4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 loff_t offset, unsigned long nr_segs);
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * ->i_alloc_sem (various)
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
91 * ->anon_vma.lock (vma_adjust)
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->dcache_lock (proc_pid_lookup)
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
117 void __remove_from_page_cache(struct page *page)
119 struct address_space *mapping = page->mapping;
121 radix_tree_delete(&mapping->page_tree, page->index);
122 page->mapping = NULL;
124 __dec_zone_page_state(page, NR_FILE_PAGES);
125 BUG_ON(page_mapped(page));
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 void remove_from_page_cache(struct page *page)
142 struct address_space *mapping = page->mapping;
144 BUG_ON(!PageLocked(page));
146 write_lock_irq(&mapping->tree_lock);
147 __remove_from_page_cache(page);
148 write_unlock_irq(&mapping->tree_lock);
151 static int sync_page(void *word)
153 struct address_space *mapping;
156 page = container_of((unsigned long *)word, struct page, flags);
159 * page_mapping() is being called without PG_locked held.
160 * Some knowledge of the state and use of the page is used to
161 * reduce the requirements down to a memory barrier.
162 * The danger here is of a stale page_mapping() return value
163 * indicating a struct address_space different from the one it's
164 * associated with when it is associated with one.
165 * After smp_mb(), it's either the correct page_mapping() for
166 * the page, or an old page_mapping() and the page's own
167 * page_mapping() has gone NULL.
168 * The ->sync_page() address_space operation must tolerate
169 * page_mapping() going NULL. By an amazing coincidence,
170 * this comes about because none of the users of the page
171 * in the ->sync_page() methods make essential use of the
172 * page_mapping(), merely passing the page down to the backing
173 * device's unplug functions when it's non-NULL, which in turn
174 * ignore it for all cases but swap, where only page_private(page) is
175 * of interest. When page_mapping() does go NULL, the entire
176 * call stack gracefully ignores the page and returns.
180 mapping = page_mapping(page);
181 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
182 mapping->a_ops->sync_page(page);
187 static int sync_page_killable(void *word)
190 return fatal_signal_pending(current) ? -EINTR : 0;
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping: address space structure to write
196 * @start: offset in bytes where the range starts
197 * @end: offset in bytes where the range ends (inclusive)
198 * @sync_mode: enable synchronous operation
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback. The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
208 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
209 loff_t end, int sync_mode)
212 struct writeback_control wbc = {
213 .sync_mode = sync_mode,
214 .nr_to_write = mapping->nrpages * 2,
215 .range_start = start,
219 if (!mapping_cap_writeback_dirty(mapping))
222 ret = do_writepages(mapping, &wbc);
226 static inline int __filemap_fdatawrite(struct address_space *mapping,
229 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
232 int filemap_fdatawrite(struct address_space *mapping)
234 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 EXPORT_SYMBOL(filemap_fdatawrite);
238 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
241 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
277 pagevec_init(&pvec, 0);
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
292 wait_on_page_writeback(page);
296 pagevec_release(&pvec);
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
339 ret = wait_on_page_writeback_range(mapping, start, end);
342 EXPORT_SYMBOL(sync_page_range);
345 * sync_page_range_nolock
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 ret = wait_on_page_writeback_range(mapping, start, end);
371 EXPORT_SYMBOL(sync_page_range_nolock);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 EXPORT_SYMBOL(filemap_fdatawait);
392 int filemap_write_and_wait(struct address_space *mapping)
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
405 int err2 = filemap_fdatawait(mapping);
412 EXPORT_SYMBOL(filemap_write_and_wait);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 /* See comment of filemap_write_and_wait() */
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
446 * add_to_page_cache - add newly allocated pagecache pages
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add newly allocated pagecache pages;
453 * the page is new, so we can just run SetPageLocked() against it.
454 * The other page state flags were set by rmqueue().
456 * This function does not add the page to the LRU. The caller must do that.
458 int add_to_page_cache(struct page *page, struct address_space *mapping,
459 pgoff_t offset, gfp_t gfp_mask)
461 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
464 write_lock_irq(&mapping->tree_lock);
465 error = radix_tree_insert(&mapping->page_tree, offset, page);
467 page_cache_get(page);
469 page->mapping = mapping;
470 page->index = offset;
472 __inc_zone_page_state(page, NR_FILE_PAGES);
474 write_unlock_irq(&mapping->tree_lock);
475 radix_tree_preload_end();
479 EXPORT_SYMBOL(add_to_page_cache);
481 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
482 pgoff_t offset, gfp_t gfp_mask)
484 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
491 struct page *__page_cache_alloc(gfp_t gfp)
493 if (cpuset_do_page_mem_spread()) {
494 int n = cpuset_mem_spread_node();
495 return alloc_pages_node(n, gfp, 0);
497 return alloc_pages(gfp, 0);
499 EXPORT_SYMBOL(__page_cache_alloc);
502 static int __sleep_on_page_lock(void *word)
509 * In order to wait for pages to become available there must be
510 * waitqueues associated with pages. By using a hash table of
511 * waitqueues where the bucket discipline is to maintain all
512 * waiters on the same queue and wake all when any of the pages
513 * become available, and for the woken contexts to check to be
514 * sure the appropriate page became available, this saves space
515 * at a cost of "thundering herd" phenomena during rare hash
518 static wait_queue_head_t *page_waitqueue(struct page *page)
520 const struct zone *zone = page_zone(page);
522 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
525 static inline void wake_up_page(struct page *page, int bit)
527 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
530 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
532 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
534 if (test_bit(bit_nr, &page->flags))
535 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
536 TASK_UNINTERRUPTIBLE);
538 EXPORT_SYMBOL(wait_on_page_bit);
541 * unlock_page - unlock a locked page
544 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
545 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
546 * mechananism between PageLocked pages and PageWriteback pages is shared.
547 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
549 * The first mb is necessary to safely close the critical section opened by the
550 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
551 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
552 * parallel wait_on_page_locked()).
