V4L/DVB (9281): gspca: Add hflip and vflip to the po1030 sensor
[linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73  * Function:    scsi_unprep_request()
74  *
75  * Purpose:     Remove all preparation done for a request, including its
76  *              associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:   req     - request to unprepare
79  *
80  * Lock status: Assumed that no locks are held upon entry.
81  *
82  * Returns:     Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86         struct scsi_cmnd *cmd = req->special;
87
88         req->cmd_flags &= ~REQ_DONTPREP;
89         req->special = NULL;
90
91         scsi_put_command(cmd);
92 }
93
94 /*
95  * Function:    scsi_queue_insert()
96  *
97  * Purpose:     Insert a command in the midlevel queue.
98  *
99  * Arguments:   cmd    - command that we are adding to queue.
100  *              reason - why we are inserting command to queue.
101  *
102  * Lock status: Assumed that lock is not held upon entry.
103  *
104  * Returns:     Nothing.
105  *
106  * Notes:       We do this for one of two cases.  Either the host is busy
107  *              and it cannot accept any more commands for the time being,
108  *              or the device returned QUEUE_FULL and can accept no more
109  *              commands.
110  * Notes:       This could be called either from an interrupt context or a
111  *              normal process context.
112  */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115         struct Scsi_Host *host = cmd->device->host;
116         struct scsi_device *device = cmd->device;
117         struct scsi_target *starget = scsi_target(device);
118         struct request_queue *q = device->request_queue;
119         unsigned long flags;
120
121         SCSI_LOG_MLQUEUE(1,
122                  printk("Inserting command %p into mlqueue\n", cmd));
123
124         /*
125          * Set the appropriate busy bit for the device/host.
126          *
127          * If the host/device isn't busy, assume that something actually
128          * completed, and that we should be able to queue a command now.
129          *
130          * Note that the prior mid-layer assumption that any host could
131          * always queue at least one command is now broken.  The mid-layer
132          * will implement a user specifiable stall (see
133          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134          * if a command is requeued with no other commands outstanding
135          * either for the device or for the host.
136          */
137         switch (reason) {
138         case SCSI_MLQUEUE_HOST_BUSY:
139                 host->host_blocked = host->max_host_blocked;
140                 break;
141         case SCSI_MLQUEUE_DEVICE_BUSY:
142                 device->device_blocked = device->max_device_blocked;
143                 break;
144         case SCSI_MLQUEUE_TARGET_BUSY:
145                 starget->target_blocked = starget->max_target_blocked;
146                 break;
147         }
148
149         /*
150          * Decrement the counters, since these commands are no longer
151          * active on the host/device.
152          */
153         scsi_device_unbusy(device);
154
155         /*
156          * Requeue this command.  It will go before all other commands
157          * that are already in the queue.
158          *
159          * NOTE: there is magic here about the way the queue is plugged if
160          * we have no outstanding commands.
161          * 
162          * Although we *don't* plug the queue, we call the request
163          * function.  The SCSI request function detects the blocked condition
164          * and plugs the queue appropriately.
165          */
166         spin_lock_irqsave(q->queue_lock, flags);
167         blk_requeue_request(q, cmd->request);
168         spin_unlock_irqrestore(q->queue_lock, flags);
169
170         scsi_run_queue(q);
171
172         return 0;
173 }
174
175 /**
176  * scsi_execute - insert request and wait for the result
177  * @sdev:       scsi device
178  * @cmd:        scsi command
179  * @data_direction: data direction
180  * @buffer:     data buffer
181  * @bufflen:    len of buffer
182  * @sense:      optional sense buffer
183  * @timeout:    request timeout in seconds
184  * @retries:    number of times to retry request
185  * @flags:      or into request flags;
186  *
187  * returns the req->errors value which is the scsi_cmnd result
188  * field.
189  */
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191                  int data_direction, void *buffer, unsigned bufflen,
192                  unsigned char *sense, int timeout, int retries, int flags)
193 {
194         struct request *req;
195         int write = (data_direction == DMA_TO_DEVICE);
196         int ret = DRIVER_ERROR << 24;
197
198         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
199
200         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
201                                         buffer, bufflen, __GFP_WAIT))
202                 goto out;
203
204         req->cmd_len = COMMAND_SIZE(cmd[0]);
205         memcpy(req->cmd, cmd, req->cmd_len);
206         req->sense = sense;
207         req->sense_len = 0;
208         req->retries = retries;
209         req->timeout = timeout;
210         req->cmd_type = REQ_TYPE_BLOCK_PC;
211         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
212
213         /*
214          * head injection *required* here otherwise quiesce won't work
215          */
216         blk_execute_rq(req->q, NULL, req, 1);
217
218         /*
219          * Some devices (USB mass-storage in particular) may transfer
220          * garbage data together with a residue indicating that the data
221          * is invalid.  Prevent the garbage from being misinterpreted
222          * and prevent security leaks by zeroing out the excess data.
223          */
224         if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225                 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
226
227         ret = req->errors;
228  out:
229         blk_put_request(req);
230
231         return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234
235
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237                      int data_direction, void *buffer, unsigned bufflen,
238                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
239 {
240         char *sense = NULL;
241         int result;
242         
243         if (sshdr) {
244                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245                 if (!sense)
246                         return DRIVER_ERROR << 24;
247         }
248         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249                               sense, timeout, retries, 0);
250         if (sshdr)
251                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253         kfree(sense);
254         return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req);
257
258 struct scsi_io_context {
259         void *data;
260         void (*done)(void *data, char *sense, int result, int resid);
261         char sense[SCSI_SENSE_BUFFERSIZE];
262 };
263
264 static struct kmem_cache *scsi_io_context_cache;
265
266 static void scsi_end_async(struct request *req, int uptodate)
267 {
268         struct scsi_io_context *sioc = req->end_io_data;
269
270         if (sioc->done)
271                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
272
273         kmem_cache_free(scsi_io_context_cache, sioc);
274         __blk_put_request(req->q, req);
275 }
276
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
278 {
279         struct request_queue *q = rq->q;
280
281         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282         if (rq_data_dir(rq) == WRITE)
283                 bio->bi_rw |= (1 << BIO_RW);
284         blk_queue_bounce(q, &bio);
285
286         return blk_rq_append_bio(q, rq, bio);
287 }
288
289 static void scsi_bi_endio(struct bio *bio, int error)
290 {
291         bio_put(bio);
292 }
293
294 /**
295  * scsi_req_map_sg - map a scatterlist into a request
296  * @rq:         request to fill
297  * @sgl:        scatterlist
298  * @nsegs:      number of elements
299  * @bufflen:    len of buffer
300  * @gfp:        memory allocation flags
301  *
302  * scsi_req_map_sg maps a scatterlist into a request so that the
303  * request can be sent to the block layer. We do not trust the scatterlist
304  * sent to use, as some ULDs use that struct to only organize the pages.
305  */
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307                            int nsegs, unsigned bufflen, gfp_t gfp)
308 {
309         struct request_queue *q = rq->q;
310         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311         unsigned int data_len = bufflen, len, bytes, off;
312         struct scatterlist *sg;
313         struct page *page;
314         struct bio *bio = NULL;
315         int i, err, nr_vecs = 0;
316
317         for_each_sg(sgl, sg, nsegs, i) {
318                 page = sg_page(sg);
319                 off = sg->offset;
320                 len = sg->length;
321
322                 while (len > 0 && data_len > 0) {
323                         /*
324                          * sg sends a scatterlist that is larger than
325                          * the data_len it wants transferred for certain
326                          * IO sizes
327                          */
328                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329                         bytes = min(bytes, data_len);
330
331                         if (!bio) {
332                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333                                 nr_pages -= nr_vecs;
334
335                                 bio = bio_alloc(gfp, nr_vecs);
336                                 if (!bio) {
337                                         err = -ENOMEM;
338                                         goto free_bios;
339                                 }
340                                 bio->bi_end_io = scsi_bi_endio;
341                         }
342
343                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
344                             bytes) {
345                                 bio_put(bio);
346                                 err = -EINVAL;
347                                 goto free_bios;
348                         }
349
350                         if (bio->bi_vcnt >= nr_vecs) {
351                                 err = scsi_merge_bio(rq, bio);
352                                 if (err) {
353                                         bio_endio(bio, 0);
354                                         goto free_bios;
355                                 }
356                                 bio = NULL;
357                         }
358
359                         page++;
360                         len -= bytes;
361                         data_len -=bytes;
362                         off = 0;
363                 }
364         }
365
366         rq->buffer = rq->data = NULL;
367         rq->data_len = bufflen;
368         return 0;
369
370 free_bios:
371         while ((bio = rq->bio) != NULL) {
372                 rq->bio = bio->bi_next;
373                 /*
374                  * call endio instead of bio_put incase it was bounced
375                  */
376                 bio_endio(bio, 0);
377         }
378
379         return err;
380 }
381
382 /**
383  * scsi_execute_async - insert request
384  * @sdev:       scsi device
385  * @cmd:        scsi command
386  * @cmd_len:    length of scsi cdb
387  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
389  * @bufflen:    len of buffer
390  * @use_sg:     if buffer is a scatterlist this is the number of elements
391  * @timeout:    request timeout in seconds
392  * @retries:    number of times to retry request
393  * @privdata:   data passed to done()
394  * @done:       callback function when done
395  * @gfp:        memory allocation flags
396  */
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399                        int use_sg, int timeout, int retries, void *privdata,
400                        void (*done)(void *, char *, int, int), gfp_t gfp)
401 {
402         struct request *req;
403         struct scsi_io_context *sioc;
404         int err = 0;
405         int write = (data_direction == DMA_TO_DEVICE);
406
407         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408         if (!sioc)
409                 return DRIVER_ERROR << 24;
410
411         req = blk_get_request(sdev->request_queue, write, gfp);
412         if (!req)
413                 goto free_sense;
414         req->cmd_type = REQ_TYPE_BLOCK_PC;
415         req->cmd_flags |= REQ_QUIET;
416
417         if (use_sg)
418                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419         else if (bufflen)
420                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
421
422         if (err)
423                 goto free_req;
424
425         req->cmd_len = cmd_len;
426         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427         memcpy(req->cmd, cmd, req->cmd_len);
428         req->sense = sioc->sense;
429         req->sense_len = 0;
430         req->timeout = timeout;
431         req->retries = retries;
432         req->end_io_data = sioc;
433
434         sioc->data = privdata;
435         sioc->done = done;
436
437         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438         return 0;
439
440 free_req:
441         blk_put_request(req);
442 free_sense:
443         kmem_cache_free(scsi_io_context_cache, sioc);
444         return DRIVER_ERROR << 24;
445 }
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
447
448 /*
449  * Function:    scsi_init_cmd_errh()
450  *
451  * Purpose:     Initialize cmd fields related to error handling.
