAME
6165                        "Error calling ipw2100_alloc_device.\n");
6166                 err = -ENOMEM;
6167                 goto fail;
6168         }
6169
6170         /* set up PCI mappings for device */
6171         err = pci_enable_device(pci_dev);
6172         if (err) {
6173                 printk(KERN_WARNING DRV_NAME
6174                        "Error calling pci_enable_device.\n");
6175                 return err;
6176         }
6177
6178         priv = ieee80211_priv(dev);
6179
6180         pci_set_master(pci_dev);
6181         pci_set_drvdata(pci_dev, priv);
6182
6183         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6184         if (err) {
6185                 printk(KERN_WARNING DRV_NAME
6186                        "Error calling pci_set_dma_mask.\n");
6187                 pci_disable_device(pci_dev);
6188                 return err;
6189         }
6190
6191         err = pci_request_regions(pci_dev, DRV_NAME);
6192         if (err) {
6193                 printk(KERN_WARNING DRV_NAME
6194                        "Error calling pci_request_regions.\n");
6195                 pci_disable_device(pci_dev);
6196                 return err;
6197         }
6198
6199         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6200          * PCI Tx retries from interfering with C3 CPU state */
6201         pci_read_config_dword(pci_dev, 0x40, &val);
6202         if ((val & 0x0000ff00) != 0)
6203                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6204
6205         pci_set_power_state(pci_dev, PCI_D0);
6206
6207         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6208                 printk(KERN_WARNING DRV_NAME
6209                        "Device not found via register read.\n");
6210                 err = -ENODEV;
6211                 goto fail;
6212         }
6213
6214         SET_NETDEV_DEV(dev, &pci_dev->dev);
6215
6216         /* Force interrupts to be shut off on the device */
6217         priv->status |= STATUS_INT_ENABLED;
6218         ipw2100_disable_interrupts(priv);
6219
6220         /* Allocate and initialize the Tx/Rx queues and lists */
6221         if (ipw2100_queues_allocate(priv)) {
6222                 printk(KERN_WARNING DRV_NAME
6223                        "Error calling ipw2100_queues_allocate.\n");
6224                 err = -ENOMEM;
6225                 goto fail;
6226         }
6227         ipw2100_queues_initialize(priv);
6228
6229         err = request_irq(pci_dev->irq,
6230                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6231         if (err) {
6232                 printk(KERN_WARNING DRV_NAME
6233                        "Error calling request_irq: %d.\n", pci_dev->irq);
6234                 goto fail;
6235         }
6236         dev->irq = pci_dev->irq;
6237
6238         IPW_DEBUG_INFO("Attempting to register device...\n");
6239
6240         SET_MODULE_OWNER(dev);
6241
6242         printk(KERN_INFO DRV_NAME
6243                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6244
6245         /* Bring up the interface.  Pre 0.46, after we registered the
6246          * network device we would call ipw2100_up.  This introduced a race
6247          * condition with newer hotplug configurations (network was coming
6248          * up and making calls before the device was initialized).
6249          *
6250          * If we called ipw2100_up before we registered the device, then the
6251          * device name wasn't registered.  So, we instead use the net_dev->init
6252          * member to call a function that then just turns and calls ipw2100_up.
6253          * net_dev->init is called after name allocation but before the
6254          * notifier chain is called */
6255         err = register_netdev(dev);
6256         if (err) {
6257                 printk(KERN_WARNING DRV_NAME
6258                        "Error calling register_netdev.\n");
6259                 goto fail;
6260         }
6261
6262         mutex_lock(&priv->action_mutex);
6263         registered = 1;
6264
6265         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6266
6267         /* perform this after register_netdev so that dev->name is set */
6268         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6269         if (err)
6270                 goto fail_unlock;
6271
6272         /* If the RF Kill switch is disabled, go ahead and complete the
6273          * startup sequence */
6274         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6275                 /* Enable the adapter - sends HOST_COMPLETE */
6276                 if (ipw2100_enable_adapter(priv)) {
6277                         printk(KERN_WARNING DRV_NAME
6278                                ": %s: failed in call to enable adapter.\n",
6279                                priv->net_dev->name);
6280                         ipw2100_hw_stop_adapter(priv);
6281                         err = -EIO;
6282                         goto fail_unlock;
6283                 }
6284
6285                 /* Start a scan . . . */
6286                 ipw2100_set_scan_options(priv);
6287                 ipw2100_start_scan(priv);
6288         }
6289
6290         IPW_DEBUG_INFO("exit\n");
6291
6292         priv->status |= STATUS_INITIALIZED;
6293
6294         mutex_unlock(&priv->action_mutex);
6295
6296         return 0;
6297
6298       fail_unlock:
6299         mutex_unlock(&priv->action_mutex);
6300
6301       fail:
6302         if (dev) {
6303                 if (registered)
6304                         unregister_netdev(dev);
6305
6306                 ipw2100_hw_stop_adapter(priv);
6307
6308                 ipw2100_disable_interrupts(priv);
6309
6310                 if (dev->irq)
6311                         free_irq(dev->irq, priv);
6312
6313                 ipw2100_kill_workqueue(priv);
6314
6315                 /* These are safe to call even if they weren't allocated */
6316                 ipw2100_queues_free(priv);
6317                 sysfs_remove_group(&pci_dev->dev.kobj,
6318                                    &ipw2100_attribute_group);
6319
6320                 free_ieee80211(dev);
6321                 pci_set_drvdata(pci_dev, NULL);
6322         }
6323
6324         if (base_addr)
6325                 iounmap(base_addr);
6326
6327         pci_release_regions(pci_dev);
6328         pci_disable_device(pci_dev);
6329
6330         return err;
6331 }
6332
6333 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6334 {
6335         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6336         struct net_device *dev;
6337
6338         if (priv) {
6339                 mutex_lock(&priv->action_mutex);
6340
6341                 priv->status &= ~STATUS_INITIALIZED;
6342
6343                 dev = priv->net_dev;
6344                 sysfs_remove_group(&pci_dev->dev.kobj,
6345                                    &ipw2100_attribute_group);
6346
6347 #ifdef CONFIG_PM
6348                 if (ipw2100_firmware.version)
6349                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6350 #endif
6351                 /* Take down the hardware */
6352                 ipw2100_down(priv);
6353
6354                 /* Release the mutex so that the network subsystem can
6355                  * complete any needed calls into the driver... */
6356                 mutex_unlock(&priv->action_mutex);
6357
6358                 /* Unregister the device first - this results in close()
6359                  * being called if the device is open.  If we free storage
6360                  * first, then close() will crash. */
6361                 unregister_netdev(dev);
6362
6363                 /* ipw2100_down will ensure that there is no more pending work
6364                  * in the workqueue's, so we can safely remove them now. */
6365                 ipw2100_kill_workqueue(priv);
6366
6367                 ipw2100_queues_free(priv);
6368
6369                 /* Free potential debugging firmware snapshot */
6370                 ipw2100_snapshot_free(priv);
6371
6372                 if (dev->irq)
6373                         free_irq(dev->irq, priv);
6374
6375                 if (dev->base_addr)
6376                         iounmap((void __iomem *)dev->base_addr);
6377
6378                 free_ieee80211(dev);
6379         }
6380
6381         pci_release_regions(pci_dev);
6382         pci_disable_device(pci_dev);
6383
6384         IPW_DEBUG_INFO("exit\n");
6385 }
6386
6387 #ifdef CONFIG_PM
6388 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6389 {
6390         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6391         struct net_device *dev = priv->net_dev;
6392
6393         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6394
6395         mutex_lock(&priv->action_mutex);
6396         if (priv->status & STATUS_INITIALIZED) {
6397                 /* Take down the device; powers it off, etc. */
6398                 ipw2100_down(priv);
6399         }
6400
6401         /* Remove the PRESENT state of the device */
6402         netif_device_detach(dev);
6403
6404         pci_save_state(pci_dev);
6405         pci_disable_device(pci_dev);
6406         pci_set_power_state(pci_dev, PCI_D3hot);
6407
6408         mutex_unlock(&priv->action_mutex);
6409
6410         return 0;
6411 }
6412
6413 static int ipw2100_resume(struct pci_dev *pci_dev)
6414 {
6415         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6416         struct net_device *dev = priv->net_dev;
6417         int err;
6418         u32 val;
6419
6420         if (IPW2100_PM_DISABLED)
6421                 return 0;
6422
6423         mutex_lock(&priv->action_mutex);
6424
6425         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6426
6427         pci_set_power_state(pci_dev, PCI_D0);
6428         err = pci_enable_device(pci_dev);
6429         if (err) {
6430                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6431                        dev->name);
6432                 return err;
6433         }
6434         pci_restore_state(pci_dev);
6435
6436         /*
6437          * Suspend/Resume resets the PCI configuration space, so we have to
6438          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6439          * from interfering with C3 CPU state. pci_restore_state won't help
6440          * here since it only restores the first 64 bytes pci config header.