554 void fastcall unlock_page(struct page *page)
556 smp_mb__before_clear_bit();
557 if (!TestClearPageLocked(page))
559 smp_mb__after_clear_bit();
560 wake_up_page(page, PG_locked);
562 EXPORT_SYMBOL(unlock_page);
565 * end_page_writeback - end writeback against a page
568 void end_page_writeback(struct page *page)
570 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
571 if (!test_clear_page_writeback(page))
574 smp_mb__after_clear_bit();
575 wake_up_page(page, PG_writeback);
577 EXPORT_SYMBOL(end_page_writeback);
580 * __lock_page - get a lock on the page, assuming we need to sleep to get it
581 * @page: the page to lock
583 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
584 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
585 * chances are that on the second loop, the block layer's plug list is empty,
586 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
588 void fastcall __lock_page(struct page *page)
590 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
592 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
593 TASK_UNINTERRUPTIBLE);
595 EXPORT_SYMBOL(__lock_page);
597 int fastcall __lock_page_killable(struct page *page)
599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601 return __wait_on_bit_lock(page_waitqueue(page), &wait,
602 sync_page_killable, TASK_KILLABLE);
606 * Variant of lock_page that does not require the caller to hold a reference
607 * on the page's mapping.
609 void fastcall __lock_page_nosync(struct page *page)
611 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
612 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
613 TASK_UNINTERRUPTIBLE);
617 * find_get_page - find and get a page reference
618 * @mapping: the address_space to search
619 * @offset: the page index
621 * Is there a pagecache struct page at the given (mapping, offset) tuple?
622 * If yes, increment its refcount and return it; if no, return NULL.
624 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
628 read_lock_irq(&mapping->tree_lock);
629 page = radix_tree_lookup(&mapping->page_tree, offset);
631 page_cache_get(page);
632 read_unlock_irq(&mapping->tree_lock);
635 EXPORT_SYMBOL(find_get_page);
638 * find_lock_page - locate, pin and lock a pagecache page
639 * @mapping: the address_space to search
640 * @offset: the page index
642 * Locates the desired pagecache page, locks it, increments its reference
643 * count and returns its address.
645 * Returns zero if the page was not present. find_lock_page() may sleep.
647 struct page *find_lock_page(struct address_space *mapping,
653 read_lock_irq(&mapping->tree_lock);
654 page = radix_tree_lookup(&mapping->page_tree, offset);
656 page_cache_get(page);
657 if (TestSetPageLocked(page)) {
658 read_unlock_irq(&mapping->tree_lock);
661 /* Has the page been truncated while we slept? */
662 if (unlikely(page->mapping != mapping)) {
664 page_cache_release(page);
667 VM_BUG_ON(page->index != offset);
671 read_unlock_irq(&mapping->tree_lock);
675 EXPORT_SYMBOL(find_lock_page);
678 * find_or_create_page - locate or add a pagecache page
679 * @mapping: the page's address_space
680 * @index: the page's index into the mapping
681 * @gfp_mask: page allocation mode
683 * Locates a page in the pagecache. If the page is not present, a new page
684 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
685 * LRU list. The returned page is locked and has its reference count
688 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
691 * find_or_create_page() returns the desired page's address, or zero on
694 struct page *find_or_create_page(struct address_space *mapping,
695 pgoff_t index, gfp_t gfp_mask)
700 page = find_lock_page(mapping, index);
702 page = __page_cache_alloc(gfp_mask);
705 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
707 page_cache_release(page);
715 EXPORT_SYMBOL(find_or_create_page);
718 * find_get_pages - gang pagecache lookup
719 * @mapping: The address_space to search
720 * @start: The starting page index
721 * @nr_pages: The maximum number of pages
722 * @pages: Where the resulting pages are placed
724 * find_get_pages() will search for and return a group of up to
725 * @nr_pages pages in the mapping. The pages are placed at @pages.
726 * find_get_pages() takes a reference against the returned pages.
728 * The search returns a group of mapping-contiguous pages with ascending
729 * indexes. There may be holes in the indices due to not-present pages.
731 * find_get_pages() returns the number of pages which were found.
733 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
734 unsigned int nr_pages, struct page **pages)
739 read_lock_irq(&mapping->tree_lock);
740 ret = radix_tree_gang_lookup(&mapping->page_tree,
741 (void **)pages, start, nr_pages);
742 for (i = 0; i < ret; i++)
743 page_cache_get(pages[i]);
744 read_unlock_irq(&mapping->tree_lock);
749 * find_get_pages_contig - gang contiguous pagecache lookup
750 * @mapping: The address_space to search
751 * @index: The starting page index
752 * @nr_pages: The maximum number of pages
753 * @pages: Where the resulting pages are placed
755 * find_get_pages_contig() works exactly like find_get_pages(), except
756 * that the returned number of pages are guaranteed to be contiguous.
758 * find_get_pages_contig() returns the number of pages which were found.
760 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
761 unsigned int nr_pages, struct page **pages)
766 read_lock_irq(&mapping->tree_lock);
767 ret = radix_tree_gang_lookup(&mapping->page_tree,
768 (void **)pages, index, nr_pages);
769 for (i = 0; i < ret; i++) {
770 if (pages[i]->mapping == NULL || pages[i]->index != index)
773 page_cache_get(pages[i]);
776 read_unlock_irq(&mapping->tree_lock);
779 EXPORT_SYMBOL(find_get_pages_contig);
782 * find_get_pages_tag - find and return pages that match @tag
783 * @mapping: the address_space to search
784 * @index: the starting page index
785 * @tag: the tag index
786 * @nr_pages: the maximum number of pages
787 * @pages: where the resulting pages are placed
789 * Like find_get_pages, except we only return pages which are tagged with
790 * @tag. We update @index to index the next page for the traversal.
792 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
793 int tag, unsigned int nr_pages, struct page **pages)
798 read_lock_irq(&mapping->tree_lock);
799 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
800 (void **)pages, *index, nr_pages, tag);
801 for (i = 0; i < ret; i++)
802 page_cache_get(pages[i]);
804 *index = pages[ret - 1]->index + 1;
805 read_unlock_irq(&mapping->tree_lock);
808 EXPORT_SYMBOL(find_get_pages_tag);
811 * grab_cache_page_nowait - returns locked page at given index in given cache
812 * @mapping: target address_space
813 * @index: the page index
815 * Same as grab_cache_page(), but do not wait if the page is unavailable.
816 * This is intended for speculative data generators, where the data can
817 * be regenerated if the page couldn't be grabbed. This routine should
818 * be safe to call while holding the lock for another page.
820 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
821 * and deadlock against the caller's locked page.
