1 #include <linux/init.h>
2 #include <linux/kernel.h>
3 #include <linux/sched.h>
4 #include <linux/string.h>
5 #include <linux/bootmem.h>
6 #include <linux/bitops.h>
7 #include <linux/module.h>
8 #include <linux/kgdb.h>
9 #include <linux/topology.h>
10 #include <linux/delay.h>
11 #include <linux/smp.h>
12 #include <linux/percpu.h>
16 #include <asm/linkage.h>
17 #include <asm/mmu_context.h>
25 #include <asm/cpumask.h>
28 #ifdef CONFIG_X86_LOCAL_APIC
29 #include <asm/uv/uv.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
35 #include <asm/atomic.h>
36 #include <asm/proto.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/hypervisor.h>
40 #include <asm/stackprotector.h>
46 /* all of these masks are initialized in setup_cpu_local_masks() */
47 cpumask_var_t cpu_callin_mask;
48 cpumask_var_t cpu_callout_mask;
49 cpumask_var_t cpu_initialized_mask;
51 /* representing cpus for which sibling maps can be computed */
52 cpumask_var_t cpu_sibling_setup_mask;
54 /* correctly size the local cpu masks */
55 void __init setup_cpu_local_masks(void)
57 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
58 alloc_bootmem_cpumask_var(&cpu_callin_mask);
59 alloc_bootmem_cpumask_var(&cpu_callout_mask);
60 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
63 #else /* CONFIG_X86_32 */
65 cpumask_t cpu_callin_map;
66 cpumask_t cpu_callout_map;
67 cpumask_t cpu_initialized;
68 cpumask_t cpu_sibling_setup_map;
70 #endif /* CONFIG_X86_32 */
73 static struct cpu_dev *this_cpu __cpuinitdata;
75 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
78 * We need valid kernel segments for data and code in long mode too
79 * IRET will check the segment types kkeil 2000/10/28
80 * Also sysret mandates a special GDT layout
82 * The TLS descriptors are currently at a different place compared to i386.
83 * Hopefully nobody expects them at a fixed place (Wine?)
85 [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
86 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
87 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
88 [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
89 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
90 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
92 [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
93 [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
94 [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
95 [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
97 * Segments used for calling PnP BIOS have byte granularity.
98 * They code segments and data segments have fixed 64k limits,
99 * the transfer segment sizes are set at run time.
102 [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
104 [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
106 [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
108 [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
110 [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
112 * The APM segments have byte granularity and their bases
113 * are set at run time. All have 64k limits.
116 [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
118 [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
120 [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
122 [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
123 [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
124 GDT_STACK_CANARY_INIT
127 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
130 static int cachesize_override __cpuinitdata = -1;
131 static int disable_x86_serial_nr __cpuinitdata = 1;
133 static int __init cachesize_setup(char *str)
135 get_option(&str, &cachesize_override);
138 __setup("cachesize=", cachesize_setup);
140 static int __init x86_fxsr_setup(char *s)
142 setup_clear_cpu_cap(X86_FEATURE_FXSR);
143 setup_clear_cpu_cap(X86_FEATURE_XMM);
146 __setup("nofxsr", x86_fxsr_setup);
148 static int __init x86_sep_setup(char *s)
150 setup_clear_cpu_cap(X86_FEATURE_SEP);
153 __setup("nosep", x86_sep_setup);
155 /* Standard macro to see if a specific flag is changeable */
156 static inline int flag_is_changeable_p(u32 flag)
161 * Cyrix and IDT cpus allow disabling of CPUID
162 * so the code below may return different results
163 * when it is executed before and after enabling
164 * the CPUID. Add "volatile" to not allow gcc to
165 * optimize the subsequent calls to this function.