452  *
453  * Arguments:   cmd     - command that is ready to be queued.
454  *
455  * Notes:       This function has the job of initializing a number of
456  *              fields related to error handling.   Typically this will
457  *              be called once for each command, as required.
458  */
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
460 {
461         cmd->serial_number = 0;
462         scsi_set_resid(cmd, 0);
463         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464         if (cmd->cmd_len == 0)
465                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
466 }
467
468 void scsi_device_unbusy(struct scsi_device *sdev)
469 {
470         struct Scsi_Host *shost = sdev->host;
471         struct scsi_target *starget = scsi_target(sdev);
472         unsigned long flags;
473
474         spin_lock_irqsave(shost->host_lock, flags);
475         shost->host_busy--;
476         starget->target_busy--;
477         if (unlikely(scsi_host_in_recovery(shost) &&
478                      (shost->host_failed || shost->host_eh_scheduled)))
479                 scsi_eh_wakeup(shost);
480         spin_unlock(shost->host_lock);
481         spin_lock(sdev->request_queue->queue_lock);
482         sdev->device_busy--;
483         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
484 }
485
486 /*
487  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488  * and call blk_run_queue for all the scsi_devices on the target -
489  * including current_sdev first.
490  *
491  * Called with *no* scsi locks held.
492  */
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
494 {
495         struct Scsi_Host *shost = current_sdev->host;
496         struct scsi_device *sdev, *tmp;
497         struct scsi_target *starget = scsi_target(current_sdev);
498         unsigned long flags;
499
500         spin_lock_irqsave(shost->host_lock, flags);
501         starget->starget_sdev_user = NULL;
502         spin_unlock_irqrestore(shost->host_lock, flags);
503
504         /*
505          * Call blk_run_queue for all LUNs on the target, starting with
506          * current_sdev. We race with others (to set starget_sdev_user),
507          * but in most cases, we will be first. Ideally, each LU on the
508          * target would get some limited time or requests on the target.
509          */
510         blk_run_queue(current_sdev->request_queue);
511
512         spin_lock_irqsave(shost->host_lock, flags);
513         if (starget->starget_sdev_user)
514                 goto out;
515         list_for_each_entry_safe(sdev, tmp, &starget->devices,
516                         same_target_siblings) {
517                 if (sdev == current_sdev)
518                         continue;
519                 if (scsi_device_get(sdev))
520                         continue;
521
522                 spin_unlock_irqrestore(shost->host_lock, flags);
523                 blk_run_queue(sdev->request_queue);
524                 spin_lock_irqsave(shost->host_lock, flags);
525         
526                 scsi_device_put(sdev);
527         }
528  out:
529         spin_unlock_irqrestore(shost->host_lock, flags);
530 }
531
532 static inline int scsi_target_is_busy(struct scsi_target *starget)
533 {
534         return ((starget->can_queue > 0 &&
535                  starget->target_busy >= starget->can_queue) ||
536                  starget->target_blocked);
537 }
538
539 /*
540  * Function:    scsi_run_queue()
541  *
542  * Purpose:     Select a proper request queue to serve next
543  *
544  * Arguments:   q       - last request's queue
545  *
546  * Returns:     Nothing
547  *
548  * Notes:       The previous command was completely finished, start
549  *              a new one if possible.
550  */
551 static void scsi_run_queue(struct request_queue *q)
552 {
553         struct scsi_device *starved_head = NULL, *sdev = q->queuedata;
554         struct Scsi_Host *shost = sdev->host;
555         unsigned long flags;
556
557         if (scsi_target(sdev)->single_lun)
558                 scsi_single_lun_run(sdev);
559
560         spin_lock_irqsave(shost->host_lock, flags);
561         while (!list_empty(&shost->starved_list) &&
562                !shost->host_blocked && !shost->host_self_blocked &&
563                 !((shost->can_queue > 0) &&
564                   (shost->host_busy >= shost->can_queue))) {
565
566                 int flagset;
567
568                 /*
569                  * As long as shost is accepting commands and we have
570                  * starved queues, call blk_run_queue. scsi_request_fn
571                  * drops the queue_lock and can add us back to the
572                  * starved_list.
573                  *
574                  * host_lock protects the starved_list and starved_entry.
575                  * scsi_request_fn must get the host_lock before checking
576                  * or modifying starved_list or starved_entry.
577                  */
578                 sdev = list_entry(shost->starved_list.next,
579                                           struct scsi_device, starved_entry);
580                 /*
581                  * The *queue_ready functions can add a device back onto the
582                  * starved list's tail, so we must check for a infinite loop.
583                  */
584                 if (sdev == starved_head)
585                         break;
586                 if (!starved_head)
587                         starved_head = sdev;
588
589                 if (scsi_target_is_busy(scsi_target(sdev))) {
590                         list_move_tail(&sdev->starved_entry,
591                                        &shost->starved_list);
592                         continue;
593                 }
594
595                 list_del_init(&sdev->starved_entry);
596                 spin_unlock(shost->host_lock);
597
598                 spin_lock(sdev->request_queue->queue_lock);
599                 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
600                                 !test_bit(QUEUE_FLAG_REENTER,
601                                         &sdev->request_queue->queue_flags);
602                 if (flagset)
603                         queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
604                 __blk_run_queue(sdev->request_queue);
605                 if (flagset)
606                         queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
607                 spin_unlock(sdev->request_queue->queue_lock);
608
609                 spin_lock(shost->host_lock);
610         }
611         spin_unlock_irqrestore(shost->host_lock, flags);
612
613         blk_run_queue(q);
614 }
615
616 /*
617  * Function:    scsi_requeue_command()
618  *
619  * Purpose:     Handle post-processing of completed commands.
620  *
621  * Arguments:   q       - queue to operate on
622  *              cmd     - command that may need to be requeued.
623  *
624  * Returns:     Nothing
625  *
626  * Notes:       After command completion, there may be blocks left
627  *              over which weren't finished by the previous command
628  *              this can be for a number of reasons - the main one is
629  *              I/O errors in the middle of the request, in which case
630  *              we need to request the blocks that come after the bad
631  *              sector.
632  * Notes:       Upon return, cmd is a stale pointer.
633  */
634 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
635 {
636         struct request *req = cmd->request;
637         unsigned long flags;
638
639         scsi_unprep_request(req);
640         spin_lock_irqsave(q->queue_lock, flags);
641         blk_requeue_request(q, req);
642         spin_unlock_irqrestore(q->queue_lock, flags);
643
644         scsi_run_queue(q);
645 }
646
647 void scsi_next_command(struct scsi_cmnd *cmd)
648 {
649         struct scsi_device *sdev = cmd->device;
650         struct request_queue *q = sdev->request_queue;
651
652         /* need to hold a reference on the device before we let go of the cmd */
653         get_device(&sdev->sdev_gendev);
654
655         scsi_put_command(cmd);
656         scsi_run_queue(q);
657
658         /* ok to remove device now */
659         put_device(&sdev->sdev_gendev);
660 }
661
662 void scsi_run_host_queues(struct Scsi_Host *shost)
663 {
664         struct scsi_device *sdev;
665
666         shost_for_each_device(sdev, shost)
667                 scsi_run_queue(sdev->request_queue);
668 }
669
670 /*
671  * Function:    scsi_end_request()
672  *
673  * Purpose:     Post-processing of completed commands (usually invoked at end
674  *              of upper level post-processing and scsi_io_completion).
675  *
676  * Arguments:   cmd      - command that is complete.
677  *              error    - 0 if I/O indicates success, < 0 for I/O error.
678  *              bytes    - number of bytes of completed I/O
679  *              requeue  - indicates whether we should requeue leftovers.
680  *
681  * Lock status: Assumed that lock is not held upon entry.
682  *
683  * Returns:     cmd if requeue required, NULL otherwise.
684  *
685  * Notes:       This is called for block device requests in order to
686  *              mark some number of sectors as complete.
687  * 
688  *              We are guaranteeing that the request queue will be goosed
689  *              at some point during this call.
690  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
691  */
692 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
693                                           int bytes, int requeue)
694 {
695         struct request_queue *q = cmd->device->request_queue;
696         struct request *req = cmd->request;
697
698         /*
699          * If there are blocks left over at the end, set up the command
700          * to queue the remainder of them.
701          */
702         if (blk_end_request(req, error, bytes)) {
703                 int leftover = (req->hard_nr_sectors << 9);
704
705                 if (blk_pc_request(req))
706                         leftover = req->data_len;
707
708                 /* kill remainder if no retrys */
709                 if (error && scsi_noretry_cmd(cmd))
710                         blk_end_request(req, error, leftover);
711                 else {
712                         if (requeue) {
713                                 /*
714                                  * Bleah.  Leftovers again.  Stick the
715                                  * leftovers in the front of the
716                                  * queue, and goose the queue again.