6441          */
6442         pci_read_config_dword(pci_dev, 0x40, &val);
6443         if ((val & 0x0000ff00) != 0)
6444                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6445
6446         /* Set the device back into the PRESENT state; this will also wake
6447          * the queue of needed */
6448         netif_device_attach(dev);
6449
6450         /* Bring the device back up */
6451         if (!(priv->status & STATUS_RF_KILL_SW))
6452                 ipw2100_up(priv, 0);
6453
6454         mutex_unlock(&priv->action_mutex);
6455
6456         return 0;
6457 }
6458 #endif
6459
6460 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6461
6462 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6463         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6464         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6465         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6466         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6467         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6468         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6469         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6470         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6471         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6472         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6473         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6474         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6475         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6476
6477         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6478         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6479         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6480         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6481         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6482
6483         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6484         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6485         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6486         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6487         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6488         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6489         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6490
6491         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6492
6493         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6494         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6495         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6496         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6497         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6498         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6499         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6500
6501         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6502         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6503         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6504         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6505         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6506         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6507
6508         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6509         {0,},
6510 };
6511
6512 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6513
6514 static struct pci_driver ipw2100_pci_driver = {
6515         .name = DRV_NAME,
6516         .id_table = ipw2100_pci_id_table,
6517         .probe = ipw2100_pci_init_one,
6518         .remove = __devexit_p(ipw2100_pci_remove_one),
6519 #ifdef CONFIG_PM
6520         .suspend = ipw2100_suspend,
6521         .resume = ipw2100_resume,
6522 #endif
6523 };
6524
6525 /**
6526  * Initialize the ipw2100 driver/module
6527  *
6528  * @returns 0 if ok, < 0 errno node con error.
6529  *
6530  * Note: we cannot init the /proc stuff until the PCI driver is there,
6531  * or we risk an unlikely race condition on someone accessing
6532  * uninitialized data in the PCI dev struct through /proc.
6533  */
6534 static int __init ipw2100_init(void)
6535 {
6536         int ret;
6537
6538         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6539         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6540
6541         ret = pci_register_driver(&ipw2100_pci_driver);
6542         if (ret)
6543                 goto out;
6544
6545         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6546 #ifdef CONFIG_IPW2100_DEBUG
6547         ipw2100_debug_level = debug;
6548         ret = driver_create_file(&ipw2100_pci_driver.driver,
6549                                  &driver_attr_debug_level);
6550 #endif
6551
6552 out:
6553         return ret;
6554 }
6555
6556 /**
6557  * Cleanup ipw2100 driver registration
6558  */
6559 static void __exit ipw2100_exit(void)
6560 {
6561         /* FIXME: IPG: check that we have no instances of the devices open */
6562 #ifdef CONFIG_IPW2100_DEBUG
6563         driver_remove_file(&ipw2100_pci_driver.driver,
6564                            &driver_attr_debug_level);
6565 #endif
6566         pci_unregister_driver(&ipw2100_pci_driver);
6567         remove_acceptable_latency("ipw2100");
6568 }
6569
6570 module_init(ipw2100_init);
6571 module_exit(ipw2100_exit);
6572
6573 #define WEXT_USECHANNELS 1
6574
6575 static const long ipw2100_frequencies[] = {
6576         2412, 2417, 2422, 2427,
6577         2432, 2437, 2442, 2447,
6578         2452, 2457, 2462, 2467,
6579         2472, 2484
6580 };
6581
6582 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6583                     sizeof(ipw2100_frequencies[0]))
6584
6585 static const long ipw2100_rates_11b[] = {
6586         1000000,
6587         2000000,
6588         5500000,
6589         11000000
6590 };
6591
6592 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6593
6594 static int ipw2100_wx_get_name(struct net_device *dev,
6595                                struct iw_request_info *info,
6596                                union iwreq_data *wrqu, char *extra)
6597 {
6598         /*
6599          * This can be called at any time.  No action lock required
6600          */
6601
6602         struct ipw2100_priv *priv = ieee80211_priv(dev);
6603         if (!(priv->status & STATUS_ASSOCIATED))
6604                 strcpy(wrqu->name, "unassociated");
6605         else
6606                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6607
6608         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6609         return 0;
6610 }
6611
6612 static int ipw2100_wx_set_freq(struct net_device *dev,
6613                                struct iw_request_info *info,
6614                                union iwreq_data *wrqu, char *extra)
6615 {
6616         struct ipw2100_priv *priv = ieee80211_priv(dev);
6617         struct iw_freq *fwrq = &wrqu->freq;
6618         int err = 0;
6619
6620         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6621                 return -EOPNOTSUPP;
6622
6623         mutex_lock(&priv->action_mutex);
6624         if (!(priv->status & STATUS_INITIALIZED)) {
6625                 err = -EIO;
6626                 goto done;
6627         }
6628
6629         /* if setting by freq convert to channel */
6630         if (fwrq->e == 1) {
6631                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6632                         int f = fwrq->m / 100000;
6633                         int c = 0;
6634
6635                         while ((c < REG_MAX_CHANNEL) &&
6636                                (f != ipw2100_frequencies[c]))
6637                                 c++;
6638
6639                         /* hack to fall through */
6640                         fwrq->e = 0;
6641                         fwrq->m = c + 1;
6642                 }
6643         }
6644
6645         if (fwrq->e > 0 || fwrq->m > 1000) {
6646                 err = -EOPNOTSUPP;
6647                 goto done;
6648         } else {                /* Set the channel */
6649                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6650                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6651         }
6652
6653       done:
6654         mutex_unlock(&priv->action_mutex);
6655         return err;
6656 }
6657
6658 static int ipw2100_wx_get_freq(struct net_device *dev,
6659                                struct iw_request_info *info,
6660                                union iwreq_data *wrqu, char *extra)
6661 {
6662         /*
6663          * This can be called at any time.  No action lock required
6664          */
6665
6666         struct ipw2100_priv *priv = ieee80211_priv(dev);
6667
6668         wrqu->freq.e = 0;
6669
6670         /* If we are associated, trying to associate, or have a statically
6671          * configured CHANNEL then return that; otherwise return ANY */
6672         if (priv->config & CFG_STATIC_CHANNEL ||
6673             priv->status & STATUS_ASSOCIATED)
6674                 wrqu->freq.m = priv->channel;
6675         else
6676                 wrqu->freq.m = 0;
6677
6678         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6679         return 0;
6680
6681 }
6682
6683 static int ipw2100_wx_set_mode(struct net_device *dev,
6684                                struct iw_request_info *info,
6685                                union iwreq_data *wrqu, char *extra)
6686 {
6687         struct ipw2100_priv *priv = ieee80211_priv(dev);
6688         int err = 0;
6689
6690         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6691
6692         if (wrqu->mode == priv->ieee->iw_mode)
6693                 return 0;
6694
6695         mutex_lock(&priv->action_mutex);
6696         if (!(priv->status & STATUS_INITIALIZED)) {
6697                 err = -EIO;
6698                 goto done;
6699         }
6700
6701         switch (wrqu->mode) {
6702 #ifdef CONFIG_IPW2100_MONITOR
6703         case IW_MODE_MONITOR:
6704                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6705                 break;
6706 #endif                          /* CONFIG_IPW2100_MONITOR */
6707         case IW_MODE_ADHOC:
6708                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6709                 break;
6710         case IW_MODE_INFRA:
6711         case IW_MODE_AUTO:
6712         default:
6713                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6714                 break;
6715         }
6716
6717       done:
6718         mutex_unlock(&priv->action_mutex);
6719         return err;
6720 }
6721
6722 static int ipw2100_wx_get_mode(struct net_device *dev,
6723                                struct iw_request_info *info,
6724                                union iwreq_data *wrqu, char *extra)
6725 {
6726         /*
6727          * This can be called at any time.  No action lock required
6728          */
6729
6730         struct ipw2100_priv *priv = ieee80211_priv(dev);
6731
6732         wrqu->mode = priv->ieee->iw_mode;
6733         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6734
6735         return 0;
6736 }
6737
6738 #define POWER_MODES 5
6739
6740 /* Values are in microsecond */
6741 static const s32 timeout_duration[POWER_MODES] = {
6742         350000,
6743         250000,
6744         75000,
6745         37000,
6746         25000,
6747 };
6748
6749 static const s32 period_duration[POWER_MODES] = {
6750         400000,
6751         700000,
6752         1000000,
6753         1000000,
6754         1000000
6755 };
6756
6757 static int ipw2100_wx_get_range(struct net_device *dev,
6758                                 struct iw_request_info *info,
6759                                 union iwreq_data *wrqu, char *extra)
6760 {
6761         /*
6762          * This can be called at any time.  No action lock required
6763          */
6764
6765         struct ipw2100_priv *priv = ieee80211_priv(dev);
6766         struct iw_range *range = (struct iw_range *)extra;
6767         u16 val;
6768         int i, level;
6769
6770         wrqu->data.length = sizeof(*range);
6771         memset(range, 0, sizeof(*range));
6772
6773         /* Let's try to keep this struct in the same order as in
6774          * linux/include/wireless.h
6775          */
6776
6777         /* TODO: See what values we can set, and remove the ones we can't
6778          * set, or fill them with some default data.