167 asm volatile ("pushfl\n\t"
177 : "=&r" (f1), "=&r" (f2)
180 return ((f1^f2) & flag) != 0;
183 /* Probe for the CPUID instruction */
184 static int __cpuinit have_cpuid_p(void)
186 return flag_is_changeable_p(X86_EFLAGS_ID);
189 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
191 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
192 /* Disable processor serial number */
193 unsigned long lo, hi;
194 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
196 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
197 printk(KERN_NOTICE "CPU serial number disabled.\n");
198 clear_cpu_cap(c, X86_FEATURE_PN);
200 /* Disabling the serial number may affect the cpuid level */
201 c->cpuid_level = cpuid_eax(0);
205 static int __init x86_serial_nr_setup(char *s)
207 disable_x86_serial_nr = 0;
210 __setup("serialnumber", x86_serial_nr_setup);
212 static inline int flag_is_changeable_p(u32 flag)
216 /* Probe for the CPUID instruction */
217 static inline int have_cpuid_p(void)
221 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
227 * Some CPU features depend on higher CPUID levels, which may not always
228 * be available due to CPUID level capping or broken virtualization
229 * software. Add those features to this table to auto-disable them.
231 struct cpuid_dependent_feature {
235 static const struct cpuid_dependent_feature __cpuinitconst
236 cpuid_dependent_features[] = {
237 { X86_FEATURE_MWAIT, 0x00000005 },
238 { X86_FEATURE_DCA, 0x00000009 },
239 { X86_FEATURE_XSAVE, 0x0000000d },
243 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
245 const struct cpuid_dependent_feature *df;
246 for (df = cpuid_dependent_features; df->feature; df++) {
248 * Note: cpuid_level is set to -1 if unavailable, but
249 * extended_extended_level is set to 0 if unavailable
250 * and the legitimate extended levels are all negative
251 * when signed; hence the weird messing around with
254 if (cpu_has(c, df->feature) &&
255 ((s32)df->level < 0 ?
256 (u32)df->level > (u32)c->extended_cpuid_level :
257 (s32)df->level > (s32)c->cpuid_level)) {
258 clear_cpu_cap(c, df->feature);
261 "CPU: CPU feature %s disabled "
262 "due to lack of CPUID level 0x%x\n",
263 x86_cap_flags[df->feature],
270 * Naming convention should be: <Name> [(<Codename>)]
271 * This table only is used unless init_<vendor>() below doesn't set it;
272 * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
276 /* Look up CPU names by table lookup. */
277 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
279 struct cpu_model_info *info;
281 if (c->x86_model >= 16)
282 return NULL; /* Range check */
287 info = this_cpu->c_models;
289 while (info && info->family) {
290 if (info->family == c->x86)
291 return info->model_names[c->x86_model];
294 return NULL; /* Not found */
297 __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
299 void load_percpu_segment(int cpu)
302 loadsegment(fs, __KERNEL_PERCPU);
305 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
307 load_stack_canary_segment();
310 /* Current gdt points %fs at the "master" per-cpu area: after this,
311 * it's on the real one. */
312 void switch_to_new_gdt(int cpu)
314 struct desc_ptr gdt_descr;
316 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
317 gdt_descr.size = GDT_SIZE - 1;
318 load_gdt(&gdt_descr);
319 /* Reload the per-cpu base */
321 load_percpu_segment(cpu);
324 static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
326 static void __cpuinit default_init(struct cpuinfo_x86 *c)
329 display_cacheinfo(c);
331 /* Not much we can do here... */
332 /* Check if at least it has cpuid */
333 if (c->cpuid_level == -1) {
334 /* No cpuid. It must be an ancient CPU */
336 strcpy(c->x86_model_id, "486");
337 else if (c->x86 == 3)
338 strcpy(c->x86_model_id, "386");
343 static struct cpu_dev __cpuinitdata default_cpu = {
344 .c_init = default_init,
345 .c_vendor = "Unknown",
346 .c_x86_vendor = X86_VENDOR_UNKNOWN,
349 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
354 if (c->extended_cpuid_level < 0x80000004)
357 v = (unsigned int *) c->x86_model_id;
358 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
359 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
360 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
361 c->x86_model_id[48] = 0;
363 /* Intel chips right-justify this string for some dumb reason;
364 undo that brain damage */
365 p = q = &c->x86_model_id[0];
371 while (q <= &c->x86_model_id[48])
372 *q++ = '\0'; /* Zero-pad the rest */
376 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
378 unsigned int n, dummy, ebx, ecx, edx, l2size;
380 n = c->extended_cpuid_level;