717                                  */
718                                 scsi_requeue_command(q, cmd);
719                                 cmd = NULL;
720                         }
721                         return cmd;
722                 }
723         }
724
725         /*
726          * This will goose the queue request function at the end, so we don't
727          * need to worry about launching another command.
728          */
729         scsi_next_command(cmd);
730         return NULL;
731 }
732
733 static inline unsigned int scsi_sgtable_index(unsigned short nents)
734 {
735         unsigned int index;
736
737         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
738
739         if (nents <= 8)
740                 index = 0;
741         else
742                 index = get_count_order(nents) - 3;
743
744         return index;
745 }
746
747 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
748 {
749         struct scsi_host_sg_pool *sgp;
750
751         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
752         mempool_free(sgl, sgp->pool);
753 }
754
755 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
756 {
757         struct scsi_host_sg_pool *sgp;
758
759         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
760         return mempool_alloc(sgp->pool, gfp_mask);
761 }
762
763 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
764                               gfp_t gfp_mask)
765 {
766         int ret;
767
768         BUG_ON(!nents);
769
770         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
771                                gfp_mask, scsi_sg_alloc);
772         if (unlikely(ret))
773                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
774                                 scsi_sg_free);
775
776         return ret;
777 }
778
779 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
780 {
781         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
782 }
783
784 /*
785  * Function:    scsi_release_buffers()
786  *
787  * Purpose:     Completion processing for block device I/O requests.
788  *
789  * Arguments:   cmd     - command that we are bailing.
790  *
791  * Lock status: Assumed that no lock is held upon entry.
792  *
793  * Returns:     Nothing
794  *
795  * Notes:       In the event that an upper level driver rejects a
796  *              command, we must release resources allocated during
797  *              the __init_io() function.  Primarily this would involve
798  *              the scatter-gather table, and potentially any bounce
799  *              buffers.
800  */
801 void scsi_release_buffers(struct scsi_cmnd *cmd)
802 {
803         if (cmd->sdb.table.nents)
804                 scsi_free_sgtable(&cmd->sdb);
805
806         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
807
808         if (scsi_bidi_cmnd(cmd)) {
809                 struct scsi_data_buffer *bidi_sdb =
810                         cmd->request->next_rq->special;
811                 scsi_free_sgtable(bidi_sdb);
812                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
813                 cmd->request->next_rq->special = NULL;
814         }
815
816         if (scsi_prot_sg_count(cmd))
817                 scsi_free_sgtable(cmd->prot_sdb);
818 }
819 EXPORT_SYMBOL(scsi_release_buffers);
820
821 /*
822  * Bidi commands Must be complete as a whole, both sides at once.
823  * If part of the bytes were written and lld returned
824  * scsi_in()->resid and/or scsi_out()->resid this information will be left
825  * in req->data_len and req->next_rq->data_len. The upper-layer driver can
826  * decide what to do with this information.
827  */
828 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
829 {
830         struct request *req = cmd->request;
831         unsigned int dlen = req->data_len;
832         unsigned int next_dlen = req->next_rq->data_len;
833
834         req->data_len = scsi_out(cmd)->resid;
835         req->next_rq->data_len = scsi_in(cmd)->resid;
836
837         /* The req and req->next_rq have not been completed */
838         BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
839
840         scsi_release_buffers(cmd);
841
842         /*
843          * This will goose the queue request function at the end, so we don't
844          * need to worry about launching another command.
845          */
846         scsi_next_command(cmd);
847 }
848
849 /*
850  * Function:    scsi_io_completion()
851  *
852  * Purpose:     Completion processing for block device I/O requests.
853  *
854  * Arguments:   cmd   - command that is finished.
855  *
856  * Lock status: Assumed that no lock is held upon entry.
857  *
858  * Returns:     Nothing
859  *
860  * Notes:       This function is matched in terms of capabilities to
861  *              the function that created the scatter-gather list.
862  *              In other words, if there are no bounce buffers
863  *              (the normal case for most drivers), we don't need
864  *              the logic to deal with cleaning up afterwards.
865  *
866  *              We must do one of several things here:
867  *
868  *              a) Call scsi_end_request.  This will finish off the
869  *                 specified number of sectors.  If we are done, the
870  *                 command block will be released, and the queue
871  *                 function will be goosed.  If we are not done, then
872  *                 scsi_end_request will directly goose the queue.
873  *
874  *              b) We can just use scsi_requeue_command() here.  This would
875  *                 be used if we just wanted to retry, for example.
876  */
877 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
878 {
879         int result = cmd->result;
880         int this_count;
881         struct request_queue *q = cmd->device->request_queue;
882         struct request *req = cmd->request;
883         int error = 0;
884         struct scsi_sense_hdr sshdr;
885         int sense_valid = 0;
886         int sense_deferred = 0;
887
888         if (result) {
889                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
890                 if (sense_valid)
891                         sense_deferred = scsi_sense_is_deferred(&sshdr);
892         }
893
894         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
895                 req->errors = result;
896                 if (result) {
897                         if (sense_valid && req->sense) {
898                                 /*
899                                  * SG_IO wants current and deferred errors
900                                  */
901                                 int len = 8 + cmd->sense_buffer[7];
902
903                                 if (len > SCSI_SENSE_BUFFERSIZE)
904                                         len = SCSI_SENSE_BUFFERSIZE;
905                                 memcpy(req->sense, cmd->sense_buffer,  len);
906                                 req->sense_len = len;
907                         }
908                         if (!sense_deferred)
909                                 error = -EIO;
910                 }
911                 if (scsi_bidi_cmnd(cmd)) {
912                         /* will also release_buffers */
913                         scsi_end_bidi_request(cmd);
914                         return;
915                 }
916                 req->data_len = scsi_get_resid(cmd);
917         }
918
919         BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
920         scsi_release_buffers(cmd);
921
922         /*
923          * Next deal with any sectors which we were able to correctly
924          * handle.
925          */
926         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
927                                       "%d bytes done.\n",
928                                       req->nr_sectors, good_bytes));
929
930         /* A number of bytes were successfully read.  If there
931          * are leftovers and there is some kind of error
932          * (result != 0), retry the rest.
933          */
934         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
935                 return;
936         this_count = blk_rq_bytes(req);
937
938         /* good_bytes = 0, or (inclusive) there were leftovers and
939          * result = 0, so scsi_end_request couldn't retry.
940          */
941         if (sense_valid && !sense_deferred) {
942                 switch (sshdr.sense_key) {
943                 case UNIT_ATTENTION:
944                         if (cmd->device->removable) {
945                                 /* Detected disc change.  Set a bit
946                                  * and quietly refuse further access.
947                                  */
948                                 cmd->device->changed = 1;
949                                 scsi_end_request(cmd, -EIO, this_count, 1);
950                                 return;
951                         } else {
952                                 /* Must have been a power glitch, or a
953                                  * bus reset.  Could not have been a
954                                  * media change, so we just retry the
955                                  * request and see what happens.
956                                  */
957                                 scsi_requeue_command(q, cmd);
958                                 return;
959                         }
960                         break;
961                 case ILLEGAL_REQUEST:
962                         /* If we had an ILLEGAL REQUEST returned, then
963                          * we may have performed an unsupported
964                          * command.  The only thing this should be
965                          * would be a ten byte read where only a six
966                          * byte read was supported.  Also, on a system
967                          * where READ CAPACITY failed, we may have
968                          * read past the end of the disk.
969                          */
970                         if ((cmd->device->use_10_for_rw &&
971                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
972                             (cmd->cmnd[0] == READ_10 ||
973                              cmd->cmnd[0] == WRITE_10)) {
974                                 cmd->device->use_10_for_rw = 0;
975                                 /* This will cause a retry with a
976                                  * 6-byte command.
977                                  */
978                                 scsi_requeue_command(q, cmd);
979                         } else if (sshdr.asc == 0x10) /* DIX */
980                                 scsi_end_request(cmd, -EIO, this_count, 0);
981                         else
982                                 scsi_end_request(cmd, -EIO, this_count, 1);
983                         return;
984                 case ABORTED_COMMAND:
985                         if (sshdr.asc == 0x10) { /* DIF */
986                                 scsi_end_request(cmd, -EIO, this_count, 0);
987                                 return;
988                         }
989                         break;
990                 case NOT_READY:
991                         /* If the device is in the process of becoming
992                          * ready, or has a temporary blockage, retry.
993                          */
994                         if (sshdr.asc == 0x04) {
995                                 switch (sshdr.ascq) {
996                                 case 0x01: /* becoming ready */
997                                 case 0x04: /* format in progress */
998                                 case 0x05: /* rebuild in progress */
999                                 case 0x06: /* recalculation in progress */
1000                                 case 0x07: /* operation in progress */
1001                                 case 0x08: /* Long write in progress */
1002                                 case 0x09: /* self test in progress */
1003                                         scsi_requeue_command(q, cmd);
1004                                         return;
1005                                 default:
1006                                         break;
1007                                 }
1008                         }
1009                         if (!(req->cmd_flags & REQ_QUIET))
1010                                 scsi_cmd_print_sense_hdr(cmd,
1011                                                          "Device not ready",
1012                                                          &sshdr);
1013
1014                         scsi_end_request(cmd, -EIO, this_count, 1);
1015                         return;
1016                 case VOLUME_OVERFLOW:
1017                         if (!(req->cmd_flags & REQ_QUIET)) {
1018                                 scmd_printk(KERN_INFO, cmd,
1019                                             "Volume overflow, CDB: ");
1020                                 __scsi_print_command(cmd->cmnd);
1021                                 scsi_print_sense("", cmd);
1022                         }
1023                         /* See SSC3rXX or current. */
1024                         scsi_end_request(cmd, -EIO, this_count, 1);
1025                         return;
1026                 default:
1027                         break;
1028                 }
1029         }
1030         if (host_byte(result) == DID_RESET) {
1031                 /* Third party bus reset or reset for error recovery
1032                  * reasons.  Just retry the request and see what
1033                  * happens.