824 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
826 struct page *page = find_get_page(mapping, index);
829 if (!TestSetPageLocked(page))
831 page_cache_release(page);
834 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
835 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
836 page_cache_release(page);
841 EXPORT_SYMBOL(grab_cache_page_nowait);
844 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
845 * a _large_ part of the i/o request. Imagine the worst scenario:
847 * ---R__________________________________________B__________
848 * ^ reading here ^ bad block(assume 4k)
850 * read(R) => miss => readahead(R...B) => media error => frustrating retries
851 * => failing the whole request => read(R) => read(R+1) =>
852 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
853 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
854 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
856 * It is going insane. Fix it by quickly scaling down the readahead size.
858 static void shrink_readahead_size_eio(struct file *filp,
859 struct file_ra_state *ra)
868 * do_generic_mapping_read - generic file read routine
869 * @mapping: address_space to be read
870 * @ra: file's readahead state
871 * @filp: the file to read
872 * @ppos: current file position
873 * @desc: read_descriptor
874 * @actor: read method
876 * This is a generic file read routine, and uses the
877 * mapping->a_ops->readpage() function for the actual low-level stuff.
879 * This is really ugly. But the goto's actually try to clarify some
880 * of the logic when it comes to error handling etc.
882 * Note the struct file* is only passed for the use of readpage.
885 void do_generic_mapping_read(struct address_space *mapping,
886 struct file_ra_state *ra,
889 read_descriptor_t *desc,
892 struct inode *inode = mapping->host;
896 unsigned long offset; /* offset into pagecache page */
897 unsigned int prev_offset;
900 index = *ppos >> PAGE_CACHE_SHIFT;
901 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
902 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
903 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
904 offset = *ppos & ~PAGE_CACHE_MASK;
910 unsigned long nr, ret;
914 page = find_get_page(mapping, index);
916 page_cache_sync_readahead(mapping,
918 index, last_index - index);
919 page = find_get_page(mapping, index);
920 if (unlikely(page == NULL))
923 if (PageReadahead(page)) {
924 page_cache_async_readahead(mapping,
926 index, last_index - index);
928 if (!PageUptodate(page))
929 goto page_not_up_to_date;
932 * i_size must be checked after we know the page is Uptodate.
934 * Checking i_size after the check allows us to calculate
935 * the correct value for "nr", which means the zero-filled
936 * part of the page is not copied back to userspace (unless
937 * another truncate extends the file - this is desired though).
940 isize = i_size_read(inode);
941 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
942 if (unlikely(!isize || index > end_index)) {
943 page_cache_release(page);
947 /* nr is the maximum number of bytes to copy from this page */
948 nr = PAGE_CACHE_SIZE;
949 if (index == end_index) {
950 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
952 page_cache_release(page);
958 /* If users can be writing to this page using arbitrary
959 * virtual addresses, take care about potential aliasing
960 * before reading the page on the kernel side.
962 if (mapping_writably_mapped(mapping))
963 flush_dcache_page(page);
966 * When a sequential read accesses a page several times,
967 * only mark it as accessed the first time.
969 if (prev_index != index || offset != prev_offset)
970 mark_page_accessed(page);
974 * Ok, we have the page, and it's up-to-date, so
975 * now we can copy it to user space...
977 * The actor routine returns how many bytes were actually used..
978 * NOTE! This may not be the same as how much of a user buffer
979 * we filled up (we may be padding etc), so we can only update
980 * "pos" here (the actor routine has to update the user buffer
981 * pointers and the remaining count).
983 ret = actor(desc, page, offset, nr);
985 index += offset >> PAGE_CACHE_SHIFT;
986 offset &= ~PAGE_CACHE_MASK;
987 prev_offset = offset;
989 page_cache_release(page);
990 if (ret == nr && desc->count)
995 /* Get exclusive access to the page ... */
996 if (lock_page_killable(page))
999 /* Did it get truncated before we got the lock? */
1000 if (!page->mapping) {
1002 page_cache_release(page);
1006 /* Did somebody else fill it already? */
1007 if (PageUptodate(page)) {
1013 /* Start the actual read. The read will unlock the page. */
1014 error = mapping->a_ops->readpage(filp, page);
1016 if (unlikely(error)) {
1017 if (error == AOP_TRUNCATED_PAGE) {
1018 page_cache_release(page);
1021 goto readpage_error;
1024 if (!PageUptodate(page)) {
1025 if (lock_page_killable(page))
1027 if (!PageUptodate(page)) {
1028 if (page->mapping == NULL) {
1030 * invalidate_inode_pages got it
1033 page_cache_release(page);
1037 shrink_readahead_size_eio(filp, ra);
1048 /* UHHUH! A synchronous read error occurred. Report it */
1049 desc->error = error;
1050 page_cache_release(page);
1055 * Ok, it wasn't cached, so we need to create a new
1058 page = page_cache_alloc_cold(mapping);
1060 desc->error = -ENOMEM;
1063 error = add_to_page_cache_lru(page, mapping,
1066 page_cache_release(page);
1067 if (error == -EEXIST)
1069 desc->error = error;
1076 ra->prev_pos = prev_index;
1077 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1078 ra->prev_pos |= prev_offset;
1080 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1082 file_accessed(filp);
1084 EXPORT_SYMBOL(do_generic_mapping_read);
1086 int file_read_actor(read_descriptor_t *desc, struct page *page,
1087 unsigned long offset, unsigned long size)
1090 unsigned long left, count = desc->count;
1096 * Faults on the destination of a read are common, so do it before
1099 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1100 kaddr = kmap_atomic(page, KM_USER0);
1101 left = __copy_to_user_inatomic(desc->arg.buf,
1102 kaddr + offset, size);
1103 kunmap_atomic(kaddr, KM_USER0);
1108 /* Do it the slow way */
1110 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1115 desc->error = -EFAULT;
1118 desc->count = count - size;
1119 desc->written += size;
1120 desc->arg.buf += size;
1125 * Performs necessary checks before doing a write
1126 * @iov: io vector request
1127 * @nr_segs: number of segments in the iovec
1128 * @count: number of bytes to write
1129 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1131 * Adjust number of segments and amount of bytes to write (nr_segs should be
1132 * properly initialized first). Returns appropriate error code that caller
1133 * should return or zero in case that write should be allowed.