6779          */
6780
6781         /* ~5 Mb/s real (802.11b) */
6782         range->throughput = 5 * 1000 * 1000;
6783
6784 //      range->sensitivity;     /* signal level threshold range */
6785
6786         range->max_qual.qual = 100;
6787         /* TODO: Find real max RSSI and stick here */
6788         range->max_qual.level = 0;
6789         range->max_qual.noise = 0;
6790         range->max_qual.updated = 7;    /* Updated all three */
6791
6792         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6793         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6794         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6795         range->avg_qual.noise = 0;
6796         range->avg_qual.updated = 7;    /* Updated all three */
6797
6798         range->num_bitrates = RATE_COUNT;
6799
6800         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6801                 range->bitrate[i] = ipw2100_rates_11b[i];
6802         }
6803
6804         range->min_rts = MIN_RTS_THRESHOLD;
6805         range->max_rts = MAX_RTS_THRESHOLD;
6806         range->min_frag = MIN_FRAG_THRESHOLD;
6807         range->max_frag = MAX_FRAG_THRESHOLD;
6808
6809         range->min_pmp = period_duration[0];    /* Minimal PM period */
6810         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6811         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6812         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6813
6814         /* How to decode max/min PM period */
6815         range->pmp_flags = IW_POWER_PERIOD;
6816         /* How to decode max/min PM period */
6817         range->pmt_flags = IW_POWER_TIMEOUT;
6818         /* What PM options are supported */
6819         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6820
6821         range->encoding_size[0] = 5;
6822         range->encoding_size[1] = 13;   /* Different token sizes */
6823         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6824         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6825 //      range->encoding_login_index;            /* token index for login token */
6826
6827         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6828                 range->txpower_capa = IW_TXPOW_DBM;
6829                 range->num_txpower = IW_MAX_TXPOWER;
6830                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6831                      i < IW_MAX_TXPOWER;
6832                      i++, level -=
6833                      ((IPW_TX_POWER_MAX_DBM -
6834                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6835                         range->txpower[i] = level / 16;
6836         } else {
6837                 range->txpower_capa = 0;
6838                 range->num_txpower = 0;
6839         }
6840
6841         /* Set the Wireless Extension versions */
6842         range->we_version_compiled = WIRELESS_EXT;
6843         range->we_version_source = 18;
6844
6845 //      range->retry_capa;      /* What retry options are supported */
6846 //      range->retry_flags;     /* How to decode max/min retry limit */
6847 //      range->r_time_flags;    /* How to decode max/min retry life */
6848 //      range->min_retry;       /* Minimal number of retries */
6849 //      range->max_retry;       /* Maximal number of retries */
6850 //      range->min_r_time;      /* Minimal retry lifetime */
6851 //      range->max_r_time;      /* Maximal retry lifetime */
6852
6853         range->num_channels = FREQ_COUNT;
6854
6855         val = 0;
6856         for (i = 0; i < FREQ_COUNT; i++) {
6857                 // TODO: Include only legal frequencies for some countries
6858 //              if (local->channel_mask & (1 << i)) {
6859                 range->freq[val].i = i + 1;
6860                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6861                 range->freq[val].e = 1;
6862                 val++;
6863 //              }
6864                 if (val == IW_MAX_FREQUENCIES)
6865                         break;
6866         }
6867         range->num_frequency = val;
6868
6869         /* Event capability (kernel + driver) */
6870         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6871                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6872         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6873
6874         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6875                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6876
6877         IPW_DEBUG_WX("GET Range\n");
6878
6879         return 0;
6880 }
6881
6882 static int ipw2100_wx_set_wap(struct net_device *dev,
6883                               struct iw_request_info *info,
6884                               union iwreq_data *wrqu, char *extra)
6885 {
6886         struct ipw2100_priv *priv = ieee80211_priv(dev);
6887         int err = 0;
6888
6889         static const unsigned char any[] = {
6890                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6891         };
6892         static const unsigned char off[] = {
6893                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6894         };
6895
6896         // sanity checks
6897         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6898                 return -EINVAL;
6899
6900         mutex_lock(&priv->action_mutex);
6901         if (!(priv->status & STATUS_INITIALIZED)) {
6902                 err = -EIO;
6903                 goto done;
6904         }
6905
6906         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6907             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6908                 /* we disable mandatory BSSID association */
6909                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6910                 priv->config &= ~CFG_STATIC_BSSID;
6911                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6912                 goto done;
6913         }
6914
6915         priv->config |= CFG_STATIC_BSSID;
6916         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6917
6918         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6919
6920         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6921                      wrqu->ap_addr.sa_data[0] & 0xff,
6922                      wrqu->ap_addr.sa_data[1] & 0xff,
6923                      wrqu->ap_addr.sa_data[2] & 0xff,
6924                      wrqu->ap_addr.sa_data[3] & 0xff,
6925                      wrqu->ap_addr.sa_data[4] & 0xff,
6926                      wrqu->ap_addr.sa_data[5] & 0xff);
6927
6928       done:
6929         mutex_unlock(&priv->action_mutex);
6930         return err;
6931 }
6932
6933 static int ipw2100_wx_get_wap(struct net_device *dev,
6934                               struct iw_request_info *info,
6935                               union iwreq_data *wrqu, char *extra)
6936 {
6937         /*
6938          * This can be called at any time.  No action lock required
6939          */
6940
6941         struct ipw2100_priv *priv = ieee80211_priv(dev);
6942
6943         /* If we are associated, trying to associate, or have a statically
6944          * configured BSSID then return that; otherwise return ANY */
6945         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6946                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6947                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6948         } else
6949                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6950
6951         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6952                      MAC_ARG(wrqu->ap_addr.sa_data));
6953         return 0;
6954 }
6955
6956 static int ipw2100_wx_set_essid(struct net_device *dev,
6957                                 struct iw_request_info *info,
6958                                 union iwreq_data *wrqu, char *extra)
6959 {
6960         struct ipw2100_priv *priv = ieee80211_priv(dev);
6961         char *essid = "";       /* ANY */
6962         int length = 0;
6963         int err = 0;
6964
6965         mutex_lock(&priv->action_mutex);
6966         if (!(priv->status & STATUS_INITIALIZED)) {
6967                 err = -EIO;
6968                 goto done;
6969         }
6970
6971         if (wrqu->essid.flags && wrqu->essid.length) {
6972                 length = wrqu->essid.length;
6973                 essid = extra;
6974         }
6975
6976         if (length == 0) {
6977                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6978                 priv->config &= ~CFG_STATIC_ESSID;
6979                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6980                 goto done;
6981         }
6982
6983         length = min(length, IW_ESSID_MAX_SIZE);
6984
6985         priv->config |= CFG_STATIC_ESSID;
6986
6987         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6988                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6989                 err = 0;
6990                 goto done;
6991         }
6992
6993         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6994                      length);
6995
6996         priv->essid_len = length;
6997         memcpy(priv->essid, essid, priv->essid_len);
6998
6999         err = ipw2100_set_essid(priv, essid, length, 0);
7000
7001       done:
7002         mutex_unlock(&priv->action_mutex);
7003         return err;
7004 }
7005
7006 static int ipw2100_wx_get_essid(struct net_device *dev,
7007                                 struct iw_request_info *info,
7008                                 union iwreq_data *wrqu, char *extra)
7009 {
7010         /*
7011          * This can be called at any time.  No action lock required
7012          */
7013
7014         struct ipw2100_priv *priv = ieee80211_priv(dev);
7015
7016         /* If we are associated, trying to associate, or have a statically
7017          * configured ESSID then return that; otherwise return ANY */
7018         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7019                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7020                              escape_essid(priv->essid, priv->essid_len));
7021                 memcpy(extra, priv->essid, priv->essid_len);
7022                 wrqu->essid.length = priv->essid_len;
7023                 wrqu->essid.flags = 1;  /* active */
7024         } else {
7025                 IPW_DEBUG_WX("Getting essid: ANY\n");
7026                 wrqu->essid.length = 0;
7027                 wrqu->essid.flags = 0;  /* active */
7028         }
7029
7030         return 0;
7031 }
7032
7033 static int ipw2100_wx_set_nick(struct net_device *dev,
7034                                struct iw_request_info *info,
7035                                union iwreq_data *wrqu, char *extra)
7036 {
7037         /*
7038          * This can be called at any time.  No action lock required
7039          */
7040
7041         struct ipw2100_priv *priv = ieee80211_priv(dev);
7042
7043         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7044                 return -E2BIG;
7045
7046         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7047         memset(priv->nick, 0, sizeof(priv->nick));
7048         memcpy(priv->nick, extra, wrqu->data.length);
7049
7050         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7051
7052         return 0;
7053 }
7054
7055 static int ipw2100_wx_get_nick(struct net_device *dev,
7056                                struct iw_request_info *info,
7057                                union iwreq_data *wrqu, char *extra)
7058 {
7059         /*
7060          * This can be called at any time.  No action lock required
7061          */
7062
7063         struct ipw2100_priv *priv = ieee80211_priv(dev);
7064
7065         wrqu->data.length = strlen(priv->nick);
7066         memcpy(extra, priv->nick, wrqu->data.length);
7067         wrqu->data.flags = 1;   /* active */
7068
7069         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7070
7071         return 0;
7072 }
7073