382 if (n >= 0x80000005) {
383 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
384 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
385 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
386 c->x86_cache_size = (ecx>>24) + (edx>>24);
388 /* On K8 L1 TLB is inclusive, so don't count it */
393 if (n < 0x80000006) /* Some chips just has a large L1. */
396 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
400 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
402 /* do processor-specific cache resizing */
403 if (this_cpu->c_size_cache)
404 l2size = this_cpu->c_size_cache(c, l2size);
406 /* Allow user to override all this if necessary. */
407 if (cachesize_override != -1)
408 l2size = cachesize_override;
411 return; /* Again, no L2 cache is possible */
414 c->x86_cache_size = l2size;
416 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
420 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
423 u32 eax, ebx, ecx, edx;
424 int index_msb, core_bits;
426 if (!cpu_has(c, X86_FEATURE_HT))
429 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
432 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
435 cpuid(1, &eax, &ebx, &ecx, &edx);
437 smp_num_siblings = (ebx & 0xff0000) >> 16;
439 if (smp_num_siblings == 1) {
440 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
441 } else if (smp_num_siblings > 1) {
443 if (smp_num_siblings > nr_cpu_ids) {
444 printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
446 smp_num_siblings = 1;
450 index_msb = get_count_order(smp_num_siblings);
451 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
453 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
455 index_msb = get_count_order(smp_num_siblings);
457 core_bits = get_count_order(c->x86_max_cores);
459 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
460 ((1 << core_bits) - 1);
464 if ((c->x86_max_cores * smp_num_siblings) > 1) {
465 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
467 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
473 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
475 char *v = c->x86_vendor_id;
479 for (i = 0; i < X86_VENDOR_NUM; i++) {
483 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
484 (cpu_devs[i]->c_ident[1] &&
485 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
486 this_cpu = cpu_devs[i];
487 c->x86_vendor = this_cpu->c_x86_vendor;
494 printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
495 printk(KERN_ERR "CPU: Your system may be unstable.\n");
498 c->x86_vendor = X86_VENDOR_UNKNOWN;
499 this_cpu = &default_cpu;
502 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
504 /* Get vendor name */
505 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
506 (unsigned int *)&c->x86_vendor_id[0],
507 (unsigned int *)&c->x86_vendor_id[8],
508 (unsigned int *)&c->x86_vendor_id[4]);
511 /* Intel-defined flags: level 0x00000001 */
512 if (c->cpuid_level >= 0x00000001) {
513 u32 junk, tfms, cap0, misc;
514 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
515 c->x86 = (tfms >> 8) & 0xf;
516 c->x86_model = (tfms >> 4) & 0xf;
517 c->x86_mask = tfms & 0xf;
519 c->x86 += (tfms >> 20) & 0xff;
521 c->x86_model += ((tfms >> 16) & 0xf) << 4;
522 if (cap0 & (1<<19)) {
523 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
524 c->x86_cache_alignment = c->x86_clflush_size;
529 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
534 /* Intel-defined flags: level 0x00000001 */
535 if (c->cpuid_level >= 0x00000001) {
536 u32 capability, excap;
537 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
538 c->x86_capability[0] = capability;
539 c->x86_capability[4] = excap;
542 /* AMD-defined flags: level 0x80000001 */
543 xlvl = cpuid_eax(0x80000000);
544 c->extended_cpuid_level = xlvl;
545 if ((xlvl & 0xffff0000) == 0x80000000) {
546 if (xlvl >= 0x80000001) {
547 c->x86_capability[1] = cpuid_edx(0x80000001);
548 c->x86_capability[6] = cpuid_ecx(0x80000001);
553 if (c->extended_cpuid_level >= 0x80000008) {
554 u32 eax = cpuid_eax(0x80000008);
556 c->x86_virt_bits = (eax >> 8) & 0xff;
557 c->x86_phys_bits = eax & 0xff;
561 if (c->extended_cpuid_level >= 0x80000007)
562 c->x86_power = cpuid_edx(0x80000007);
566 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
572 * First of all, decide if this is a 486 or higher
573 * It's a 486 if we can modify the AC flag
575 if (flag_is_changeable_p(X86_EFLAGS_AC))
580 for (i = 0; i < X86_VENDOR_NUM; i++)
581 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
582 c->x86_vendor_id[0] = 0;
583 cpu_devs[i]->c_identify(c);
584 if (c->x86_vendor_id[0]) {
593 * Do minimum CPU detection early.