1135 int generic_segment_checks(const struct iovec *iov,
1136 unsigned long *nr_segs, size_t *count, int access_flags)
1140 for (seg = 0; seg < *nr_segs; seg++) {
1141 const struct iovec *iv = &iov[seg];
1144 * If any segment has a negative length, or the cumulative
1145 * length ever wraps negative then return -EINVAL.
1148 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1150 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1155 cnt -= iv->iov_len; /* This segment is no good */
1161 EXPORT_SYMBOL(generic_segment_checks);
1164 * generic_file_aio_read - generic filesystem read routine
1165 * @iocb: kernel I/O control block
1166 * @iov: io vector request
1167 * @nr_segs: number of segments in the iovec
1168 * @pos: current file position
1170 * This is the "read()" routine for all filesystems
1171 * that can use the page cache directly.
1174 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1175 unsigned long nr_segs, loff_t pos)
1177 struct file *filp = iocb->ki_filp;
1181 loff_t *ppos = &iocb->ki_pos;
1184 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1188 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1189 if (filp->f_flags & O_DIRECT) {
1191 struct address_space *mapping;
1192 struct inode *inode;
1194 mapping = filp->f_mapping;
1195 inode = mapping->host;
1198 goto out; /* skip atime */
1199 size = i_size_read(inode);
1201 retval = generic_file_direct_IO(READ, iocb,
1204 *ppos = pos + retval;
1206 if (likely(retval != 0)) {
1207 file_accessed(filp);
1214 for (seg = 0; seg < nr_segs; seg++) {
1215 read_descriptor_t desc;
1218 desc.arg.buf = iov[seg].iov_base;
1219 desc.count = iov[seg].iov_len;
1220 if (desc.count == 0)
1223 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1224 retval += desc.written;
1226 retval = retval ?: desc.error;
1236 EXPORT_SYMBOL(generic_file_aio_read);
1239 do_readahead(struct address_space *mapping, struct file *filp,
1240 pgoff_t index, unsigned long nr)
1242 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1245 force_page_cache_readahead(mapping, filp, index,
1246 max_sane_readahead(nr));
1250 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1258 if (file->f_mode & FMODE_READ) {
1259 struct address_space *mapping = file->f_mapping;
1260 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1261 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1262 unsigned long len = end - start + 1;
1263 ret = do_readahead(mapping, file, start, len);
1272 * page_cache_read - adds requested page to the page cache if not already there
1273 * @file: file to read
1274 * @offset: page index
1276 * This adds the requested page to the page cache if it isn't already there,
1277 * and schedules an I/O to read in its contents from disk.
1279 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1281 struct address_space *mapping = file->f_mapping;
1286 page = page_cache_alloc_cold(mapping);
1290 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1292 ret = mapping->a_ops->readpage(file, page);
1293 else if (ret == -EEXIST)
1294 ret = 0; /* losing race to add is OK */
1296 page_cache_release(page);
1298 } while (ret == AOP_TRUNCATED_PAGE);
1303 #define MMAP_LOTSAMISS (100)
1306 * filemap_fault - read in file data for page fault handling
1307 * @vma: vma in which the fault was taken
1308 * @vmf: struct vm_fault containing details of the fault
1310 * filemap_fault() is invoked via the vma operations vector for a
1311 * mapped memory region to read in file data during a page fault.
1313 * The goto's are kind of ugly, but this streamlines the normal case of having
1314 * it in the page cache, and handles the special cases reasonably without
1315 * having a lot of duplicated code.
1317 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1320 struct file *file = vma->vm_file;
1321 struct address_space *mapping = file->f_mapping;
1322 struct file_ra_state *ra = &file->f_ra;
1323 struct inode *inode = mapping->host;
1326 int did_readaround = 0;
1329 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1330 if (vmf->pgoff >= size)
1331 return VM_FAULT_SIGBUS;
1333 /* If we don't want any read-ahead, don't bother */
1334 if (VM_RandomReadHint(vma))
1335 goto no_cached_page;
1338 * Do we have something in the page cache already?
1341 page = find_lock_page(mapping, vmf->pgoff);
1343 * For sequential accesses, we use the generic readahead logic.
1345 if (VM_SequentialReadHint(vma)) {
1347 page_cache_sync_readahead(mapping, ra, file,
1349 page = find_lock_page(mapping, vmf->pgoff);
1351 goto no_cached_page;
1353 if (PageReadahead(page)) {
1354 page_cache_async_readahead(mapping, ra, file, page,
1360 unsigned long ra_pages;
1365 * Do we miss much more than hit in this file? If so,
1366 * stop bothering with read-ahead. It will only hurt.
1368 if (ra->mmap_miss > MMAP_LOTSAMISS)
1369 goto no_cached_page;
1372 * To keep the pgmajfault counter straight, we need to
1373 * check did_readaround, as this is an inner loop.
1375 if (!did_readaround) {
1376 ret = VM_FAULT_MAJOR;
1377 count_vm_event(PGMAJFAULT);
1380 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1384 if (vmf->pgoff > ra_pages / 2)
1385 start = vmf->pgoff - ra_pages / 2;
1386 do_page_cache_readahead(mapping, file, start, ra_pages);
1388 page = find_lock_page(mapping, vmf->pgoff);
1390 goto no_cached_page;
1393 if (!did_readaround)
1397 * We have a locked page in the page cache, now we need to check
1398 * that it's up-to-date. If not, it is going to be due to an error.
1400 if (unlikely(!PageUptodate(page)))
1401 goto page_not_uptodate;
1403 /* Must recheck i_size under page lock */
1404 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1405 if (unlikely(vmf->pgoff >= size)) {
1407 page_cache_release(page);
1408 return VM_FAULT_SIGBUS;
1412 * Found the page and have a reference on it.
1414 mark_page_accessed(page);
1415 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1417 return ret | VM_FAULT_LOCKED;
1421 * We're only likely to ever get here if MADV_RANDOM is in
1424 error = page_cache_read(file, vmf->pgoff);
1427 * The page we want has now been added to the page cache.
1428 * In the unlikely event that someone removed it in the
1429 * meantime, we'll just come back here and read it again.