7074 static int ipw2100_wx_set_rate(struct net_device *dev,
7075                                struct iw_request_info *info,
7076                                union iwreq_data *wrqu, char *extra)
7077 {
7078         struct ipw2100_priv *priv = ieee80211_priv(dev);
7079         u32 target_rate = wrqu->bitrate.value;
7080         u32 rate;
7081         int err = 0;
7082
7083         mutex_lock(&priv->action_mutex);
7084         if (!(priv->status & STATUS_INITIALIZED)) {
7085                 err = -EIO;
7086                 goto done;
7087         }
7088
7089         rate = 0;
7090
7091         if (target_rate == 1000000 ||
7092             (!wrqu->bitrate.fixed && target_rate > 1000000))
7093                 rate |= TX_RATE_1_MBIT;
7094         if (target_rate == 2000000 ||
7095             (!wrqu->bitrate.fixed && target_rate > 2000000))
7096                 rate |= TX_RATE_2_MBIT;
7097         if (target_rate == 5500000 ||
7098             (!wrqu->bitrate.fixed && target_rate > 5500000))
7099                 rate |= TX_RATE_5_5_MBIT;
7100         if (target_rate == 11000000 ||
7101             (!wrqu->bitrate.fixed && target_rate > 11000000))
7102                 rate |= TX_RATE_11_MBIT;
7103         if (rate == 0)
7104                 rate = DEFAULT_TX_RATES;
7105
7106         err = ipw2100_set_tx_rates(priv, rate, 0);
7107
7108         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7109       done:
7110         mutex_unlock(&priv->action_mutex);
7111         return err;
7112 }
7113
7114 static int ipw2100_wx_get_rate(struct net_device *dev,
7115                                struct iw_request_info *info,
7116                                union iwreq_data *wrqu, char *extra)
7117 {
7118         struct ipw2100_priv *priv = ieee80211_priv(dev);
7119         int val;
7120         int len = sizeof(val);
7121         int err = 0;
7122
7123         if (!(priv->status & STATUS_ENABLED) ||
7124             priv->status & STATUS_RF_KILL_MASK ||
7125             !(priv->status & STATUS_ASSOCIATED)) {
7126                 wrqu->bitrate.value = 0;
7127                 return 0;
7128         }
7129
7130         mutex_lock(&priv->action_mutex);
7131         if (!(priv->status & STATUS_INITIALIZED)) {
7132                 err = -EIO;
7133                 goto done;
7134         }
7135
7136         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7137         if (err) {
7138                 IPW_DEBUG_WX("failed querying ordinals.\n");
7139                 return err;
7140         }
7141
7142         switch (val & TX_RATE_MASK) {
7143         case TX_RATE_1_MBIT:
7144                 wrqu->bitrate.value = 1000000;
7145                 break;
7146         case TX_RATE_2_MBIT:
7147                 wrqu->bitrate.value = 2000000;
7148                 break;
7149         case TX_RATE_5_5_MBIT:
7150                 wrqu->bitrate.value = 5500000;
7151                 break;
7152         case TX_RATE_11_MBIT:
7153                 wrqu->bitrate.value = 11000000;
7154                 break;
7155         default:
7156                 wrqu->bitrate.value = 0;
7157         }
7158
7159         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7160
7161       done:
7162         mutex_unlock(&priv->action_mutex);
7163         return err;
7164 }
7165
7166 static int ipw2100_wx_set_rts(struct net_device *dev,
7167                               struct iw_request_info *info,
7168                               union iwreq_data *wrqu, char *extra)
7169 {
7170         struct ipw2100_priv *priv = ieee80211_priv(dev);
7171         int value, err;
7172
7173         /* Auto RTS not yet supported */
7174         if (wrqu->rts.fixed == 0)
7175                 return -EINVAL;
7176
7177         mutex_lock(&priv->action_mutex);
7178         if (!(priv->status & STATUS_INITIALIZED)) {
7179                 err = -EIO;
7180                 goto done;
7181         }
7182
7183         if (wrqu->rts.disabled)
7184                 value = priv->rts_threshold | RTS_DISABLED;
7185         else {
7186                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7187                         err = -EINVAL;
7188                         goto done;
7189                 }
7190                 value = wrqu->rts.value;
7191         }
7192
7193         err = ipw2100_set_rts_threshold(priv, value);
7194
7195         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7196       done:
7197         mutex_unlock(&priv->action_mutex);
7198         return err;
7199 }
7200
7201 static int ipw2100_wx_get_rts(struct net_device *dev,
7202                               struct iw_request_info *info,
7203                               union iwreq_data *wrqu, char *extra)
7204 {
7205         /*
7206          * This can be called at any time.  No action lock required
7207          */
7208
7209         struct ipw2100_priv *priv = ieee80211_priv(dev);
7210
7211         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7212         wrqu->rts.fixed = 1;    /* no auto select */
7213
7214         /* If RTS is set to the default value, then it is disabled */
7215         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7216
7217         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7218
7219         return 0;
7220 }
7221
7222 static int ipw2100_wx_set_txpow(struct net_device *dev,
7223                                 struct iw_request_info *info,
7224                                 union iwreq_data *wrqu, char *extra)
7225 {
7226         struct ipw2100_priv *priv = ieee80211_priv(dev);
7227         int err = 0, value;
7228         
7229         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7230                 return -EINPROGRESS;
7231
7232         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7233                 return 0;
7234
7235         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7236                 return -EINVAL;
7237
7238         if (wrqu->txpower.fixed == 0)
7239                 value = IPW_TX_POWER_DEFAULT;
7240         else {
7241                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7242                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7243                         return -EINVAL;
7244
7245                 value = wrqu->txpower.value;
7246         }
7247
7248         mutex_lock(&priv->action_mutex);
7249         if (!(priv->status & STATUS_INITIALIZED)) {
7250                 err = -EIO;
7251                 goto done;
7252         }
7253
7254         err = ipw2100_set_tx_power(priv, value);
7255
7256         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7257
7258       done:
7259         mutex_unlock(&priv->action_mutex);
7260         return err;
7261 }
7262
7263 static int ipw2100_wx_get_txpow(struct net_device *dev,
7264                                 struct iw_request_info *info,
7265                                 union iwreq_data *wrqu, char *extra)
7266 {
7267         /*
7268          * This can be called at any time.  No action lock required
7269          */
7270
7271         struct ipw2100_priv *priv = ieee80211_priv(dev);
7272
7273         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7274
7275         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7276                 wrqu->txpower.fixed = 0;
7277                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7278         } else {
7279                 wrqu->txpower.fixed = 1;
7280                 wrqu->txpower.value = priv->tx_power;
7281         }
7282
7283         wrqu->txpower.flags = IW_TXPOW_DBM;
7284
7285         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7286
7287         return 0;
7288 }
7289
7290 static int ipw2100_wx_set_frag(struct net_device *dev,
7291                                struct iw_request_info *info,
7292                                union iwreq_data *wrqu, char *extra)
7293 {
7294         /*
7295          * This can be called at any time.  No action lock required
7296          */
7297
7298         struct ipw2100_priv *priv = ieee80211_priv(dev);
7299
7300         if (!wrqu->frag.fixed)
7301                 return -EINVAL;
7302
7303         if (wrqu->frag.disabled) {
7304                 priv->frag_threshold |= FRAG_DISABLED;
7305                 priv->ieee->fts = DEFAULT_FTS;
7306         } else {
7307                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7308                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7309                         return -EINVAL;
7310
7311                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7312                 priv->frag_threshold = priv->ieee->fts;
7313         }
7314
7315         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7316
7317         return 0;
7318 }
7319
7320 static int ipw2100_wx_get_frag(struct net_device *dev,
7321                                struct iw_request_info *info,
7322                                union iwreq_data *wrqu, char *extra)
7323 {
7324         /*
7325          * This can be called at any time.  No action lock required
7326          */
7327
7328         struct ipw2100_priv *priv = ieee80211_priv(dev);
7329         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7330         wrqu->frag.fixed = 0;   /* no auto select */
7331         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7332
7333         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7334
7335         return 0;
7336 }
7337
7338 static int ipw2100_wx_set_retry(struct net_device *dev,
7339                                 struct iw_request_info *info,
7340                                 union iwreq_data *wrqu, char *extra)
7341 {
7342         struct ipw2100_priv *priv = ieee80211_priv(dev);
7343         int err = 0;
7344
7345         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7346                 return -EINVAL;
7347
7348         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7349                 return 0;
7350
7351         mutex_lock(&priv->action_mutex);
7352         if (!(priv->status & STATUS_INITIALIZED)) {
7353                 err = -EIO;
7354                 goto done;
7355         }
7356
7357         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7358                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7359                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7360                              wrqu->retry.value);
7361                 goto done;
7362         }
7363
7364         if (wrqu->retry.flags & IW_RETRY_LONG) {
7365                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7366                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7367                              wrqu->retry.value);
7368                 goto done;
7369         }
7370
7371         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7372         if (!err)
7373                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374
7375         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7376
7377       done:
7378         mutex_unlock(&priv->action_mutex);
7379         return err;
7380 }
7381
7382 static int ipw2100_wx_get_retry(struct net_device *dev,
7383                                 struct iw_request_info *info,
7384                                 union iwreq_data *wrqu, char *extra)
7385 {
7386         /*
7387          * This can be called at any time.  No action lock required
7388          */
7389
7390         struct ipw2100_priv *priv = ieee80211_priv(dev);
7391
7392         wrqu->retry.disabled = 0;       /* can't be disabled */
7393
7394         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7395                 return -EINVAL;
7396
7397         if (wrqu->retry.flags & IW_RETRY_LONG) {
7398                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7399                 wrqu->retry.value = priv->long_retry_limit;
7400         } else {
7401                 wrqu->retry.flags =
7402                     (priv->short_retry_limit !=
7403                      priv->long_retry_limit) ?