1034                  */
1035                 scsi_requeue_command(q, cmd);
1036                 return;
1037         }
1038         if (result) {
1039                 if (!(req->cmd_flags & REQ_QUIET)) {
1040                         scsi_print_result(cmd);
1041                         if (driver_byte(result) & DRIVER_SENSE)
1042                                 scsi_print_sense("", cmd);
1043                 }
1044         }
1045         scsi_end_request(cmd, -EIO, this_count, !result);
1046 }
1047
1048 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1049                              gfp_t gfp_mask)
1050 {
1051         int count;
1052
1053         /*
1054          * If sg table allocation fails, requeue request later.
1055          */
1056         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1057                                         gfp_mask))) {
1058                 return BLKPREP_DEFER;
1059         }
1060
1061         req->buffer = NULL;
1062
1063         /* 
1064          * Next, walk the list, and fill in the addresses and sizes of
1065          * each segment.
1066          */
1067         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1068         BUG_ON(count > sdb->table.nents);
1069         sdb->table.nents = count;
1070         if (blk_pc_request(req))
1071                 sdb->length = req->data_len;
1072         else
1073                 sdb->length = req->nr_sectors << 9;
1074         return BLKPREP_OK;
1075 }
1076
1077 /*
1078  * Function:    scsi_init_io()
1079  *
1080  * Purpose:     SCSI I/O initialize function.
1081  *
1082  * Arguments:   cmd   - Command descriptor we wish to initialize
1083  *
1084  * Returns:     0 on success
1085  *              BLKPREP_DEFER if the failure is retryable
1086  *              BLKPREP_KILL if the failure is fatal
1087  */
1088 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1089 {
1090         int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1091         if (error)
1092                 goto err_exit;
1093
1094         if (blk_bidi_rq(cmd->request)) {
1095                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1096                         scsi_sdb_cache, GFP_ATOMIC);
1097                 if (!bidi_sdb) {
1098                         error = BLKPREP_DEFER;
1099                         goto err_exit;
1100                 }
1101
1102                 cmd->request->next_rq->special = bidi_sdb;
1103                 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1104                                                                     GFP_ATOMIC);
1105                 if (error)
1106                         goto err_exit;
1107         }
1108
1109         if (blk_integrity_rq(cmd->request)) {
1110                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1111                 int ivecs, count;
1112
1113                 BUG_ON(prot_sdb == NULL);
1114                 ivecs = blk_rq_count_integrity_sg(cmd->request);
1115
1116                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1117                         error = BLKPREP_DEFER;
1118                         goto err_exit;
1119                 }
1120
1121                 count = blk_rq_map_integrity_sg(cmd->request,
1122                                                 prot_sdb->table.sgl);
1123                 BUG_ON(unlikely(count > ivecs));
1124
1125                 cmd->prot_sdb = prot_sdb;
1126                 cmd->prot_sdb->table.nents = count;
1127         }
1128
1129         return BLKPREP_OK ;
1130
1131 err_exit:
1132         scsi_release_buffers(cmd);
1133         if (error == BLKPREP_KILL)
1134                 scsi_put_command(cmd);
1135         else /* BLKPREP_DEFER */
1136                 scsi_unprep_request(cmd->request);
1137
1138         return error;
1139 }
1140 EXPORT_SYMBOL(scsi_init_io);
1141
1142 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1143                 struct request *req)
1144 {
1145         struct scsi_cmnd *cmd;
1146
1147         if (!req->special) {
1148                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1149                 if (unlikely(!cmd))
1150                         return NULL;
1151                 req->special = cmd;
1152         } else {
1153                 cmd = req->special;
1154         }
1155
1156         /* pull a tag out of the request if we have one */
1157         cmd->tag = req->tag;
1158         cmd->request = req;
1159
1160         cmd->cmnd = req->cmd;
1161
1162         return cmd;
1163 }
1164
1165 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1166 {
1167         struct scsi_cmnd *cmd;
1168         int ret = scsi_prep_state_check(sdev, req);
1169
1170         if (ret != BLKPREP_OK)
1171                 return ret;
1172
1173         cmd = scsi_get_cmd_from_req(sdev, req);
1174         if (unlikely(!cmd))
1175                 return BLKPREP_DEFER;
1176
1177         /*
1178          * BLOCK_PC requests may transfer data, in which case they must
1179          * a bio attached to them.  Or they might contain a SCSI command
1180          * that does not transfer data, in which case they may optionally
1181          * submit a request without an attached bio.
1182          */
1183         if (req->bio) {
1184                 int ret;
1185
1186                 BUG_ON(!req->nr_phys_segments);
1187
1188                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1189                 if (unlikely(ret))
1190                         return ret;
1191         } else {
1192                 BUG_ON(req->data_len);
1193                 BUG_ON(req->data);
1194
1195                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1196                 req->buffer = NULL;
1197         }
1198
1199         cmd->cmd_len = req->cmd_len;
1200         if (!req->data_len)
1201                 cmd->sc_data_direction = DMA_NONE;
1202         else if (rq_data_dir(req) == WRITE)
1203                 cmd->sc_data_direction = DMA_TO_DEVICE;
1204         else
1205                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1206         
1207         cmd->transfersize = req->data_len;
1208         cmd->allowed = req->retries;
1209         return BLKPREP_OK;
1210 }
1211 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1212
1213 /*
1214  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1215  * from filesystems that still need to be translated to SCSI CDBs from
1216  * the ULD.
1217  */
1218 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1219 {
1220         struct scsi_cmnd *cmd;
1221         int ret = scsi_prep_state_check(sdev, req);
1222
1223         if (ret != BLKPREP_OK)
1224                 return ret;
1225
1226         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1227                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1228                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1229                 if (ret != BLKPREP_OK)
1230                         return ret;
1231         }
1232
1233         /*
1234          * Filesystem requests must transfer data.
1235          */
1236         BUG_ON(!req->nr_phys_segments);
1237
1238         cmd = scsi_get_cmd_from_req(sdev, req);
1239         if (unlikely(!cmd))
1240                 return BLKPREP_DEFER;
1241
1242         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1243         return scsi_init_io(cmd, GFP_ATOMIC);
1244 }
1245 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1246
1247 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1248 {
1249         int ret = BLKPREP_OK;
1250
1251         /*
1252          * If the device is not in running state we will reject some
1253          * or all commands.
1254          */
1255         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1256                 switch (sdev->sdev_state) {
1257                 case SDEV_OFFLINE:
1258                         /*
1259                          * If the device is offline we refuse to process any
1260                          * commands.  The device must be brought online
1261                          * before trying any recovery commands.
1262                          */
1263                         sdev_printk(KERN_ERR, sdev,
1264                                     "rejecting I/O to offline device\n");
1265                         ret = BLKPREP_KILL;
1266                         break;
1267                 case SDEV_DEL:
1268                         /*
1269                          * If the device is fully deleted, we refuse to
1270                          * process any commands as well.
1271                          */
1272                         sdev_printk(KERN_ERR, sdev,
1273                                     "rejecting I/O to dead device\n");
1274                         ret = BLKPREP_KILL;
1275                         break;
1276                 case SDEV_QUIESCE:
1277                 case SDEV_BLOCK:
1278                 case SDEV_CREATED_BLOCK:
1279                         /*
1280                          * If the devices is blocked we defer normal commands.
1281                          */
1282                         if (!(req->cmd_flags & REQ_PREEMPT))
1283                                 ret = BLKPREP_DEFER;
1284                         break;
1285                 default:
1286                         /*
1287                          * For any other not fully online state we only allow
1288                          * special commands.  In particular any user initiated
1289                          * command is not allowed.
1290                          */
1291                         if (!(req->cmd_flags & REQ_PREEMPT))
1292                                 ret = BLKPREP_KILL;
1293                         break;
1294                 }
1295         }
1296         return ret;
1297 }
1298 EXPORT_SYMBOL(scsi_prep_state_check);
1299
1300 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1301 {
1302         struct scsi_device *sdev = q->queuedata;
1303
1304         switch (ret) {
1305         case BLKPREP_KILL:
1306                 req->errors = DID_NO_CONNECT << 16;
1307                 /* release the command and kill it */
1308                 if (req->special) {
1309                         struct scsi_cmnd *cmd = req->special;
1310                         scsi_release_buffers(cmd);
1311                         scsi_put_command(cmd);
1312                         req->special = NULL;
1313                 }
1314                 break;
1315         case BLKPREP_DEFER:
1316                 /*
1317                  * If we defer, the elv_next_request() returns NULL, but the
1318                  * queue must be restarted, so we plug here if no returning
1319                  * command will automatically do that.
1320                  */
1321                 if (sdev->device_busy == 0)
1322                         blk_plug_device(q);
1323                 break;
1324         default:
1325                 req->cmd_flags |= REQ_DONTPREP;
1326         }
1327
1328         return ret;
1329 }
1330 EXPORT_SYMBOL(scsi_prep_return);
1331
1332 int scsi_prep_fn(struct request_queue *q, struct request *req)
1333 {
1334         struct scsi_device *sdev = q->queuedata;
1335         int ret = BLKPREP_KILL;
1336
1337         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1338                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1339         return scsi_prep_return(q, req, ret);
1340 }
1341
1342 /*
1343  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1344  * return 0.