594 * Fields really needed: vendor, cpuid_level, family, model, mask,
596 * The others are not touched to avoid unwanted side effects.
598 * WARNING: this function is only called on the BP. Don't add code here
599 * that is supposed to run on all CPUs.
601 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
604 c->x86_clflush_size = 64;
606 c->x86_clflush_size = 32;
608 c->x86_cache_alignment = c->x86_clflush_size;
610 memset(&c->x86_capability, 0, sizeof c->x86_capability);
611 c->extended_cpuid_level = 0;
614 identify_cpu_without_cpuid(c);
616 /* cyrix could have cpuid enabled via c_identify()*/
626 if (this_cpu->c_early_init)
627 this_cpu->c_early_init(c);
630 c->cpu_index = boot_cpu_id;
632 filter_cpuid_features(c, false);
635 void __init early_cpu_init(void)
637 struct cpu_dev **cdev;
640 printk("KERNEL supported cpus:\n");
641 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
642 struct cpu_dev *cpudev = *cdev;
645 if (count >= X86_VENDOR_NUM)
647 cpu_devs[count] = cpudev;
650 for (j = 0; j < 2; j++) {
651 if (!cpudev->c_ident[j])
653 printk(" %s %s\n", cpudev->c_vendor,
658 early_identify_cpu(&boot_cpu_data);
662 * The NOPL instruction is supposed to exist on all CPUs with
663 * family >= 6; unfortunately, that's not true in practice because
664 * of early VIA chips and (more importantly) broken virtualizers that
665 * are not easy to detect. In the latter case it doesn't even *fail*
666 * reliably, so probing for it doesn't even work. Disable it completely
667 * unless we can find a reliable way to detect all the broken cases.
669 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
671 clear_cpu_cap(c, X86_FEATURE_NOPL);
674 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
676 c->extended_cpuid_level = 0;
679 identify_cpu_without_cpuid(c);
681 /* cyrix could have cpuid enabled via c_identify()*/
691 if (c->cpuid_level >= 0x00000001) {
692 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
694 # ifdef CONFIG_X86_HT
695 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
697 c->apicid = c->initial_apicid;
702 c->phys_proc_id = c->initial_apicid;
706 get_model_name(c); /* Default name */
708 init_scattered_cpuid_features(c);
713 * This does the hard work of actually picking apart the CPU stuff...
715 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
719 c->loops_per_jiffy = loops_per_jiffy;
720 c->x86_cache_size = -1;
721 c->x86_vendor = X86_VENDOR_UNKNOWN;
722 c->x86_model = c->x86_mask = 0; /* So far unknown... */
723 c->x86_vendor_id[0] = '\0'; /* Unset */
724 c->x86_model_id[0] = '\0'; /* Unset */
725 c->x86_max_cores = 1;
726 c->x86_coreid_bits = 0;
728 c->x86_clflush_size = 64;
730 c->cpuid_level = -1; /* CPUID not detected */
731 c->x86_clflush_size = 32;
733 c->x86_cache_alignment = c->x86_clflush_size;
734 memset(&c->x86_capability, 0, sizeof c->x86_capability);
738 if (this_cpu->c_identify)
739 this_cpu->c_identify(c);
742 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
746 * Vendor-specific initialization. In this section we
747 * canonicalize the feature flags, meaning if there are
748 * features a certain CPU supports which CPUID doesn't
749 * tell us, CPUID claiming incorrect flags, or other bugs,
750 * we handle them here.
752 * At the end of this section, c->x86_capability better
753 * indicate the features this CPU genuinely supports!
755 if (this_cpu->c_init)
758 /* Disable the PN if appropriate */
759 squash_the_stupid_serial_number(c);
762 * The vendor-specific functions might have changed features. Now
763 * we do "generic changes."
766 /* Filter out anything that depends on CPUID levels we don't have */
767 filter_cpuid_features(c, true);
769 /* If the model name is still unset, do table lookup. */
770 if (!c->x86_model_id[0]) {
772 p = table_lookup_model(c);
774 strcpy(c->x86_model_id, p);
777 sprintf(c->x86_model_id, "%02x/%02x",
778 c->x86, c->x86_model);
787 * On SMP, boot_cpu_data holds the common feature set between
788 * all CPUs; so make sure that we indicate which features are
789 * common between the CPUs. The first time this routine gets
790 * executed, c == &boot_cpu_data.