1435 * An error return from page_cache_read can result if the
1436 * system is low on memory, or a problem occurs while trying
1439 if (error == -ENOMEM)
1440 return VM_FAULT_OOM;
1441 return VM_FAULT_SIGBUS;
1445 if (!did_readaround) {
1446 ret = VM_FAULT_MAJOR;
1447 count_vm_event(PGMAJFAULT);
1451 * Umm, take care of errors if the page isn't up-to-date.
1452 * Try to re-read it _once_. We do this synchronously,
1453 * because there really aren't any performance issues here
1454 * and we need to check for errors.
1456 ClearPageError(page);
1457 error = mapping->a_ops->readpage(file, page);
1458 page_cache_release(page);
1460 if (!error || error == AOP_TRUNCATED_PAGE)
1463 /* Things didn't work out. Return zero to tell the mm layer so. */
1464 shrink_readahead_size_eio(file, ra);
1465 return VM_FAULT_SIGBUS;
1467 EXPORT_SYMBOL(filemap_fault);
1469 struct vm_operations_struct generic_file_vm_ops = {
1470 .fault = filemap_fault,
1473 /* This is used for a general mmap of a disk file */
1475 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1477 struct address_space *mapping = file->f_mapping;
1479 if (!mapping->a_ops->readpage)
1481 file_accessed(file);
1482 vma->vm_ops = &generic_file_vm_ops;
1483 vma->vm_flags |= VM_CAN_NONLINEAR;
1488 * This is for filesystems which do not implement ->writepage.
1490 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1492 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1494 return generic_file_mmap(file, vma);
1497 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1501 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1505 #endif /* CONFIG_MMU */
1507 EXPORT_SYMBOL(generic_file_mmap);
1508 EXPORT_SYMBOL(generic_file_readonly_mmap);
1510 static struct page *__read_cache_page(struct address_space *mapping,
1512 int (*filler)(void *,struct page*),
1518 page = find_get_page(mapping, index);
1520 page = page_cache_alloc_cold(mapping);
1522 return ERR_PTR(-ENOMEM);
1523 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1524 if (unlikely(err)) {
1525 page_cache_release(page);
1528 /* Presumably ENOMEM for radix tree node */
1529 return ERR_PTR(err);
1531 err = filler(data, page);
1533 page_cache_release(page);
1534 page = ERR_PTR(err);
1541 * Same as read_cache_page, but don't wait for page to become unlocked
1542 * after submitting it to the filler.
1544 struct page *read_cache_page_async(struct address_space *mapping,
1546 int (*filler)(void *,struct page*),
1553 page = __read_cache_page(mapping, index, filler, data);
1556 if (PageUptodate(page))
1560 if (!page->mapping) {
1562 page_cache_release(page);
1565 if (PageUptodate(page)) {
1569 err = filler(data, page);
1571 page_cache_release(page);
1572 return ERR_PTR(err);
1575 mark_page_accessed(page);
1578 EXPORT_SYMBOL(read_cache_page_async);
1581 * read_cache_page - read into page cache, fill it if needed
1582 * @mapping: the page's address_space
1583 * @index: the page index
1584 * @filler: function to perform the read
1585 * @data: destination for read data
1587 * Read into the page cache. If a page already exists, and PageUptodate() is
1588 * not set, try to fill the page then wait for it to become unlocked.
1590 * If the page does not get brought uptodate, return -EIO.
1592 struct page *read_cache_page(struct address_space *mapping,
1594 int (*filler)(void *,struct page*),
1599 page = read_cache_page_async(mapping, index, filler, data);
1602 wait_on_page_locked(page);
1603 if (!PageUptodate(page)) {
1604 page_cache_release(page);
1605 page = ERR_PTR(-EIO);
1610 EXPORT_SYMBOL(read_cache_page);
1613 * The logic we want is
1615 * if suid or (sgid and xgrp)
1618 int should_remove_suid(struct dentry *dentry)
1620 mode_t mode = dentry->d_inode->i_mode;
1623 /* suid always must be killed */
1624 if (unlikely(mode & S_ISUID))
1625 kill = ATTR_KILL_SUID;
1628 * sgid without any exec bits is just a mandatory locking mark; leave
1629 * it alone. If some exec bits are set, it's a real sgid; kill it.
1631 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1632 kill |= ATTR_KILL_SGID;
1634 if (unlikely(kill && !capable(CAP_FSETID)))
1639 EXPORT_SYMBOL(should_remove_suid);
1641 int __remove_suid(struct dentry *dentry, int kill)
1643 struct iattr newattrs;
1645 newattrs.ia_valid = ATTR_FORCE | kill;
1646 return notify_change(dentry, &newattrs);
1649 int remove_suid(struct dentry *dentry)
1651 int killsuid = should_remove_suid(dentry);
1652 int killpriv = security_inode_need_killpriv(dentry);
1658 error = security_inode_killpriv(dentry);
1659 if (!error && killsuid)
1660 error = __remove_suid(dentry, killsuid);
1664 EXPORT_SYMBOL(remove_suid);
1666 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1667 const struct iovec *iov, size_t base, size_t bytes)
1669 size_t copied = 0, left = 0;
1672 char __user *buf = iov->iov_base + base;
1673 int copy = min(bytes, iov->iov_len - base);
1676 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1685 return copied - left;
1689 * Copy as much as we can into the page and return the number of bytes which
1690 * were sucessfully copied. If a fault is encountered then return the number of
1691 * bytes which were copied.
1693 size_t iov_iter_copy_from_user_atomic(struct page *page,
1694 struct iov_iter *i, unsigned long offset, size_t bytes)
1699 BUG_ON(!in_atomic());
1700 kaddr = kmap_atomic(page, KM_USER0);
1701 if (likely(i->nr_segs == 1)) {
1703 char __user *buf = i->iov->iov_base + i->iov_offset;
1704 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1706 copied = bytes - left;
1708 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1709 i->iov, i->iov_offset, bytes);
1711 kunmap_atomic(kaddr, KM_USER0);
1715 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1718 * This has the same sideeffects and return value as
1719 * iov_iter_copy_from_user_atomic().
1720 * The difference is that it attempts to resolve faults.
1721 * Page must not be locked.