1345  *
1346  * Called with the queue_lock held.
1347  */
1348 static inline int scsi_dev_queue_ready(struct request_queue *q,
1349                                   struct scsi_device *sdev)
1350 {
1351         if (sdev->device_busy >= sdev->queue_depth)
1352                 return 0;
1353         if (sdev->device_busy == 0 && sdev->device_blocked) {
1354                 /*
1355                  * unblock after device_blocked iterates to zero
1356                  */
1357                 if (--sdev->device_blocked == 0) {
1358                         SCSI_LOG_MLQUEUE(3,
1359                                    sdev_printk(KERN_INFO, sdev,
1360                                    "unblocking device at zero depth\n"));
1361                 } else {
1362                         blk_plug_device(q);
1363                         return 0;
1364                 }
1365         }
1366         if (sdev->device_blocked)
1367                 return 0;
1368
1369         return 1;
1370 }
1371
1372
1373 /*
1374  * scsi_target_queue_ready: checks if there we can send commands to target
1375  * @sdev: scsi device on starget to check.
1376  *
1377  * Called with the host lock held.
1378  */
1379 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1380                                            struct scsi_device *sdev)
1381 {
1382         struct scsi_target *starget = scsi_target(sdev);
1383
1384         if (starget->single_lun) {
1385                 if (starget->starget_sdev_user &&
1386                     starget->starget_sdev_user != sdev)
1387                         return 0;
1388                 starget->starget_sdev_user = sdev;
1389         }
1390
1391         if (starget->target_busy == 0 && starget->target_blocked) {
1392                 /*
1393                  * unblock after target_blocked iterates to zero
1394                  */
1395                 if (--starget->target_blocked == 0) {
1396                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1397                                          "unblocking target at zero depth\n"));
1398                 } else {
1399                         blk_plug_device(sdev->request_queue);
1400                         return 0;
1401                 }
1402         }
1403
1404         if (scsi_target_is_busy(starget)) {
1405                 if (list_empty(&sdev->starved_entry)) {
1406                         list_add_tail(&sdev->starved_entry,
1407                                       &shost->starved_list);
1408                         return 0;
1409                 }
1410         }
1411
1412         /* We're OK to process the command, so we can't be starved */
1413         if (!list_empty(&sdev->starved_entry))
1414                 list_del_init(&sdev->starved_entry);
1415         return 1;
1416 }
1417
1418 /*
1419  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1420  * return 0. We must end up running the queue again whenever 0 is
1421  * returned, else IO can hang.
1422  *
1423  * Called with host_lock held.
1424  */
1425 static inline int scsi_host_queue_ready(struct request_queue *q,
1426                                    struct Scsi_Host *shost,
1427                                    struct scsi_device *sdev)
1428 {
1429         if (scsi_host_in_recovery(shost))
1430                 return 0;
1431         if (shost->host_busy == 0 && shost->host_blocked) {
1432                 /*
1433                  * unblock after host_blocked iterates to zero
1434                  */
1435                 if (--shost->host_blocked == 0) {
1436                         SCSI_LOG_MLQUEUE(3,
1437                                 printk("scsi%d unblocking host at zero depth\n",
1438                                         shost->host_no));
1439                 } else {
1440                         return 0;
1441                 }
1442         }
1443         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1444             shost->host_blocked || shost->host_self_blocked) {
1445                 if (list_empty(&sdev->starved_entry))
1446                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1447                 return 0;
1448         }
1449
1450         /* We're OK to process the command, so we can't be starved */
1451         if (!list_empty(&sdev->starved_entry))
1452                 list_del_init(&sdev->starved_entry);
1453
1454         return 1;
1455 }
1456
1457 /*
1458  * Kill a request for a dead device
1459  */
1460 static void scsi_kill_request(struct request *req, struct request_queue *q)
1461 {
1462         struct scsi_cmnd *cmd = req->special;
1463         struct scsi_device *sdev = cmd->device;
1464         struct scsi_target *starget = scsi_target(sdev);
1465         struct Scsi_Host *shost = sdev->host;
1466
1467         blkdev_dequeue_request(req);
1468
1469         if (unlikely(cmd == NULL)) {
1470                 printk(KERN_CRIT "impossible request in %s.\n",
1471                                  __func__);
1472                 BUG();
1473         }
1474
1475         scsi_init_cmd_errh(cmd);
1476         cmd->result = DID_NO_CONNECT << 16;
1477         atomic_inc(&cmd->device->iorequest_cnt);
1478
1479         /*
1480          * SCSI request completion path will do scsi_device_unbusy(),
1481          * bump busy counts.  To bump the counters, we need to dance
1482          * with the locks as normal issue path does.
1483          */
1484         sdev->device_busy++;
1485         spin_unlock(sdev->request_queue->queue_lock);
1486         spin_lock(shost->host_lock);
1487         shost->host_busy++;
1488         starget->target_busy++;
1489         spin_unlock(shost->host_lock);
1490         spin_lock(sdev->request_queue->queue_lock);
1491
1492         blk_complete_request(req);
1493 }
1494
1495 static void scsi_softirq_done(struct request *rq)
1496 {
1497         struct scsi_cmnd *cmd = rq->special;
1498         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1499         int disposition;
1500
1501         INIT_LIST_HEAD(&cmd->eh_entry);
1502
1503         /*
1504          * Set the serial numbers back to zero
1505          */
1506         cmd->serial_number = 0;
1507
1508         atomic_inc(&cmd->device->iodone_cnt);
1509         if (cmd->result)
1510                 atomic_inc(&cmd->device->ioerr_cnt);
1511
1512         disposition = scsi_decide_disposition(cmd);
1513         if (disposition != SUCCESS &&
1514             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1515                 sdev_printk(KERN_ERR, cmd->device,
1516                             "timing out command, waited %lus\n",
1517                             wait_for/HZ);
1518                 disposition = SUCCESS;
1519         }
1520                         
1521         scsi_log_completion(cmd, disposition);
1522
1523         switch (disposition) {
1524                 case SUCCESS:
1525                         scsi_finish_command(cmd);
1526                         break;
1527                 case NEEDS_RETRY:
1528                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1529                         break;
1530                 case ADD_TO_MLQUEUE:
1531                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1532                         break;
1533                 default:
1534                         if (!scsi_eh_scmd_add(cmd, 0))
1535                                 scsi_finish_command(cmd);
1536         }
1537 }
1538
1539 /*
1540  * Function:    scsi_request_fn()
1541  *
1542  * Purpose:     Main strategy routine for SCSI.
1543  *
1544  * Arguments:   q       - Pointer to actual queue.
1545  *
1546  * Returns:     Nothing
1547  *
1548  * Lock status: IO request lock assumed to be held when called.
1549  */
1550 static void scsi_request_fn(struct request_queue *q)
1551 {
1552         struct scsi_device *sdev = q->queuedata;
1553         struct Scsi_Host *shost;
1554         struct scsi_cmnd *cmd;
1555         struct request *req;
1556
1557         if (!sdev) {
1558                 printk("scsi: killing requests for dead queue\n");
1559                 while ((req = elv_next_request(q)) != NULL)
1560                         scsi_kill_request(req, q);
1561                 return;
1562         }
1563
1564         if(!get_device(&sdev->sdev_gendev))
1565                 /* We must be tearing the block queue down already */
1566                 return;
1567
1568         /*
1569          * To start with, we keep looping until the queue is empty, or until
1570          * the host is no longer able to accept any more requests.
1571          */
1572         shost = sdev->host;
1573         while (!blk_queue_plugged(q)) {
1574                 int rtn;
1575                 /*
1576                  * get next queueable request.  We do this early to make sure
1577                  * that the request is fully prepared even if we cannot 
1578                  * accept it.
1579                  */
1580                 req = elv_next_request(q);
1581                 if (!req || !scsi_dev_queue_ready(q, sdev))
1582                         break;
1583
1584                 if (unlikely(!scsi_device_online(sdev))) {
1585                         sdev_printk(KERN_ERR, sdev,
1586                                     "rejecting I/O to offline device\n");
1587                         scsi_kill_request(req, q);
1588                         continue;
1589                 }
1590
1591
1592                 /*
1593                  * Remove the request from the request list.
1594                  */
1595                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1596                         blkdev_dequeue_request(req);
1597                 sdev->device_busy++;
1598
1599                 spin_unlock(q->queue_lock);
1600                 cmd = req->special;
1601                 if (unlikely(cmd == NULL)) {
1602                         printk(KERN_CRIT "impossible request in %s.\n"
1603                                          "please mail a stack trace to "
1604                                          "linux-scsi@vger.kernel.org\n",
1605                                          __func__);
1606                         blk_dump_rq_flags(req, "foo");
1607                         BUG();
1608                 }
1609                 spin_lock(shost->host_lock);
1610
1611                 /*
1612                  * We hit this when the driver is using a host wide
1613                  * tag map. For device level tag maps the queue_depth check
1614                  * in the device ready fn would prevent us from trying
1615                  * to allocate a tag. Since the map is a shared host resource
1616                  * we add the dev to the starved list so it eventually gets
1617                  * a run when a tag is freed.
1618                  */
1619                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1620                         if (list_empty(&sdev->starved_entry))
1621                                 list_add_tail(&sdev->starved_entry,
1622                                               &shost->starved_list);
1623                         goto not_ready;
1624                 }
1625
1626                 if (!scsi_target_queue_ready(shost, sdev))
1627                         goto not_ready;
1628
1629                 if (!scsi_host_queue_ready(q, shost, sdev))
1630                         goto not_ready;
1631
1632                 scsi_target(sdev)->target_busy++;
1633                 shost->host_busy++;
1634
1635                 /*
1636                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1637                  *              take the lock again.