792 if (c != &boot_cpu_data) {
793 /* AND the already accumulated flags with these */
794 for (i = 0; i < NCAPINTS; i++)
795 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
798 /* Clear all flags overriden by options */
799 for (i = 0; i < NCAPINTS; i++)
800 c->x86_capability[i] &= ~cleared_cpu_caps[i];
802 #ifdef CONFIG_X86_MCE
803 /* Init Machine Check Exception if available. */
807 select_idle_routine(c);
809 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
810 numa_add_cpu(smp_processor_id());
815 static void vgetcpu_set_mode(void)
817 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
818 vgetcpu_mode = VGETCPU_RDTSCP;
820 vgetcpu_mode = VGETCPU_LSL;
824 void __init identify_boot_cpu(void)
826 identify_cpu(&boot_cpu_data);
835 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
837 BUG_ON(c == &boot_cpu_data);
850 static struct msr_range msr_range_array[] __cpuinitdata = {
851 { 0x00000000, 0x00000418},
852 { 0xc0000000, 0xc000040b},
853 { 0xc0010000, 0xc0010142},
854 { 0xc0011000, 0xc001103b},
857 static void __cpuinit print_cpu_msr(void)
862 unsigned index_min, index_max;
864 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
865 index_min = msr_range_array[i].min;
866 index_max = msr_range_array[i].max;
867 for (index = index_min; index < index_max; index++) {
868 if (rdmsrl_amd_safe(index, &val))
870 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
875 static int show_msr __cpuinitdata;
876 static __init int setup_show_msr(char *arg)
880 get_option(&arg, &num);
886 __setup("show_msr=", setup_show_msr);
888 static __init int setup_noclflush(char *arg)
890 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
893 __setup("noclflush", setup_noclflush);
895 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
899 if (c->x86_vendor < X86_VENDOR_NUM)
900 vendor = this_cpu->c_vendor;
901 else if (c->cpuid_level >= 0)
902 vendor = c->x86_vendor_id;
904 if (vendor && !strstr(c->x86_model_id, vendor))
905 printk(KERN_CONT "%s ", vendor);
907 if (c->x86_model_id[0])
908 printk(KERN_CONT "%s", c->x86_model_id);
910 printk(KERN_CONT "%d86", c->x86);
912 if (c->x86_mask || c->cpuid_level >= 0)
913 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
915 printk(KERN_CONT "\n");
918 if (c->cpu_index < show_msr)
926 static __init int setup_disablecpuid(char *arg)
929 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
930 setup_clear_cpu_cap(bit);
935 __setup("clearcpuid=", setup_disablecpuid);
938 struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
940 DEFINE_PER_CPU_FIRST(union irq_stack_union,
941 irq_stack_union) __aligned(PAGE_SIZE);
942 DEFINE_PER_CPU(char *, irq_stack_ptr) =
943 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
945 DEFINE_PER_CPU(unsigned long, kernel_stack) =
946 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
947 EXPORT_PER_CPU_SYMBOL(kernel_stack);
949 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
951 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
952 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
953 __aligned(PAGE_SIZE);
955 extern asmlinkage void ignore_sysret(void);
957 /* May not be marked __init: used by software suspend */
958 void syscall_init(void)
961 * LSTAR and STAR live in a bit strange symbiosis.
962 * They both write to the same internal register. STAR allows to
963 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
965 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
966 wrmsrl(MSR_LSTAR, system_call);
967 wrmsrl(MSR_CSTAR, ignore_sysret);
969 #ifdef CONFIG_IA32_EMULATION
970 syscall32_cpu_init();
973 /* Flags to clear on syscall */
974 wrmsrl(MSR_SYSCALL_MASK,
975 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
978 unsigned long kernel_eflags;
981 * Copies of the original ist values from the tss are only accessed during
982 * debugging, no special alignment required.