1723 size_t iov_iter_copy_from_user(struct page *page,
1724 struct iov_iter *i, unsigned long offset, size_t bytes)
1730 if (likely(i->nr_segs == 1)) {
1732 char __user *buf = i->iov->iov_base + i->iov_offset;
1733 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1734 copied = bytes - left;
1736 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1737 i->iov, i->iov_offset, bytes);
1742 EXPORT_SYMBOL(iov_iter_copy_from_user);
1744 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1746 if (likely(i->nr_segs == 1)) {
1747 i->iov_offset += bytes;
1749 const struct iovec *iov = i->iov;
1750 size_t base = i->iov_offset;
1753 * The !iov->iov_len check ensures we skip over unlikely
1754 * zero-length segments.
1756 while (bytes || !iov->iov_len) {
1757 int copy = min(bytes, iov->iov_len - base);
1761 if (iov->iov_len == base) {
1767 i->iov_offset = base;
1771 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1773 BUG_ON(i->count < bytes);
1775 __iov_iter_advance_iov(i, bytes);
1778 EXPORT_SYMBOL(iov_iter_advance);
1781 * Fault in the first iovec of the given iov_iter, to a maximum length
1782 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1783 * accessed (ie. because it is an invalid address).
1785 * writev-intensive code may want this to prefault several iovecs -- that
1786 * would be possible (callers must not rely on the fact that _only_ the
1787 * first iovec will be faulted with the current implementation).
1789 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1791 char __user *buf = i->iov->iov_base + i->iov_offset;
1792 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1793 return fault_in_pages_readable(buf, bytes);
1795 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1798 * Return the count of just the current iov_iter segment.
1800 size_t iov_iter_single_seg_count(struct iov_iter *i)
1802 const struct iovec *iov = i->iov;
1803 if (i->nr_segs == 1)
1806 return min(i->count, iov->iov_len - i->iov_offset);
1808 EXPORT_SYMBOL(iov_iter_single_seg_count);
1811 * Performs necessary checks before doing a write
1813 * Can adjust writing position or amount of bytes to write.
1814 * Returns appropriate error code that caller should return or
1815 * zero in case that write should be allowed.
1817 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1819 struct inode *inode = file->f_mapping->host;
1820 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1822 if (unlikely(*pos < 0))
1826 /* FIXME: this is for backwards compatibility with 2.4 */
1827 if (file->f_flags & O_APPEND)
1828 *pos = i_size_read(inode);
1830 if (limit != RLIM_INFINITY) {
1831 if (*pos >= limit) {
1832 send_sig(SIGXFSZ, current, 0);
1835 if (*count > limit - (typeof(limit))*pos) {
1836 *count = limit - (typeof(limit))*pos;
1844 if (unlikely(*pos + *count > MAX_NON_LFS &&
1845 !(file->f_flags & O_LARGEFILE))) {
1846 if (*pos >= MAX_NON_LFS) {
1849 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1850 *count = MAX_NON_LFS - (unsigned long)*pos;
1855 * Are we about to exceed the fs block limit ?
1857 * If we have written data it becomes a short write. If we have
1858 * exceeded without writing data we send a signal and return EFBIG.
1859 * Linus frestrict idea will clean these up nicely..
1861 if (likely(!isblk)) {
1862 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1863 if (*count || *pos > inode->i_sb->s_maxbytes) {
1866 /* zero-length writes at ->s_maxbytes are OK */
1869 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1870 *count = inode->i_sb->s_maxbytes - *pos;
1874 if (bdev_read_only(I_BDEV(inode)))
1876 isize = i_size_read(inode);
1877 if (*pos >= isize) {
1878 if (*count || *pos > isize)
1882 if (*pos + *count > isize)
1883 *count = isize - *pos;
1890 EXPORT_SYMBOL(generic_write_checks);
1892 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1893 loff_t pos, unsigned len, unsigned flags,
1894 struct page **pagep, void **fsdata)
1896 const struct address_space_operations *aops = mapping->a_ops;
1898 if (aops->write_begin) {
1899 return aops->write_begin(file, mapping, pos, len, flags,
1903 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1904 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1905 struct inode *inode = mapping->host;
1908 page = __grab_cache_page(mapping, index);
1913 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1915 * There is no way to resolve a short write situation
1916 * for a !Uptodate page (except by double copying in
1917 * the caller done by generic_perform_write_2copy).
1919 * Instead, we have to bring it uptodate here.
1921 ret = aops->readpage(file, page);
1922 page_cache_release(page);
1924 if (ret == AOP_TRUNCATED_PAGE)
1931 ret = aops->prepare_write(file, page, offset, offset+len);
1934 page_cache_release(page);
1935 if (pos + len > inode->i_size)
1936 vmtruncate(inode, inode->i_size);
1941 EXPORT_SYMBOL(pagecache_write_begin);
1943 int pagecache_write_end(struct file *file, struct address_space *mapping,
1944 loff_t pos, unsigned len, unsigned copied,
1945 struct page *page, void *fsdata)
1947 const struct address_space_operations *aops = mapping->a_ops;
1950 if (aops->write_end) {
1951 mark_page_accessed(page);
1952 ret = aops->write_end(file, mapping, pos, len, copied,
1955 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1956 struct inode *inode = mapping->host;
1958 flush_dcache_page(page);
1959 ret = aops->commit_write(file, page, offset, offset+len);
1961 mark_page_accessed(page);
1962 page_cache_release(page);
1965 if (pos + len > inode->i_size)
1966 vmtruncate(inode, inode->i_size);
1968 ret = min_t(size_t, copied, ret);
1975 EXPORT_SYMBOL(pagecache_write_end);
1978 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1979 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1980 size_t count, size_t ocount)
1982 struct file *file = iocb->ki_filp;
1983 struct address_space *mapping = file->f_mapping;
1984 struct inode *inode = mapping->host;
1987 if (count != ocount)
1988 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1990 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1992 loff_t end = pos + written;
1993 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1994 i_size_write(inode, end);
1995 mark_inode_dirty(inode);
2001 * Sync the fs metadata but not the minor inode changes and
2002 * of course not the data as we did direct DMA for the IO.
2003 * i_mutex is held, which protects generic_osync_inode() from
2004 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2006 if ((written >= 0 || written == -EIOCBQUEUED) &&
2007 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2008 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2014 EXPORT_SYMBOL(generic_file_direct_write);
2017 * Find or create a page at the given pagecache position. Return the locked
2018 * page. This function is specifically for buffered writes.