1638                  */
1639                 spin_unlock_irq(shost->host_lock);
1640
1641                 /*
1642                  * Finally, initialize any error handling parameters, and set up
1643                  * the timers for timeouts.
1644                  */
1645                 scsi_init_cmd_errh(cmd);
1646
1647                 /*
1648                  * Dispatch the command to the low-level driver.
1649                  */
1650                 rtn = scsi_dispatch_cmd(cmd);
1651                 spin_lock_irq(q->queue_lock);
1652                 if(rtn) {
1653                         /* we're refusing the command; because of
1654                          * the way locks get dropped, we need to 
1655                          * check here if plugging is required */
1656                         if(sdev->device_busy == 0)
1657                                 blk_plug_device(q);
1658
1659                         break;
1660                 }
1661         }
1662
1663         goto out;
1664
1665  not_ready:
1666         spin_unlock_irq(shost->host_lock);
1667
1668         /*
1669          * lock q, handle tag, requeue req, and decrement device_busy. We
1670          * must return with queue_lock held.
1671          *
1672          * Decrementing device_busy without checking it is OK, as all such
1673          * cases (host limits or settings) should run the queue at some
1674          * later time.
1675          */
1676         spin_lock_irq(q->queue_lock);
1677         blk_requeue_request(q, req);
1678         sdev->device_busy--;
1679         if(sdev->device_busy == 0)
1680                 blk_plug_device(q);
1681  out:
1682         /* must be careful here...if we trigger the ->remove() function
1683          * we cannot be holding the q lock */
1684         spin_unlock_irq(q->queue_lock);
1685         put_device(&sdev->sdev_gendev);
1686         spin_lock_irq(q->queue_lock);
1687 }
1688
1689 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1690 {
1691         struct device *host_dev;
1692         u64 bounce_limit = 0xffffffff;
1693
1694         if (shost->unchecked_isa_dma)
1695                 return BLK_BOUNCE_ISA;
1696         /*
1697          * Platforms with virtual-DMA translation
1698          * hardware have no practical limit.
1699          */
1700         if (!PCI_DMA_BUS_IS_PHYS)
1701                 return BLK_BOUNCE_ANY;
1702
1703         host_dev = scsi_get_device(shost);
1704         if (host_dev && host_dev->dma_mask)
1705                 bounce_limit = *host_dev->dma_mask;
1706
1707         return bounce_limit;
1708 }
1709 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1710
1711 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1712                                          request_fn_proc *request_fn)
1713 {
1714         struct request_queue *q;
1715         struct device *dev = shost->shost_gendev.parent;
1716
1717         q = blk_init_queue(request_fn, NULL);
1718         if (!q)
1719                 return NULL;
1720
1721         /*
1722          * this limit is imposed by hardware restrictions
1723          */
1724         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1725         blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1726
1727         blk_queue_max_sectors(q, shost->max_sectors);
1728         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1729         blk_queue_segment_boundary(q, shost->dma_boundary);
1730         dma_set_seg_boundary(dev, shost->dma_boundary);
1731
1732         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1733
1734         /* New queue, no concurrency on queue_flags */
1735         if (!shost->use_clustering)
1736                 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1737
1738         /*
1739          * set a reasonable default alignment on word boundaries: the
1740          * host and device may alter it using
1741          * blk_queue_update_dma_alignment() later.
1742          */
1743         blk_queue_dma_alignment(q, 0x03);
1744
1745         return q;
1746 }
1747 EXPORT_SYMBOL(__scsi_alloc_queue);
1748
1749 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1750 {
1751         struct request_queue *q;
1752
1753         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1754         if (!q)
1755                 return NULL;
1756
1757         blk_queue_prep_rq(q, scsi_prep_fn);
1758         blk_queue_softirq_done(q, scsi_softirq_done);
1759         blk_queue_rq_timed_out(q, scsi_times_out);
1760         return q;
1761 }
1762
1763 void scsi_free_queue(struct request_queue *q)
1764 {
1765         blk_cleanup_queue(q);
1766 }
1767
1768 /*
1769  * Function:    scsi_block_requests()
1770  *
1771  * Purpose:     Utility function used by low-level drivers to prevent further
1772  *              commands from being queued to the device.
1773  *
1774  * Arguments:   shost       - Host in question
1775  *
1776  * Returns:     Nothing
1777  *
1778  * Lock status: No locks are assumed held.
1779  *
1780  * Notes:       There is no timer nor any other means by which the requests
1781  *              get unblocked other than the low-level driver calling
1782  *              scsi_unblock_requests().
1783  */
1784 void scsi_block_requests(struct Scsi_Host *shost)
1785 {
1786         shost->host_self_blocked = 1;
1787 }
1788 EXPORT_SYMBOL(scsi_block_requests);
1789
1790 /*
1791  * Function:    scsi_unblock_requests()
1792  *
1793  * Purpose:     Utility function used by low-level drivers to allow further
1794  *              commands from being queued to the device.
1795  *
1796  * Arguments:   shost       - Host in question
1797  *
1798  * Returns:     Nothing
1799  *
1800  * Lock status: No locks are assumed held.
1801  *
1802  * Notes:       There is no timer nor any other means by which the requests
1803  *              get unblocked other than the low-level driver calling
1804  *              scsi_unblock_requests().
1805  *
1806  *              This is done as an API function so that changes to the
1807  *              internals of the scsi mid-layer won't require wholesale
1808  *              changes to drivers that use this feature.
1809  */
1810 void scsi_unblock_requests(struct Scsi_Host *shost)
1811 {
1812         shost->host_self_blocked = 0;
1813         scsi_run_host_queues(shost);
1814 }
1815 EXPORT_SYMBOL(scsi_unblock_requests);
1816
1817 int __init scsi_init_queue(void)
1818 {
1819         int i;
1820
1821         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1822                                         sizeof(struct scsi_io_context),
1823                                         0, 0, NULL);
1824         if (!scsi_io_context_cache) {
1825                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1826                 return -ENOMEM;
1827         }
1828
1829         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1830                                            sizeof(struct scsi_data_buffer),
1831                                            0, 0, NULL);
1832         if (!scsi_sdb_cache) {
1833                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1834                 goto cleanup_io_context;
1835         }
1836
1837         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1838                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1839                 int size = sgp->size * sizeof(struct scatterlist);
1840
1841                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1842                                 SLAB_HWCACHE_ALIGN, NULL);
1843                 if (!sgp->slab) {
1844                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1845                                         sgp->name);
1846                         goto cleanup_sdb;
1847                 }
1848
1849                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1850                                                      sgp->slab);
1851                 if (!sgp->pool) {
1852                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1853                                         sgp->name);
1854                         goto cleanup_sdb;
1855                 }
1856         }
1857
1858         return 0;
1859
1860 cleanup_sdb:
1861         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1862                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1863                 if (sgp->pool)
1864                         mempool_destroy(sgp->pool);
1865                 if (sgp->slab)
1866                         kmem_cache_destroy(sgp->slab);
1867         }
1868         kmem_cache_destroy(scsi_sdb_cache);
1869 cleanup_io_context:
1870         kmem_cache_destroy(scsi_io_context_cache);
1871
1872         return -ENOMEM;
1873 }
1874
1875 void scsi_exit_queue(void)
1876 {
1877         int i;
1878
1879         kmem_cache_destroy(scsi_io_context_cache);
1880         kmem_cache_destroy(scsi_sdb_cache);
1881
1882         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1883                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1884                 mempool_destroy(sgp->pool);
1885                 kmem_cache_destroy(sgp->slab);
1886         }
1887 }
1888
1889 /**
1890  *      scsi_mode_select - issue a mode select
1891  *      @sdev:  SCSI device to be queried
1892  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1893  *      @sp:    Save page bit (0 == don't save, 1 == save)
1894  *      @modepage: mode page being requested
1895  *      @buffer: request buffer (may not be smaller than eight bytes)
1896  *      @len:   length of request buffer.
1897  *      @timeout: command timeout
1898  *      @retries: number of retries before failing
1899  *      @data: returns a structure abstracting the mode header data
1900  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1901  *              must be SCSI_SENSE_BUFFERSIZE big.
1902  *
1903  *      Returns zero if successful; negative error number or scsi
1904  *      status on error
1905  *
1906  */
1907 int
1908 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1909                  unsigned char *buffer, int len, int timeout, int retries,
1910                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1911 {
1912         unsigned char cmd[10];
1913         unsigned char *real_buffer;
1914         int ret;
1915
1916         memset(cmd, 0, sizeof(cmd));
1917         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1918
1919         if (sdev->use_10_for_ms) {
1920                 if (len > 65535)
1921                         return -EINVAL;
1922                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1923                 if (!real_buffer)
1924                         return -ENOMEM;
1925                 memcpy(real_buffer + 8, buffer, len);
1926                 len += 8;
1927                 real_buffer[0] = 0;
1928                 real_buffer[1] = 0;
1929                 real_buffer[2] = data->medium_type;
1930                 real_buffer[3] = data->device_specific;
1931                 real_buffer[4] = data->longlba ? 0x01 : 0;
1932                 real_buffer[5] = 0;
1933                 real_buffer[6] = data->block_descriptor_length >> 8;
1934                 real_buffer[7] = data->block_descriptor_length;
1935
1936                 cmd[0] = MODE_SELECT_10;
1937                 cmd[7] = len >> 8;
1938                 cmd[8] = len;
1939         } else {
1940                 if (len > 255 || data->block_descriptor_length > 255 ||
1941                     data->longlba)
1942                         return -EINVAL;
1943
1944                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1945                 if (!real_buffer)
1946                         return -ENOMEM;
1947                 memcpy(real_buffer + 4, buffer, len);
1948                 len += 4;
1949                 real_buffer[0] = 0;
1950                 real_buffer[1] = data->medium_type;
1951                 real_buffer[2] = data->device_specific;
1952                 real_buffer[3] = data->block_descriptor_length;
1953                 
1954
1955                 cmd[0] = MODE_SELECT;
1956                 cmd[4] = len;
1957         }
1958
1959         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1960                                sshdr, timeout, retries);
1961         kfree(real_buffer);
1962         return ret;
1963 }
1964 EXPORT_SYMBOL_GPL(scsi_mode_select);
1965
1966 /**
1967  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1968  *      @sdev:  SCSI device to be queried
1969  *      @dbd:   set if mode sense will allow block descriptors to be returned
1970  *      @modepage: mode page being requested
1971  *      @buffer: request buffer (may not be smaller than eight bytes)
1972  *      @len:   length of request buffer.