7404                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7405
7406                 wrqu->retry.value = priv->short_retry_limit;
7407         }
7408
7409         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7410
7411         return 0;
7412 }
7413
7414 static int ipw2100_wx_set_scan(struct net_device *dev,
7415                                struct iw_request_info *info,
7416                                union iwreq_data *wrqu, char *extra)
7417 {
7418         struct ipw2100_priv *priv = ieee80211_priv(dev);
7419         int err = 0;
7420
7421         mutex_lock(&priv->action_mutex);
7422         if (!(priv->status & STATUS_INITIALIZED)) {
7423                 err = -EIO;
7424                 goto done;
7425         }
7426
7427         IPW_DEBUG_WX("Initiating scan...\n");
7428         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7429                 IPW_DEBUG_WX("Start scan failed.\n");
7430
7431                 /* TODO: Mark a scan as pending so when hardware initialized
7432                  *       a scan starts */
7433         }
7434
7435       done:
7436         mutex_unlock(&priv->action_mutex);
7437         return err;
7438 }
7439
7440 static int ipw2100_wx_get_scan(struct net_device *dev,
7441                                struct iw_request_info *info,
7442                                union iwreq_data *wrqu, char *extra)
7443 {
7444         /*
7445          * This can be called at any time.  No action lock required
7446          */
7447
7448         struct ipw2100_priv *priv = ieee80211_priv(dev);
7449         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7450 }
7451
7452 /*
7453  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7454  */
7455 static int ipw2100_wx_set_encode(struct net_device *dev,
7456                                  struct iw_request_info *info,
7457                                  union iwreq_data *wrqu, char *key)
7458 {
7459         /*
7460          * No check of STATUS_INITIALIZED required
7461          */
7462
7463         struct ipw2100_priv *priv = ieee80211_priv(dev);
7464         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7465 }
7466
7467 static int ipw2100_wx_get_encode(struct net_device *dev,
7468                                  struct iw_request_info *info,
7469                                  union iwreq_data *wrqu, char *key)
7470 {
7471         /*
7472          * This can be called at any time.  No action lock required
7473          */
7474
7475         struct ipw2100_priv *priv = ieee80211_priv(dev);
7476         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7477 }
7478
7479 static int ipw2100_wx_set_power(struct net_device *dev,
7480                                 struct iw_request_info *info,
7481                                 union iwreq_data *wrqu, char *extra)
7482 {
7483         struct ipw2100_priv *priv = ieee80211_priv(dev);
7484         int err = 0;
7485
7486         mutex_lock(&priv->action_mutex);
7487         if (!(priv->status & STATUS_INITIALIZED)) {
7488                 err = -EIO;
7489                 goto done;
7490         }
7491
7492         if (wrqu->power.disabled) {
7493                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7494                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7495                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7496                 goto done;
7497         }
7498
7499         switch (wrqu->power.flags & IW_POWER_MODE) {
7500         case IW_POWER_ON:       /* If not specified */
7501         case IW_POWER_MODE:     /* If set all mask */
7502         case IW_POWER_ALL_R:    /* If explicitely state all */
7503                 break;
7504         default:                /* Otherwise we don't support it */
7505                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7506                              wrqu->power.flags);
7507                 err = -EOPNOTSUPP;
7508                 goto done;
7509         }
7510
7511         /* If the user hasn't specified a power management mode yet, default
7512          * to BATTERY */
7513         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7514         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7515
7516         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7517
7518       done:
7519         mutex_unlock(&priv->action_mutex);
7520         return err;
7521
7522 }
7523
7524 static int ipw2100_wx_get_power(struct net_device *dev,
7525                                 struct iw_request_info *info,
7526                                 union iwreq_data *wrqu, char *extra)
7527 {
7528         /*
7529          * This can be called at any time.  No action lock required
7530          */
7531
7532         struct ipw2100_priv *priv = ieee80211_priv(dev);
7533
7534         if (!(priv->power_mode & IPW_POWER_ENABLED))
7535                 wrqu->power.disabled = 1;
7536         else {
7537                 wrqu->power.disabled = 0;
7538                 wrqu->power.flags = 0;
7539         }
7540
7541         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7542
7543         return 0;
7544 }
7545
7546 /*
7547  * WE-18 WPA support
7548  */
7549
7550 /* SIOCSIWGENIE */
7551 static int ipw2100_wx_set_genie(struct net_device *dev,
7552                                 struct iw_request_info *info,
7553                                 union iwreq_data *wrqu, char *extra)
7554 {
7555
7556         struct ipw2100_priv *priv = ieee80211_priv(dev);
7557         struct ieee80211_device *ieee = priv->ieee;
7558         u8 *buf;
7559
7560         if (!ieee->wpa_enabled)
7561                 return -EOPNOTSUPP;
7562
7563         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7564             (wrqu->data.length && extra == NULL))
7565                 return -EINVAL;
7566
7567         if (wrqu->data.length) {
7568                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7569                 if (buf == NULL)
7570                         return -ENOMEM;
7571
7572                 kfree(ieee->wpa_ie);
7573                 ieee->wpa_ie = buf;
7574                 ieee->wpa_ie_len = wrqu->data.length;
7575         } else {
7576                 kfree(ieee->wpa_ie);
7577                 ieee->wpa_ie = NULL;
7578                 ieee->wpa_ie_len = 0;
7579         }
7580
7581         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7582
7583         return 0;
7584 }
7585
7586 /* SIOCGIWGENIE */
7587 static int ipw2100_wx_get_genie(struct net_device *dev,
7588                                 struct iw_request_info *info,
7589                                 union iwreq_data *wrqu, char *extra)
7590 {
7591         struct ipw2100_priv *priv = ieee80211_priv(dev);
7592         struct ieee80211_device *ieee = priv->ieee;
7593
7594         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7595                 wrqu->data.length = 0;
7596                 return 0;
7597         }
7598
7599         if (wrqu->data.length < ieee->wpa_ie_len)
7600                 return -E2BIG;
7601
7602         wrqu->data.length = ieee->wpa_ie_len;
7603         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7604
7605         return 0;
7606 }
7607
7608 /* SIOCSIWAUTH */
7609 static int ipw2100_wx_set_auth(struct net_device *dev,
7610                                struct iw_request_info *info,
7611                                union iwreq_data *wrqu, char *extra)
7612 {
7613         struct ipw2100_priv *priv = ieee80211_priv(dev);
7614         struct ieee80211_device *ieee = priv->ieee;
7615         struct iw_param *param = &wrqu->param;
7616         struct ieee80211_crypt_data *crypt;
7617         unsigned long flags;
7618         int ret = 0;
7619
7620         switch (param->flags & IW_AUTH_INDEX) {
7621         case IW_AUTH_WPA_VERSION:
7622         case IW_AUTH_CIPHER_PAIRWISE:
7623         case IW_AUTH_CIPHER_GROUP:
7624         case IW_AUTH_KEY_MGMT:
7625                 /*
7626                  * ipw2200 does not use these parameters
7627                  */
7628                 break;
7629
7630         case IW_AUTH_TKIP_COUNTERMEASURES:
7631                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7632                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7633                         break;
7634
7635                 flags = crypt->ops->get_flags(crypt->priv);
7636
7637                 if (param->value)
7638                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7639                 else
7640                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7641
7642                 crypt->ops->set_flags(flags, crypt->priv);
7643
7644                 break;
7645
7646         case IW_AUTH_DROP_UNENCRYPTED:{
7647                         /* HACK:
7648                          *
7649                          * wpa_supplicant calls set_wpa_enabled when the driver
7650                          * is loaded and unloaded, regardless of if WPA is being
7651                          * used.  No other calls are made which can be used to
7652                          * determine if encryption will be used or not prior to
7653                          * association being expected.  If encryption is not being
7654                          * used, drop_unencrypted is set to false, else true -- we
7655                          * can use this to determine if the CAP_PRIVACY_ON bit should
7656                          * be set.
7657                          */
7658                         struct ieee80211_security sec = {
7659                                 .flags = SEC_ENABLED,
7660                                 .enabled = param->value,
7661                         };
7662                         priv->ieee->drop_unencrypted = param->value;
7663                         /* We only change SEC_LEVEL for open mode. Others
7664                          * are set by ipw_wpa_set_encryption.