984 DEFINE_PER_CPU(struct orig_ist, orig_ist);
988 #ifdef CONFIG_CC_STACKPROTECTOR
989 DEFINE_PER_CPU(unsigned long, stack_canary);
992 /* Make sure %fs and %gs are initialized properly in idle threads */
993 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
995 memset(regs, 0, sizeof(struct pt_regs));
996 regs->fs = __KERNEL_PERCPU;
997 regs->gs = __KERNEL_STACK_CANARY;
1003 * cpu_init() initializes state that is per-CPU. Some data is already
1004 * initialized (naturally) in the bootstrap process, such as the GDT
1005 * and IDT. We reload them nevertheless, this function acts as a
1006 * 'CPU state barrier', nothing should get across.
1007 * A lot of state is already set up in PDA init for 64 bit
1009 #ifdef CONFIG_X86_64
1010 void __cpuinit cpu_init(void)
1012 int cpu = stack_smp_processor_id();
1013 struct tss_struct *t = &per_cpu(init_tss, cpu);
1014 struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
1016 struct task_struct *me;
1020 if (cpu != 0 && percpu_read(node_number) == 0 &&
1021 cpu_to_node(cpu) != NUMA_NO_NODE)
1022 percpu_write(node_number, cpu_to_node(cpu));
1027 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1028 panic("CPU#%d already initialized!\n", cpu);
1030 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1032 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1035 * Initialize the per-CPU GDT with the boot GDT,
1036 * and set up the GDT descriptor:
1039 switch_to_new_gdt(cpu);
1042 load_idt((const struct desc_ptr *)&idt_descr);
1044 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1047 wrmsrl(MSR_FS_BASE, 0);
1048 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1056 * set up and load the per-CPU TSS
1058 if (!orig_ist->ist[0]) {
1059 static const unsigned int sizes[N_EXCEPTION_STACKS] = {
1060 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1061 [DEBUG_STACK - 1] = DEBUG_STKSZ
1063 char *estacks = per_cpu(exception_stacks, cpu);
1064 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1065 estacks += sizes[v];
1066 orig_ist->ist[v] = t->x86_tss.ist[v] =
1067 (unsigned long)estacks;
1071 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1073 * <= is required because the CPU will access up to
1074 * 8 bits beyond the end of the IO permission bitmap.
1076 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1077 t->io_bitmap[i] = ~0UL;
1079 atomic_inc(&init_mm.mm_count);
1080 me->active_mm = &init_mm;
1083 enter_lazy_tlb(&init_mm, me);
1085 load_sp0(t, ¤t->thread);
1086 set_tss_desc(cpu, t);
1088 load_LDT(&init_mm.context);
1092 * If the kgdb is connected no debug regs should be altered. This
1093 * is only applicable when KGDB and a KGDB I/O module are built
1094 * into the kernel and you are using early debugging with
1095 * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1097 if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1098 arch_kgdb_ops.correct_hw_break();
1103 * Clear all 6 debug registers:
1105 set_debugreg(0UL, 0);
1106 set_debugreg(0UL, 1);
1107 set_debugreg(0UL, 2);
1108 set_debugreg(0UL, 3);
1109 set_debugreg(0UL, 6);
1110 set_debugreg(0UL, 7);
1115 raw_local_save_flags(kernel_eflags);
1123 void __cpuinit cpu_init(void)
1125 int cpu = smp_processor_id();
1126 struct task_struct *curr = current;
1127 struct tss_struct *t = &per_cpu(init_tss, cpu);
1128 struct thread_struct *thread = &curr->thread;
1130 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1131 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1132 for (;;) local_irq_enable();
1135 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1137 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1138 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1140 load_idt(&idt_descr);
1141 switch_to_new_gdt(cpu);
1144 * Set up and load the per-CPU TSS and LDT
1146 atomic_inc(&init_mm.mm_count);
1147 curr->active_mm = &init_mm;
1150 enter_lazy_tlb(&init_mm, curr);
1152 load_sp0(t, thread);
1153 set_tss_desc(cpu, t);
1155 load_LDT(&init_mm.context);
1157 #ifdef CONFIG_DOUBLEFAULT
1158 /* Set up doublefault TSS pointer in the GDT */
1159 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1162 /* Clear all 6 debug registers: */
1171 * Force FPU initialization:
1174 current_thread_info()->status = TS_XSAVE;
1176 current_thread_info()->status = 0;
1178 mxcsr_feature_mask_init();
1181 * Boot processor to setup the FP and extended state context info.
1183 if (smp_processor_id() == boot_cpu_id)
1184 init_thread_xstate();