1973  *      @timeout: command timeout
1974  *      @retries: number of retries before failing
1975  *      @data: returns a structure abstracting the mode header data
1976  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1977  *              must be SCSI_SENSE_BUFFERSIZE big.
1978  *
1979  *      Returns zero if unsuccessful, or the header offset (either 4
1980  *      or 8 depending on whether a six or ten byte command was
1981  *      issued) if successful.
1982  */
1983 int
1984 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1985                   unsigned char *buffer, int len, int timeout, int retries,
1986                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1987 {
1988         unsigned char cmd[12];
1989         int use_10_for_ms;
1990         int header_length;
1991         int result;
1992         struct scsi_sense_hdr my_sshdr;
1993
1994         memset(data, 0, sizeof(*data));
1995         memset(&cmd[0], 0, 12);
1996         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1997         cmd[2] = modepage;
1998
1999         /* caller might not be interested in sense, but we need it */
2000         if (!sshdr)
2001                 sshdr = &my_sshdr;
2002
2003  retry:
2004         use_10_for_ms = sdev->use_10_for_ms;
2005
2006         if (use_10_for_ms) {
2007                 if (len < 8)
2008                         len = 8;
2009
2010                 cmd[0] = MODE_SENSE_10;
2011                 cmd[8] = len;
2012                 header_length = 8;
2013         } else {
2014                 if (len < 4)
2015                         len = 4;
2016
2017                 cmd[0] = MODE_SENSE;
2018                 cmd[4] = len;
2019                 header_length = 4;
2020         }
2021
2022         memset(buffer, 0, len);
2023
2024         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2025                                   sshdr, timeout, retries);
2026
2027         /* This code looks awful: what it's doing is making sure an
2028          * ILLEGAL REQUEST sense return identifies the actual command
2029          * byte as the problem.  MODE_SENSE commands can return
2030          * ILLEGAL REQUEST if the code page isn't supported */
2031
2032         if (use_10_for_ms && !scsi_status_is_good(result) &&
2033             (driver_byte(result) & DRIVER_SENSE)) {
2034                 if (scsi_sense_valid(sshdr)) {
2035                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2036                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2037                                 /* 
2038                                  * Invalid command operation code
2039                                  */
2040                                 sdev->use_10_for_ms = 0;
2041                                 goto retry;
2042                         }
2043                 }
2044         }
2045
2046         if(scsi_status_is_good(result)) {
2047                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2048                              (modepage == 6 || modepage == 8))) {
2049                         /* Initio breakage? */
2050                         header_length = 0;
2051                         data->length = 13;
2052                         data->medium_type = 0;
2053                         data->device_specific = 0;
2054                         data->longlba = 0;
2055                         data->block_descriptor_length = 0;
2056                 } else if(use_10_for_ms) {
2057                         data->length = buffer[0]*256 + buffer[1] + 2;
2058                         data->medium_type = buffer[2];
2059                         data->device_specific = buffer[3];
2060                         data->longlba = buffer[4] & 0x01;
2061                         data->block_descriptor_length = buffer[6]*256
2062                                 + buffer[7];
2063                 } else {
2064                         data->length = buffer[0] + 1;
2065                         data->medium_type = buffer[1];
2066                         data->device_specific = buffer[2];
2067                         data->block_descriptor_length = buffer[3];
2068                 }
2069                 data->header_length = header_length;
2070         }
2071
2072         return result;
2073 }
2074 EXPORT_SYMBOL(scsi_mode_sense);
2075
2076 /**
2077  *      scsi_test_unit_ready - test if unit is ready
2078  *      @sdev:  scsi device to change the state of.
2079  *      @timeout: command timeout
2080  *      @retries: number of retries before failing
2081  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2082  *              returning sense. Make sure that this is cleared before passing
2083  *              in.
2084  *
2085  *      Returns zero if unsuccessful or an error if TUR failed.  For
2086  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
2087  *      translated to success, with the ->changed flag updated.
2088  **/
2089 int
2090 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2091                      struct scsi_sense_hdr *sshdr_external)
2092 {
2093         char cmd[] = {
2094                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2095         };
2096         struct scsi_sense_hdr *sshdr;
2097         int result;
2098
2099         if (!sshdr_external)
2100                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2101         else
2102                 sshdr = sshdr_external;
2103
2104         /* try to eat the UNIT_ATTENTION if there are enough retries */
2105         do {
2106                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2107                                           timeout, retries);
2108         } while ((driver_byte(result) & DRIVER_SENSE) &&
2109                  sshdr && sshdr->sense_key == UNIT_ATTENTION &&
2110                  --retries);
2111
2112         if (!sshdr)
2113                 /* could not allocate sense buffer, so can't process it */
2114                 return result;
2115
2116         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
2117
2118                 if ((scsi_sense_valid(sshdr)) &&
2119                     ((sshdr->sense_key == UNIT_ATTENTION) ||
2120                      (sshdr->sense_key == NOT_READY))) {
2121                         sdev->changed = 1;
2122                         result = 0;
2123                 }
2124         }
2125         if (!sshdr_external)
2126                 kfree(sshdr);
2127         return result;
2128 }
2129 EXPORT_SYMBOL(scsi_test_unit_ready);
2130
2131 /**
2132  *      scsi_device_set_state - Take the given device through the device state model.
2133  *      @sdev:  scsi device to change the state of.
2134  *      @state: state to change to.
2135  *
2136  *      Returns zero if unsuccessful or an error if the requested 
2137  *      transition is illegal.
2138  */
2139 int
2140 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2141 {
2142         enum scsi_device_state oldstate = sdev->sdev_state;
2143
2144         if (state == oldstate)
2145                 return 0;
2146
2147         switch (state) {
2148         case SDEV_CREATED:
2149                 switch (oldstate) {
2150                 case SDEV_CREATED_BLOCK:
2151                         break;
2152                 default:
2153                         goto illegal;
2154                 }
2155                 break;
2156                         
2157         case SDEV_RUNNING:
2158                 switch (oldstate) {
2159                 case SDEV_CREATED:
2160                 case SDEV_OFFLINE:
2161                 case SDEV_QUIESCE:
2162                 case SDEV_BLOCK:
2163                         break;
2164                 default:
2165                         goto illegal;
2166                 }
2167                 break;
2168
2169         case SDEV_QUIESCE:
2170                 switch (oldstate) {
2171                 case SDEV_RUNNING:
2172                 case SDEV_OFFLINE:
2173                         break;
2174                 default:
2175                         goto illegal;
2176                 }
2177                 break;
2178
2179         case SDEV_OFFLINE:
2180                 switch (oldstate) {
2181                 case SDEV_CREATED:
2182                 case SDEV_RUNNING:
2183                 case SDEV_QUIESCE:
2184                 case SDEV_BLOCK:
2185                         break;
2186                 default:
2187                         goto illegal;
2188                 }
2189                 break;
2190
2191         case SDEV_BLOCK:
2192                 switch (oldstate) {
2193                 case SDEV_RUNNING:
2194                 case SDEV_CREATED_BLOCK:
2195                         break;
2196                 default:
2197                         goto illegal;
2198                 }
2199                 break;
2200
2201         case SDEV_CREATED_BLOCK:
2202                 switch (oldstate) {
2203                 case SDEV_CREATED:
2204                         break;
2205                 default:
2206                         goto illegal;
2207                 }
2208                 break;
2209
2210         case SDEV_CANCEL:
2211                 switch (oldstate) {
2212                 case SDEV_CREATED:
2213                 case SDEV_RUNNING:
2214                 case SDEV_QUIESCE:
2215                 case SDEV_OFFLINE:
2216                 case SDEV_BLOCK:
2217                         break;
2218                 default:
2219                         goto illegal;
2220                 }
2221                 break;
2222
2223         case SDEV_DEL:
2224                 switch (oldstate) {
2225                 case SDEV_CREATED:
2226                 case SDEV_RUNNING:
2227                 case SDEV_OFFLINE:
2228                 case SDEV_CANCEL:
2229                         break;
2230                 default:
2231                         goto illegal;
2232                 }
2233                 break;
2234
2235         }
2236         sdev->sdev_state = state;
2237         return 0;
2238
2239  illegal:
2240         SCSI_LOG_ERROR_RECOVERY(1, 
2241                                 sdev_printk(KERN_ERR, sdev,
2242                                             "Illegal state transition %s->%s\n",
2243                                             scsi_device_state_name(oldstate),
2244                                             scsi_device_state_name(state))
2245                                 );
2246         return -EINVAL;
2247 }
2248 EXPORT_SYMBOL(scsi_device_set_state);
2249
2250 /**
2251  *      sdev_evt_emit - emit a single SCSI device uevent
2252  *      @sdev: associated SCSI device
2253  *      @evt: event to emit
2254  *
2255  *      Send a single uevent (scsi_event) to the associated scsi_device.