7665                          */
7666                         if (!param->value) {
7667                                 sec.flags |= SEC_LEVEL;
7668                                 sec.level = SEC_LEVEL_0;
7669                         } else {
7670                                 sec.flags |= SEC_LEVEL;
7671                                 sec.level = SEC_LEVEL_1;
7672                         }
7673                         if (priv->ieee->set_security)
7674                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7675                         break;
7676                 }
7677
7678         case IW_AUTH_80211_AUTH_ALG:
7679                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7680                 break;
7681
7682         case IW_AUTH_WPA_ENABLED:
7683                 ret = ipw2100_wpa_enable(priv, param->value);
7684                 break;
7685
7686         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7687                 ieee->ieee802_1x = param->value;
7688                 break;
7689
7690                 //case IW_AUTH_ROAMING_CONTROL:
7691         case IW_AUTH_PRIVACY_INVOKED:
7692                 ieee->privacy_invoked = param->value;
7693                 break;
7694
7695         default:
7696                 return -EOPNOTSUPP;
7697         }
7698         return ret;
7699 }
7700
7701 /* SIOCGIWAUTH */
7702 static int ipw2100_wx_get_auth(struct net_device *dev,
7703                                struct iw_request_info *info,
7704                                union iwreq_data *wrqu, char *extra)
7705 {
7706         struct ipw2100_priv *priv = ieee80211_priv(dev);
7707         struct ieee80211_device *ieee = priv->ieee;
7708         struct ieee80211_crypt_data *crypt;
7709         struct iw_param *param = &wrqu->param;
7710         int ret = 0;
7711
7712         switch (param->flags & IW_AUTH_INDEX) {
7713         case IW_AUTH_WPA_VERSION:
7714         case IW_AUTH_CIPHER_PAIRWISE:
7715         case IW_AUTH_CIPHER_GROUP:
7716         case IW_AUTH_KEY_MGMT:
7717                 /*
7718                  * wpa_supplicant will control these internally
7719                  */
7720                 ret = -EOPNOTSUPP;
7721                 break;
7722
7723         case IW_AUTH_TKIP_COUNTERMEASURES:
7724                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7725                 if (!crypt || !crypt->ops->get_flags) {
7726                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7727                                           "crypt not set!\n");
7728                         break;
7729                 }
7730
7731                 param->value = (crypt->ops->get_flags(crypt->priv) &
7732                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7733
7734                 break;
7735
7736         case IW_AUTH_DROP_UNENCRYPTED:
7737                 param->value = ieee->drop_unencrypted;
7738                 break;
7739
7740         case IW_AUTH_80211_AUTH_ALG:
7741                 param->value = priv->ieee->sec.auth_mode;
7742                 break;
7743
7744         case IW_AUTH_WPA_ENABLED:
7745                 param->value = ieee->wpa_enabled;
7746                 break;
7747
7748         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7749                 param->value = ieee->ieee802_1x;
7750                 break;
7751
7752         case IW_AUTH_ROAMING_CONTROL:
7753         case IW_AUTH_PRIVACY_INVOKED:
7754                 param->value = ieee->privacy_invoked;
7755                 break;
7756
7757         default:
7758                 return -EOPNOTSUPP;
7759         }
7760         return 0;
7761 }
7762
7763 /* SIOCSIWENCODEEXT */
7764 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7765                                     struct iw_request_info *info,
7766                                     union iwreq_data *wrqu, char *extra)
7767 {
7768         struct ipw2100_priv *priv = ieee80211_priv(dev);
7769         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7770 }
7771
7772 /* SIOCGIWENCODEEXT */
7773 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7774                                     struct iw_request_info *info,
7775                                     union iwreq_data *wrqu, char *extra)
7776 {
7777         struct ipw2100_priv *priv = ieee80211_priv(dev);
7778         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7779 }
7780
7781 /* SIOCSIWMLME */
7782 static int ipw2100_wx_set_mlme(struct net_device *dev,
7783                                struct iw_request_info *info,
7784                                union iwreq_data *wrqu, char *extra)
7785 {
7786         struct ipw2100_priv *priv = ieee80211_priv(dev);
7787         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7788         u16 reason;
7789
7790         reason = cpu_to_le16(mlme->reason_code);
7791
7792         switch (mlme->cmd) {
7793         case IW_MLME_DEAUTH:
7794                 // silently ignore
7795                 break;
7796
7797         case IW_MLME_DISASSOC:
7798                 ipw2100_disassociate_bssid(priv);
7799                 break;
7800
7801         default:
7802                 return -EOPNOTSUPP;
7803         }
7804         return 0;
7805 }
7806
7807 /*
7808  *
7809  * IWPRIV handlers
7810  *
7811  */
7812 #ifdef CONFIG_IPW2100_MONITOR
7813 static int ipw2100_wx_set_promisc(struct net_device *dev,
7814                                   struct iw_request_info *info,
7815                                   union iwreq_data *wrqu, char *extra)
7816 {
7817         struct ipw2100_priv *priv = ieee80211_priv(dev);
7818         int *parms = (int *)extra;
7819         int enable = (parms[0] > 0);
7820         int err = 0;
7821
7822         mutex_lock(&priv->action_mutex);
7823         if (!(priv->status & STATUS_INITIALIZED)) {
7824                 err = -EIO;
7825                 goto done;
7826         }
7827
7828         if (enable) {
7829                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7830                         err = ipw2100_set_channel(priv, parms[1], 0);
7831                         goto done;
7832                 }
7833                 priv->channel = parms[1];
7834                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7835         } else {
7836                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7837                         err = ipw2100_switch_mode(priv, priv->last_mode);
7838         }
7839       done:
7840         mutex_unlock(&priv->action_mutex);
7841         return err;
7842 }
7843
7844 static int ipw2100_wx_reset(struct net_device *dev,
7845                             struct iw_request_info *info,
7846                             union iwreq_data *wrqu, char *extra)
7847 {
7848         struct ipw2100_priv *priv = ieee80211_priv(dev);
7849         if (priv->status & STATUS_INITIALIZED)
7850                 schedule_reset(priv);
7851         return 0;
7852 }
7853
7854 #endif
7855
7856 static int ipw2100_wx_set_powermode(struct net_device *dev,
7857                                     struct iw_request_info *info,
7858                                     union iwreq_data *wrqu, char *extra)
7859 {
7860         struct ipw2100_priv *priv = ieee80211_priv(dev);
7861         int err = 0, mode = *(int *)extra;
7862
7863         mutex_lock(&priv->action_mutex);
7864         if (!(priv->status & STATUS_INITIALIZED)) {
7865                 err = -EIO;
7866                 goto done;
7867         }
7868
7869         if ((mode < 1) || (mode > POWER_MODES))
7870                 mode = IPW_POWER_AUTO;
7871
7872         if (priv->power_mode != mode)
7873                 err = ipw2100_set_power_mode(priv, mode);
7874       done:
7875         mutex_unlock(&priv->action_mutex);
7876         return err;
7877 }
7878
7879 #define MAX_POWER_STRING 80
7880 static int ipw2100_wx_get_powermode(struct net_device *dev,
7881                                     struct iw_request_info *info,
7882                                     union iwreq_data *wrqu, char *extra)
7883 {
7884         /*
7885          * This can be called at any time.  No action lock required
7886          */
7887
7888         struct ipw2100_priv *priv = ieee80211_priv(dev);
7889         int level = IPW_POWER_LEVEL(priv->power_mode);
7890         s32 timeout, period;
7891
7892         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7893                 snprintf(extra, MAX_POWER_STRING,
7894                          "Power save level: %d (Off)", level);
7895         } else {
7896                 switch (level) {
7897                 case IPW_POWER_MODE_CAM:
7898                         snprintf(extra, MAX_POWER_STRING,
7899                                  "Power save level: %d (None)", level);
7900                         break;
7901                 case IPW_POWER_AUTO:
7902                         snprintf(extra, MAX_POWER_STRING,
7903                                  "Power save level: %d (Auto)", 0);
7904                         break;
7905                 default:
7906                         timeout = timeout_duration[level - 1] / 1000;
7907                         period = period_duration[level - 1] / 1000;
7908                         snprintf(extra, MAX_POWER_STRING,
7909                                  "Power save level: %d "
7910                                  "(Timeout %dms, Period %dms)",
7911                                  level, timeout, period);
7912                 }
7913         }
7914
7915         wrqu->data.length = strlen(extra) + 1;
7916
7917         return 0;
7918 }
7919
7920 static int ipw2100_wx_set_preamble(struct net_device *dev,
7921                                    struct iw_request_info *info,
7922                                    union iwreq_data *wrqu, char *extra)
7923 {
7924         struct ipw2100_priv *priv = ieee80211_priv(dev);
7925         int err, mode = *(int *)extra;
7926
7927         mutex_lock(&priv->action_mutex);
7928         if (!(priv->status & STATUS_INITIALIZED)) {
7929                 err = -EIO;
7930                 goto done;
7931         }
7932
7933         if (mode == 1)
7934                 priv->config |= CFG_LONG_PREAMBLE;
7935         else if (mode == 0)
7936                 priv->config &= ~CFG_LONG_PREAMBLE;
7937         else {
7938                 err = -EINVAL;
7939                 goto done;
7940         }
7941
7942         err = ipw2100_system_config(priv, 0);
7943
7944       done:
7945         mutex_unlock(&priv->action_mutex);
7946         return err;
7947 }
7948
7949 static int ipw2100_wx_get_preamble(struct net_device *dev,
7950                                    struct iw_request_info *info,
7951                                    union iwreq_data *wrqu, char *extra)
7952 {
7953         /*
7954          * This can be called at any time.  No action lock required
7955          */
7956
7957         struct ipw2100_priv *priv = ieee80211_priv(dev);
7958
7959         if (priv->config & CFG_LONG_PREAMBLE)
7960                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7961         else
7962                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7963
7964         return 0;
7965 }
7966
7967 #ifdef CONFIG_IPW2100_MONITOR
7968 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7969                                     struct iw_request_info *info,
7970                                     union iwreq_data *wrqu, char *extra)
7971 {
7972         struct ipw2100_priv *priv = ieee80211_priv(dev);
7973         int err, mode = *(int *)extra;
7974
7975         mutex_lock(&priv->action_mutex);
7976         if (!(priv->status & STATUS_INITIALIZED)) {
7977                 err = -EIO;
7978                 goto done;
7979         }
7980
7981         if (mode == 1)
7982                 priv->config |= CFG_CRC_CHECK;
7983         else if (mode == 0)
7984                 priv->config &= ~CFG_CRC_CHECK;
7985         else {
7986                 err = -EINVAL;
7987                 goto done;
7988         }
7989         err = 0;
7990
7991       done:
7992         mutex_unlock(&priv->action_mutex);
7993         return err;
7994 }
7995
7996 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7997                                     struct iw_request_info *info,
7998                                     union iwreq_data *wrqu, char *extra)
7999 {
8000         /*
8001          * This can be called at any time.  No action lock required
8002          */
8003
8004         struct ipw2100_priv *priv = ieee80211_priv(dev);
8005
8006         if (priv->config & CFG_CRC_CHECK)
8007                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8008         else
8009                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8010
8011         return 0;
8012 }
8013 #endif                          /* CONFIG_IPW2100_MONITOR */