2020 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2025 page = find_lock_page(mapping, index);
2029 page = page_cache_alloc(mapping);
2032 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2033 if (unlikely(status)) {
2034 page_cache_release(page);
2035 if (status == -EEXIST)
2041 EXPORT_SYMBOL(__grab_cache_page);
2043 static ssize_t generic_perform_write_2copy(struct file *file,
2044 struct iov_iter *i, loff_t pos)
2046 struct address_space *mapping = file->f_mapping;
2047 const struct address_space_operations *a_ops = mapping->a_ops;
2048 struct inode *inode = mapping->host;
2050 ssize_t written = 0;
2053 struct page *src_page;
2055 pgoff_t index; /* Pagecache index for current page */
2056 unsigned long offset; /* Offset into pagecache page */
2057 unsigned long bytes; /* Bytes to write to page */
2058 size_t copied; /* Bytes copied from user */
2060 offset = (pos & (PAGE_CACHE_SIZE - 1));
2061 index = pos >> PAGE_CACHE_SHIFT;
2062 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2066 * a non-NULL src_page indicates that we're doing the
2067 * copy via get_user_pages and kmap.
2072 * Bring in the user page that we will copy from _first_.
2073 * Otherwise there's a nasty deadlock on copying from the
2074 * same page as we're writing to, without it being marked
2077 * Not only is this an optimisation, but it is also required
2078 * to check that the address is actually valid, when atomic
2079 * usercopies are used, below.
2081 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2086 page = __grab_cache_page(mapping, index);
2093 * non-uptodate pages cannot cope with short copies, and we
2094 * cannot take a pagefault with the destination page locked.
2095 * So pin the source page to copy it.
2097 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2100 src_page = alloc_page(GFP_KERNEL);
2102 page_cache_release(page);
2108 * Cannot get_user_pages with a page locked for the
2109 * same reason as we can't take a page fault with a
2110 * page locked (as explained below).
2112 copied = iov_iter_copy_from_user(src_page, i,
2114 if (unlikely(copied == 0)) {
2116 page_cache_release(page);
2117 page_cache_release(src_page);
2124 * Can't handle the page going uptodate here, because
2125 * that means we would use non-atomic usercopies, which
2126 * zero out the tail of the page, which can cause
2127 * zeroes to become transiently visible. We could just
2128 * use a non-zeroing copy, but the APIs aren't too
2131 if (unlikely(!page->mapping || PageUptodate(page))) {
2133 page_cache_release(page);
2134 page_cache_release(src_page);
2139 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2140 if (unlikely(status))
2141 goto fs_write_aop_error;
2145 * Must not enter the pagefault handler here, because
2146 * we hold the page lock, so we might recursively
2147 * deadlock on the same lock, or get an ABBA deadlock
2148 * against a different lock, or against the mmap_sem
2149 * (which nests outside the page lock). So increment
2150 * preempt count, and use _atomic usercopies.
2152 * The page is uptodate so we are OK to encounter a
2153 * short copy: if unmodified parts of the page are
2154 * marked dirty and written out to disk, it doesn't
2157 pagefault_disable();
2158 copied = iov_iter_copy_from_user_atomic(page, i,
2163 src = kmap_atomic(src_page, KM_USER0);
2164 dst = kmap_atomic(page, KM_USER1);
2165 memcpy(dst + offset, src + offset, bytes);
2166 kunmap_atomic(dst, KM_USER1);
2167 kunmap_atomic(src, KM_USER0);
2170 flush_dcache_page(page);
2172 status = a_ops->commit_write(file, page, offset, offset+bytes);
2173 if (unlikely(status < 0))
2174 goto fs_write_aop_error;
2175 if (unlikely(status > 0)) /* filesystem did partial write */
2176 copied = min_t(size_t, copied, status);
2179 mark_page_accessed(page);
2180 page_cache_release(page);
2182 page_cache_release(src_page);
2184 iov_iter_advance(i, copied);
2188 balance_dirty_pages_ratelimited(mapping);
2194 page_cache_release(page);
2196 page_cache_release(src_page);
2199 * prepare_write() may have instantiated a few blocks
2200 * outside i_size. Trim these off again. Don't need
2201 * i_size_read because we hold i_mutex.
2203 if (pos + bytes > inode->i_size)
2204 vmtruncate(inode, inode->i_size);
2206 } while (iov_iter_count(i));
2208 return written ? written : status;
2211 static ssize_t generic_perform_write(struct file *file,
2212 struct iov_iter *i, loff_t pos)
2214 struct address_space *mapping = file->f_mapping;
2215 const struct address_space_operations *a_ops = mapping->a_ops;
2217 ssize_t written = 0;
2218 unsigned int flags = 0;
2221 * Copies from kernel address space cannot fail (NFSD is a big user).
2223 if (segment_eq(get_fs(), KERNEL_DS))
2224 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2228 pgoff_t index; /* Pagecache index for current page */
2229 unsigned long offset; /* Offset into pagecache page */
2230 unsigned long bytes; /* Bytes to write to page */
2231 size_t copied; /* Bytes copied from user */
2234 offset = (pos & (PAGE_CACHE_SIZE - 1));
2235 index = pos >> PAGE_CACHE_SHIFT;
2236 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2242 * Bring in the user page that we will copy from _first_.
2243 * Otherwise there's a nasty deadlock on copying from the
2244 * same page as we're writing to, without it being marked
2247 * Not only is this an optimisation, but it is also required
2248 * to check that the address is actually valid, when atomic
2249 * usercopies are used, below.
2251 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2256 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2258 if (unlikely(status))
2261 pagefault_disable();
2262 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2264 flush_dcache_page(page);
2266 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2268 if (unlikely(status < 0))
2274 iov_iter_advance(i, copied);
2275 if (unlikely(copied == 0)) {
2277 * If we were unable to copy any data at all, we must
2278 * fall back to a single segment length write.
2280 * If we didn't fallback here, we could livelock
2281 * because not all segments in the iov can be copied at
2282 * once without a pagefault.