8014
8015 static iw_handler ipw2100_wx_handlers[] = {
8016         NULL,                   /* SIOCSIWCOMMIT */
8017         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8018         NULL,                   /* SIOCSIWNWID */
8019         NULL,                   /* SIOCGIWNWID */
8020         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8021         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8022         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8023         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8024         NULL,                   /* SIOCSIWSENS */
8025         NULL,                   /* SIOCGIWSENS */
8026         NULL,                   /* SIOCSIWRANGE */
8027         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8028         NULL,                   /* SIOCSIWPRIV */
8029         NULL,                   /* SIOCGIWPRIV */
8030         NULL,                   /* SIOCSIWSTATS */
8031         NULL,                   /* SIOCGIWSTATS */
8032         NULL,                   /* SIOCSIWSPY */
8033         NULL,                   /* SIOCGIWSPY */
8034         NULL,                   /* SIOCGIWTHRSPY */
8035         NULL,                   /* SIOCWIWTHRSPY */
8036         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8037         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8038         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8039         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8040         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8041         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8042         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8043         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8044         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8045         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8046         NULL,                   /* -- hole -- */
8047         NULL,                   /* -- hole -- */
8048         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8049         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8050         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8051         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8052         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8053         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8054         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8055         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8056         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8057         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8058         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8059         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8060         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8061         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8062         NULL,                   /* -- hole -- */
8063         NULL,                   /* -- hole -- */
8064         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8065         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8066         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8067         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8068         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8069         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8070         NULL,                   /* SIOCSIWPMKSA */
8071 };
8072
8073 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8074 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8075 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8076 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8077 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8078 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8079 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8080 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8081
8082 static const struct iw_priv_args ipw2100_private_args[] = {
8083
8084 #ifdef CONFIG_IPW2100_MONITOR
8085         {
8086          IPW2100_PRIV_SET_MONITOR,
8087          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8088         {
8089          IPW2100_PRIV_RESET,
8090          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8091 #endif                          /* CONFIG_IPW2100_MONITOR */
8092
8093         {
8094          IPW2100_PRIV_SET_POWER,
8095          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8096         {
8097          IPW2100_PRIV_GET_POWER,
8098          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8099          "get_power"},
8100         {
8101          IPW2100_PRIV_SET_LONGPREAMBLE,
8102          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8103         {
8104          IPW2100_PRIV_GET_LONGPREAMBLE,
8105          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8106 #ifdef CONFIG_IPW2100_MONITOR
8107         {
8108          IPW2100_PRIV_SET_CRC_CHECK,
8109          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8110         {
8111          IPW2100_PRIV_GET_CRC_CHECK,
8112          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8113 #endif                          /* CONFIG_IPW2100_MONITOR */
8114 };
8115
8116 static iw_handler ipw2100_private_handler[] = {
8117 #ifdef CONFIG_IPW2100_MONITOR
8118         ipw2100_wx_set_promisc,
8119         ipw2100_wx_reset,
8120 #else                           /* CONFIG_IPW2100_MONITOR */
8121         NULL,
8122         NULL,
8123 #endif                          /* CONFIG_IPW2100_MONITOR */
8124         ipw2100_wx_set_powermode,
8125         ipw2100_wx_get_powermode,
8126         ipw2100_wx_set_preamble,
8127         ipw2100_wx_get_preamble,
8128 #ifdef CONFIG_IPW2100_MONITOR
8129         ipw2100_wx_set_crc_check,
8130         ipw2100_wx_get_crc_check,
8131 #else                           /* CONFIG_IPW2100_MONITOR */
8132         NULL,
8133         NULL,
8134 #endif                          /* CONFIG_IPW2100_MONITOR */
8135 };
8136
8137 /*
8138  * Get wireless statistics.
8139  * Called by /proc/net/wireless
8140  * Also called by SIOCGIWSTATS
8141  */
8142 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8143 {
8144         enum {
8145                 POOR = 30,
8146                 FAIR = 60,
8147                 GOOD = 80,
8148                 VERY_GOOD = 90,
8149                 EXCELLENT = 95,
8150                 PERFECT = 100
8151         };
8152         int rssi_qual;
8153         int tx_qual;
8154         int beacon_qual;
8155
8156         struct ipw2100_priv *priv = ieee80211_priv(dev);
8157         struct iw_statistics *wstats;
8158         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8159         u32 ord_len = sizeof(u32);
8160
8161         if (!priv)
8162                 return (struct iw_statistics *)NULL;
8163
8164         wstats = &priv->wstats;
8165
8166         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8167          * ipw2100_wx_wireless_stats seems to be called before fw is
8168          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8169          * and associated; if not associcated, the values are all meaningless
8170          * anyway, so set them all to NULL and INVALID */
8171         if (!(priv->status & STATUS_ASSOCIATED)) {
8172                 wstats->miss.beacon = 0;
8173                 wstats->discard.retries = 0;
8174                 wstats->qual.qual = 0;
8175                 wstats->qual.level = 0;
8176                 wstats->qual.noise = 0;
8177                 wstats->qual.updated = 7;
8178                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8179                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8180                 return wstats;
8181         }
8182
8183         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8184                                 &missed_beacons, &ord_len))
8185                 goto fail_get_ordinal;
8186
8187         /* If we don't have a connection the quality and level is 0 */
8188         if (!(priv->status & STATUS_ASSOCIATED)) {
8189                 wstats->qual.qual = 0;
8190                 wstats->qual.level = 0;
8191         } else {
8192                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8193                                         &rssi, &ord_len))
8194                         goto fail_get_ordinal;
8195                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8196                 if (rssi < 10)
8197                         rssi_qual = rssi * POOR / 10;
8198                 else if (rssi < 15)
8199                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8200                 else if (rssi < 20)
8201                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8202                 else if (rssi < 30)
8203                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8204                             10 + GOOD;
8205                 else
8206                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8207                             10 + VERY_GOOD;
8208
8209                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8210                                         &tx_retries, &ord_len))
8211                         goto fail_get_ordinal;
8212
8213                 if (tx_retries > 75)
8214                         tx_qual = (90 - tx_retries) * POOR / 15;
8215                 else if (tx_retries > 70)
8216                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8217                 else if (tx_retries > 65)
8218                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8219                 else if (tx_retries > 50)
8220                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8221                             15 + GOOD;
8222                 else
8223                         tx_qual = (50 - tx_retries) *
8224                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8225
8226                 if (missed_beacons > 50)
8227                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8228                 else if (missed_beacons > 40)
8229                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8230                             10 + POOR;
8231                 else if (missed_beacons > 32)
8232                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8233                             18 + FAIR;
8234                 else if (missed_beacons > 20)
8235                         beacon_qual = (32 - missed_beacons) *
8236                             (VERY_GOOD - GOOD) / 20 + GOOD;
8237                 else
8238                         beacon_qual = (20 - missed_beacons) *
8239                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8240
8241                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8242
8243 #ifdef CONFIG_IPW2100_DEBUG
8244                 if (beacon_qual == quality)
8245                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246                 else if (tx_qual == quality)
8247                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248                 else if (quality != 100)
8249                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250                 else
8251                         IPW_DEBUG_WX("Quality not clamped.\n");
8252 #endif
8253
8254                 wstats->qual.qual = quality;
8255                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8256         }
8257
8258         wstats->qual.noise = 0;
8259         wstats->qual.updated = 7;
8260         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8261
8262         /* FIXME: this is percent and not a # */
8263         wstats->miss.beacon = missed_beacons;
8264
8265         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266                                 &tx_failures, &ord_len))
8267                 goto fail_get_ordinal;
8268         wstats->discard.retries = tx_failures;
8269
8270         return wstats;
8271
8272       fail_get_ordinal:
8273         IPW_DEBUG_WX("failed querying ordinals.\n");
8274
8275         return (struct iw_statistics *)NULL;
8276 }
8277
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279         .standard = ipw2100_wx_handlers,
8280         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8281         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8282         .num_private_args = sizeof(ipw2100_private_args) /
8283             sizeof(struct iw_priv_args),
8284         .private = (iw_handler *) ipw2100_private_handler,
8285         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8286         .get_wireless_stats = ipw2100_wx_wireless_stats,
8287 };
8288
8289 static void ipw2100_wx_event_work(struct work_struct *work)
8290 {
8291         struct ipw2100_priv *priv =
8292                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8293         union iwreq_data wrqu;
8294         int len = ETH_ALEN;
8295
8296         if (priv->status & STATUS_STOPPING)
8297                 return;
8298
8299         mutex_lock(&priv->action_mutex);
8300
8301         IPW_DEBUG_WX("enter\n");
8302
8303         mutex_unlock(&priv->action_mutex);
8304
8305         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8306
8307         /* Fetch BSSID from the hardware */
8308         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8309             priv->status & STATUS_RF_KILL_MASK ||
8310             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8311                                 &priv->bssid, &len)) {
8312                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8313         } else {
8314                 /* We now have the BSSID, so can finish setting to the full
8315                  * associated state */
8316                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8317                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8318                 priv->status &= ~STATUS_ASSOCIATING;
8319                 priv->status |= STATUS_ASSOCIATED;
8320                 netif_carrier_on(priv->net_dev);
8321                 netif_wake_queue(priv->net_dev);
8322         }
8323
8324         if (!(priv->status & STATUS_ASSOCIATED)) {
8325                 IPW_DEBUG_WX("Configuring ESSID\n");
8326                 mutex_lock(&priv->action_mutex);
8327                 /* This is a disassociation event, so kick the firmware to
8328                  * look for another AP */
8329                 if (priv->config & CFG_STATIC_ESSID)
8330                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8331                                           0);
8332                 else
8333                         ipw2100_set_essid(priv, NULL, 0, 0);
8334                 mutex_unlock(&priv->action_mutex);
8335         }
8336
8337         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8338 }
8339
8340 #define IPW2100_FW_MAJOR_VERSION 1
8341 #define IPW2100_FW_MINOR_VERSION 3
8342
8343 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8344 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8345
8346 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8347                              IPW2100_FW_MAJOR_VERSION)
8348
8349 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8350 "." __stringify(IPW2100_FW_MINOR_VERSION)
8351
8352 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8353
8354 /*
8355
8356 BINARY FIRMWARE HEADER FORMAT
8357
8358 offset      length   desc
8359 0           2        version
8360 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8361 4           4        fw_len
8362 8           4        uc_len
8363 C           fw_len   firmware data
8364 12 + fw_len uc_len   microcode data
8365
8366 */
8367
8368 struct ipw2100_fw_header {
8369         short version;
8370         short mode;
8371         unsigned int fw_size;
8372         unsigned int uc_size;
8373 } __attribute__ ((packed));
8374
8375 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8376 {
8377         struct ipw2100_fw_header *h =
8378             (struct ipw2100_fw_header *)fw->fw_entry->data;
8379
8380         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8381                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8382                        "(detected version id of %u). "
8383                        "See Documentation/networking/README.ipw2100\n",
8384                        h->version);
8385                 return 1;
8386         }
8387
8388         fw->version = h->version;
8389         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8390         fw->fw.size = h->fw_size;
8391         fw->uc.data = fw->fw.data + h->fw_size;
8392         fw->uc.size = h->uc_size;
8393
8394         return 0;
8395 }
8396
8397 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8398                                 struct ipw2100_fw *fw)
8399 {
8400         char *fw_name;
8401         int rc;
8402
8403         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8404                        priv->net_dev->name);
8405
8406         switch (priv->ieee->iw_mode) {
8407         case IW_MODE_ADHOC:
8408                 fw_name = IPW2100_FW_NAME("-i");
8409                 break;
8410 #ifdef CONFIG_IPW2100_MONITOR
8411         case IW_MODE_MONITOR:
8412                 fw_name = IPW2100_FW_NAME("-p");
8413                 break;
8414 #endif
8415         case IW_MODE_INFRA:
8416         default:
8417                 fw_name = IPW2100_FW_NAME("");
8418                 break;
8419         }
8420
8421         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8422
8423         if (rc < 0) {
8424                 printk(KERN_ERR DRV_NAME ": "
8425                        "%s: Firmware '%s' not available or load failed.\n",
8426                        priv->net_dev->name, fw_name);
8427                 return rc;
8428         }
8429         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8430                        fw->fw_entry->size);
8431
8432         ipw2100_mod_firmware_load(fw);
8433
8434         return 0;
8435 }
8436
8437 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8438                                      struct ipw2100_fw *fw)
8439 {
8440         fw->version = 0;
8441         if (fw->fw_entry)
8442                 release_firmware(fw->fw_entry);
8443         fw->fw_entry = NULL;
8444 }
8445
8446 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8447                                  size_t max)
8448 {
8449         char ver[MAX_FW_VERSION_LEN];
8450         u32 len = MAX_FW_VERSION_LEN;
8451         u32 tmp;
8452         int i;
8453         /* firmware version is an ascii string (max len of 14) */
8454         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8455                 return -EIO;
8456         tmp = max;
8457         if (len >= max)
8458                 len = max - 1;
8459         for (i = 0; i < len; i++)
8460                 buf[i] = ver[i];
8461         buf[i] = '\0';
8462         return tmp;
8463 }
8464
8465 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8466                                     size_t max)
8467 {
8468         u32 ver;
8469         u32 len = sizeof(ver);
8470         /* microcode version is a 32 bit integer */
8471         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8472                 return -EIO;
8473         return snprintf(buf, max, "%08X", ver);
8474 }
8475
8476 /*
8477  * On exit, the firmware will have been freed from the fw list
8478  */
8479 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8480 {
8481         /* firmware is constructed of N contiguous entries, each entry is
8482          * structured as:
8483          *
8484          * offset    sie         desc
8485          * 0         4           address to write to
8486          * 4         2           length of data run
8487          * 6         length      data
8488          */
8489         unsigned int addr;
8490         unsigned short len;
8491
8492         const unsigned char *firmware_data = fw->fw.data;
8493         unsigned int firmware_data_left = fw->fw.size;
8494
8495         while (firmware_data_left > 0) {
8496                 addr = *(u32 *) (firmware_data);
8497                 firmware_data += 4;
8498                 firmware_data_left -= 4;
8499
8500                 len = *(u16 *) (firmware_data);
8501                 firmware_data += 2;
8502                 firmware_data_left -= 2;
8503
8504                 if (len > 32) {
8505                         printk(KERN_ERR DRV_NAME ": "
8506                                "Invalid firmware run-length of %d bytes\n",
8507                                len);
8508                         return -EINVAL;
8509                 }
8510
8511                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8512                 firmware_data += len;
8513                 firmware_data_left -= len;
8514         }
8515
8516         return 0;
8517 }
8518
8519 struct symbol_alive_response {
8520         u8 cmd_id;
8521         u8 seq_num;
8522         u8 ucode_rev;
8523         u8 eeprom_valid;
8524         u16 valid_flags;
8525         u8 IEEE_addr[6];
8526         u16 flags;
8527         u16 pcb_rev;
8528         u16 clock_settle_time;  // 1us LSB
8529         u16 powerup_settle_time;        // 1us LSB
8530         u16 hop_settle_time;    // 1us LSB
8531         u8 date[3];             // month, day, year
8532         u8 time[2];             // hours, minutes
8533         u8 ucode_valid;
8534 };
8535
8536 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8537                                   struct ipw2100_fw *fw)
8538 {
8539         struct net_device *dev = priv->net_dev;
8540         const unsigned char *microcode_data = fw->uc.data;
8541         unsigned int microcode_data_left = fw->uc.size;
8542         void __iomem *reg = (void __iomem *)dev->base_addr;
8543
8544         struct symbol_alive_response response;
8545         int i, j;
8546         u8 data;
8547
8548         /* Symbol control */
8549         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8550         readl(reg);
8551         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8552         readl(reg);
8553
8554         /* HW config */
8555         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8556         readl(reg);
8557         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8558         readl(reg);
8559
8560         /* EN_CS_ACCESS bit to reset control store pointer */
8561         write_nic_byte(dev, 0x210000, 0x40);
8562         readl(reg);
8563         write_nic_byte(dev, 0x210000, 0x0);
8564         readl(reg);
8565         write_nic_byte(dev, 0x210000, 0x40);
8566         readl(reg);
8567
8568         /* copy microcode from buffer into Symbol */
8569
8570         while (microcode_data_left > 0) {
8571                 write_nic_byte(dev, 0x210010, *microcode_data++);
8572                 write_nic_byte(dev, 0x210010, *microcode_data++);
8573                 microcode_data_left -= 2;
8574         }
8575
8576         /* EN_CS_ACCESS bit to reset the control store pointer */
8577         write_nic_byte(dev, 0x210000, 0x0);
8578         readl(reg);
8579
8580         /* Enable System (Reg 0)
8581          * first enable causes garbage in RX FIFO */
8582         write_nic_byte(dev, 0x210000, 0x0);
8583         readl(reg);
8584         write_nic_byte(dev, 0x210000, 0x80);
8585         readl(reg);
8586
8587         /* Reset External Baseband Reg */
8588         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8589         readl(reg);
8590         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8591         readl(reg);
8592
8593         /* HW Config (Reg 5) */
8594         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8595         readl(reg);
8596         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8597         readl(reg);
8598
8599         /* Enable System (Reg 0)
8600          * second enable should be OK */
8601         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8602         readl(reg);
8603         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8604
8605         /* check Symbol is enabled - upped this from 5 as it wasn't always
8606          * catching the update */
8607         for (i = 0; i < 10; i++) {
8608                 udelay(10);
8609
8610                 /* check Dino is enabled bit */
8611                 read_nic_byte(dev, 0x210000, &data);
8612                 if (data & 0x1)
8613                         break;
8614         }
8615
8616         if (i == 10) {
8617                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8618                        dev->name);
8619                 return -EIO;
8620         }
8621
8622         /* Get Symbol alive response */
8623         for (i = 0; i < 30; i++) {
8624                 /* Read alive response structure */
8625                 for (j = 0;
8626                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8627                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8628
8629                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8630                         break;
8631                 udelay(10);
8632         }
8633
8634         if (i == 30) {
8635                 printk(KERN_ERR DRV_NAME
8636                        ": %s: No response from Symbol - hw not alive\n",
8637                        dev->name);
8638                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8639                 return -EIO;
8640         }
8641
8642         return 0;
8643 }