2284 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2285 iov_iter_single_seg_count(i));
2291 balance_dirty_pages_ratelimited(mapping);
2293 } while (iov_iter_count(i));
2295 return written ? written : status;
2299 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2300 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2301 size_t count, ssize_t written)
2303 struct file *file = iocb->ki_filp;
2304 struct address_space *mapping = file->f_mapping;
2305 const struct address_space_operations *a_ops = mapping->a_ops;
2306 struct inode *inode = mapping->host;
2310 iov_iter_init(&i, iov, nr_segs, count, written);
2311 if (a_ops->write_begin)
2312 status = generic_perform_write(file, &i, pos);
2314 status = generic_perform_write_2copy(file, &i, pos);
2316 if (likely(status >= 0)) {
2318 *ppos = pos + status;
2321 * For now, when the user asks for O_SYNC, we'll actually give
2324 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2325 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2326 status = generic_osync_inode(inode, mapping,
2327 OSYNC_METADATA|OSYNC_DATA);
2332 * If we get here for O_DIRECT writes then we must have fallen through
2333 * to buffered writes (block instantiation inside i_size). So we sync
2334 * the file data here, to try to honour O_DIRECT expectations.
2336 if (unlikely(file->f_flags & O_DIRECT) && written)
2337 status = filemap_write_and_wait(mapping);
2339 return written ? written : status;
2341 EXPORT_SYMBOL(generic_file_buffered_write);
2344 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2345 unsigned long nr_segs, loff_t *ppos)
2347 struct file *file = iocb->ki_filp;
2348 struct address_space * mapping = file->f_mapping;
2349 size_t ocount; /* original count */
2350 size_t count; /* after file limit checks */
2351 struct inode *inode = mapping->host;
2357 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2364 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2366 /* We can write back this queue in page reclaim */
2367 current->backing_dev_info = mapping->backing_dev_info;
2370 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2377 err = remove_suid(file->f_path.dentry);
2381 file_update_time(file);
2383 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2384 if (unlikely(file->f_flags & O_DIRECT)) {
2386 ssize_t written_buffered;
2388 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2389 ppos, count, ocount);
2390 if (written < 0 || written == count)
2393 * direct-io write to a hole: fall through to buffered I/O
2394 * for completing the rest of the request.
2398 written_buffered = generic_file_buffered_write(iocb, iov,
2399 nr_segs, pos, ppos, count,
2402 * If generic_file_buffered_write() retuned a synchronous error
2403 * then we want to return the number of bytes which were
2404 * direct-written, or the error code if that was zero. Note
2405 * that this differs from normal direct-io semantics, which
2406 * will return -EFOO even if some bytes were written.
2408 if (written_buffered < 0) {
2409 err = written_buffered;
2414 * We need to ensure that the page cache pages are written to
2415 * disk and invalidated to preserve the expected O_DIRECT
2418 endbyte = pos + written_buffered - written - 1;
2419 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2420 SYNC_FILE_RANGE_WAIT_BEFORE|
2421 SYNC_FILE_RANGE_WRITE|
2422 SYNC_FILE_RANGE_WAIT_AFTER);
2424 written = written_buffered;
2425 invalidate_mapping_pages(mapping,
2426 pos >> PAGE_CACHE_SHIFT,
2427 endbyte >> PAGE_CACHE_SHIFT);
2430 * We don't know how much we wrote, so just return
2431 * the number of bytes which were direct-written
2435 written = generic_file_buffered_write(iocb, iov, nr_segs,
2436 pos, ppos, count, written);
2439 current->backing_dev_info = NULL;
2440 return written ? written : err;
2443 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2444 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2446 struct file *file = iocb->ki_filp;
2447 struct address_space *mapping = file->f_mapping;
2448 struct inode *inode = mapping->host;
2451 BUG_ON(iocb->ki_pos != pos);
2453 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2456 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2459 err = sync_page_range_nolock(inode, mapping, pos, ret);
2465 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2467 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2468 unsigned long nr_segs, loff_t pos)
2470 struct file *file = iocb->ki_filp;
2471 struct address_space *mapping = file->f_mapping;
2472 struct inode *inode = mapping->host;
2475 BUG_ON(iocb->ki_pos != pos);
2477 mutex_lock(&inode->i_mutex);
2478 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2480 mutex_unlock(&inode->i_mutex);
2482 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2485 err = sync_page_range(inode, mapping, pos, ret);
2491 EXPORT_SYMBOL(generic_file_aio_write);
2494 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2495 * went wrong during pagecache shootdown.
2498 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2499 loff_t offset, unsigned long nr_segs)
2501 struct file *file = iocb->ki_filp;
2502 struct address_space *mapping = file->f_mapping;
2505 pgoff_t end = 0; /* silence gcc */
2508 * If it's a write, unmap all mmappings of the file up-front. This
2509 * will cause any pte dirty bits to be propagated into the pageframes
2510 * for the subsequent filemap_write_and_wait().
2513 write_len = iov_length(iov, nr_segs);
2514 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2515 if (mapping_mapped(mapping))
2516 unmap_mapping_range(mapping, offset, write_len, 0);
2519 retval = filemap_write_and_wait(mapping);
2524 * After a write we want buffered reads to be sure to go to disk to get
2525 * the new data. We invalidate clean cached page from the region we're
2526 * about to write. We do this *before* the write so that we can return
2527 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2529 if (rw == WRITE && mapping->nrpages) {
2530 retval = invalidate_inode_pages2_range(mapping,
2531 offset >> PAGE_CACHE_SHIFT, end);
2536 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2539 * Finally, try again to invalidate clean pages which might have been
2540 * cached by non-direct readahead, or faulted in by get_user_pages()
2541 * if the source of the write was an mmap'ed region of the file
2542 * we're writing. Either one is a pretty crazy thing to do,
2543 * so we don't support it 100%. If this invalidation
2544 * fails, tough, the write still worked...
2546 if (rw == WRITE && mapping->nrpages) {
2547 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2554 * try_to_release_page() - release old fs-specific metadata on a page
2556 * @page: the page which the kernel is trying to free
2557 * @gfp_mask: memory allocation flags (and I/O mode)
2559 * The address_space is to try to release any data against the page
2560 * (presumably at page->private). If the release was successful, return `1'.
2561 * Otherwise return zero.
2563 * The @gfp_mask argument specifies whether I/O may be performed to release
2564 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2566 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2568 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2570 struct address_space * const mapping = page->mapping;
2572 BUG_ON(!PageLocked(page));
2573 if (PageWriteback(page))
2576 if (mapping && mapping->a_ops->releasepage)
2577 return mapping->a_ops->releasepage(page, gfp_mask);
2578 return try_to_free_buffers(page);
2581 EXPORT_SYMBOL(try_to_release_page);