2256  */
2257 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2258 {
2259         int idx = 0;
2260         char *envp[3];
2261
2262         switch (evt->evt_type) {
2263         case SDEV_EVT_MEDIA_CHANGE:
2264                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2265                 break;
2266
2267         default:
2268                 /* do nothing */
2269                 break;
2270         }
2271
2272         envp[idx++] = NULL;
2273
2274         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2275 }
2276
2277 /**
2278  *      sdev_evt_thread - send a uevent for each scsi event
2279  *      @work: work struct for scsi_device
2280  *
2281  *      Dispatch queued events to their associated scsi_device kobjects
2282  *      as uevents.
2283  */
2284 void scsi_evt_thread(struct work_struct *work)
2285 {
2286         struct scsi_device *sdev;
2287         LIST_HEAD(event_list);
2288
2289         sdev = container_of(work, struct scsi_device, event_work);
2290
2291         while (1) {
2292                 struct scsi_event *evt;
2293                 struct list_head *this, *tmp;
2294                 unsigned long flags;
2295
2296                 spin_lock_irqsave(&sdev->list_lock, flags);
2297                 list_splice_init(&sdev->event_list, &event_list);
2298                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2299
2300                 if (list_empty(&event_list))
2301                         break;
2302
2303                 list_for_each_safe(this, tmp, &event_list) {
2304                         evt = list_entry(this, struct scsi_event, node);
2305                         list_del(&evt->node);
2306                         scsi_evt_emit(sdev, evt);
2307                         kfree(evt);
2308                 }
2309         }
2310 }
2311
2312 /**
2313  *      sdev_evt_send - send asserted event to uevent thread
2314  *      @sdev: scsi_device event occurred on
2315  *      @evt: event to send
2316  *
2317  *      Assert scsi device event asynchronously.
2318  */
2319 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2320 {
2321         unsigned long flags;
2322
2323 #if 0
2324         /* FIXME: currently this check eliminates all media change events
2325          * for polled devices.  Need to update to discriminate between AN
2326          * and polled events */
2327         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2328                 kfree(evt);
2329                 return;
2330         }
2331 #endif
2332
2333         spin_lock_irqsave(&sdev->list_lock, flags);
2334         list_add_tail(&evt->node, &sdev->event_list);
2335         schedule_work(&sdev->event_work);
2336         spin_unlock_irqrestore(&sdev->list_lock, flags);
2337 }
2338 EXPORT_SYMBOL_GPL(sdev_evt_send);
2339
2340 /**
2341  *      sdev_evt_alloc - allocate a new scsi event
2342  *      @evt_type: type of event to allocate
2343  *      @gfpflags: GFP flags for allocation
2344  *
2345  *      Allocates and returns a new scsi_event.
2346  */
2347 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2348                                   gfp_t gfpflags)
2349 {
2350         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2351         if (!evt)
2352                 return NULL;
2353
2354         evt->evt_type = evt_type;
2355         INIT_LIST_HEAD(&evt->node);
2356
2357         /* evt_type-specific initialization, if any */
2358         switch (evt_type) {
2359         case SDEV_EVT_MEDIA_CHANGE:
2360         default:
2361                 /* do nothing */
2362                 break;
2363         }
2364
2365         return evt;
2366 }
2367 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2368
2369 /**
2370  *      sdev_evt_send_simple - send asserted event to uevent thread
2371  *      @sdev: scsi_device event occurred on
2372  *      @evt_type: type of event to send
2373  *      @gfpflags: GFP flags for allocation
2374  *
2375  *      Assert scsi device event asynchronously, given an event type.
2376  */
2377 void sdev_evt_send_simple(struct scsi_device *sdev,
2378                           enum scsi_device_event evt_type, gfp_t gfpflags)
2379 {
2380         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2381         if (!evt) {
2382                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2383                             evt_type);
2384                 return;
2385         }
2386
2387         sdev_evt_send(sdev, evt);
2388 }
2389 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2390
2391 /**
2392  *      scsi_device_quiesce - Block user issued commands.
2393  *      @sdev:  scsi device to quiesce.
2394  *
2395  *      This works by trying to transition to the SDEV_QUIESCE state
2396  *      (which must be a legal transition).  When the device is in this
2397  *      state, only special requests will be accepted, all others will
2398  *      be deferred.  Since special requests may also be requeued requests,
2399  *      a successful return doesn't guarantee the device will be 
2400  *      totally quiescent.
2401  *
2402  *      Must be called with user context, may sleep.
2403  *
2404  *      Returns zero if unsuccessful or an error if not.
2405  */
2406 int
2407 scsi_device_quiesce(struct scsi_device *sdev)
2408 {
2409         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2410         if (err)
2411                 return err;
2412
2413         scsi_run_queue(sdev->request_queue);
2414         while (sdev->device_busy) {
2415                 msleep_interruptible(200);
2416                 scsi_run_queue(sdev->request_queue);
2417         }
2418         return 0;
2419 }
2420 EXPORT_SYMBOL(scsi_device_quiesce);
2421
2422 /**
2423  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2424  *      @sdev:  scsi device to resume.
2425  *
2426  *      Moves the device from quiesced back to running and restarts the
2427  *      queues.
2428  *
2429  *      Must be called with user context, may sleep.
2430  */
2431 void
2432 scsi_device_resume(struct scsi_device *sdev)
2433 {
2434         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2435                 return;
2436         scsi_run_queue(sdev->request_queue);
2437 }
2438 EXPORT_SYMBOL(scsi_device_resume);
2439
2440 static void
2441 device_quiesce_fn(struct scsi_device *sdev, void *data)
2442 {
2443         scsi_device_quiesce(sdev);
2444 }
2445
2446 void
2447 scsi_target_quiesce(struct scsi_target *starget)
2448 {
2449         starget_for_each_device(starget, NULL, device_quiesce_fn);
2450 }
2451 EXPORT_SYMBOL(scsi_target_quiesce);
2452
2453 static void
2454 device_resume_fn(struct scsi_device *sdev, void *data)
2455 {
2456         scsi_device_resume(sdev);
2457 }
2458
2459 void
2460 scsi_target_resume(struct scsi_target *starget)
2461 {
2462         starget_for_each_device(starget, NULL, device_resume_fn);
2463 }
2464 EXPORT_SYMBOL(scsi_target_resume);
2465
2466 /**
2467  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2468  * @sdev:       device to block
2469  *
2470  * Block request made by scsi lld's to temporarily stop all
2471  * scsi commands on the specified device.  Called from interrupt
2472  * or normal process context.
2473  *
2474  * Returns zero if successful or error if not
2475  *
2476  * Notes:       
2477  *      This routine transitions the device to the SDEV_BLOCK state
2478  *      (which must be a legal transition).  When the device is in this
2479  *      state, all commands are deferred until the scsi lld reenables
2480  *      the device with scsi_device_unblock or device_block_tmo fires.
2481  *      This routine assumes the host_lock is held on entry.
2482  */
2483 int
2484 scsi_internal_device_block(struct scsi_device *sdev)
2485 {
2486         struct request_queue *q = sdev->request_queue;
2487         unsigned long flags;
2488         int err = 0;
2489
2490         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2491         if (err) {
2492                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2493
2494                 if (err)
2495                         return err;
2496         }
2497
2498         /* 
2499          * The device has transitioned to SDEV_BLOCK.  Stop the
2500          * block layer from calling the midlayer with this device's
2501          * request queue. 
2502          */
2503         spin_lock_irqsave(q->queue_lock, flags);
2504         blk_stop_queue(q);
2505         spin_unlock_irqrestore(q->queue_lock, flags);
2506
2507         return 0;
2508 }
2509 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2510  
2511 /**
2512  * scsi_internal_device_unblock - resume a device after a block request
2513  * @sdev:       device to resume
2514  *
2515  * Called by scsi lld's or the midlayer to restart the device queue
2516  * for the previously suspended scsi device.  Called from interrupt or
2517  * normal process context.
2518  *
2519  * Returns zero if successful or error if not.
2520  *
2521  * Notes:       
2522  *      This routine transitions the device to the SDEV_RUNNING state
2523  *      (which must be a legal transition) allowing the midlayer to
2524  *      goose the queue for this device.  This routine assumes the 
2525  *      host_lock is held upon entry.
2526  */
2527 int
2528 scsi_internal_device_unblock(struct scsi_device *sdev)
2529 {
2530         struct request_queue *q = sdev->request_queue; 
2531         int err;
2532         unsigned long flags;
2533         
2534         /* 
2535          * Try to transition the scsi device to SDEV_RUNNING
2536          * and goose the device queue if successful.  
2537          */
2538         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2539         if (err) {
2540                 err = scsi_device_set_state(sdev, SDEV_CREATED);
2541
2542                 if (err)
2543                         return err;
2544         }
2545
2546         spin_lock_irqsave(q->queue_lock, flags);
2547         blk_start_queue(q);
2548         spin_unlock_irqrestore(q->queue_lock, flags);
2549
2550         return 0;
2551 }
2552 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2553
2554 static void
2555 device_block(struct scsi_device *sdev, void *data)
2556 {
2557         scsi_internal_device_block(sdev);
2558 }
2559
2560 static int
2561 target_block(struct device *dev, void *data)
2562 {
2563         if (scsi_is_target_device(dev))
2564                 starget_for_each_device(to_scsi_target(dev), NULL,
2565                                         device_block);
2566         return 0;
2567 }
2568
2569 void
2570 scsi_target_block(struct device *dev)
2571 {
2572         if (scsi_is_target_device(dev))
2573                 starget_for_each_device(to_scsi_target(dev), NULL,
2574                                         device_block);
2575         else
2576                 device_for_each_child(dev, NULL, target_block);
2577 }
2578 EXPORT_SYMBOL_GPL(scsi_target_block);
2579
2580 static void
2581 device_unblock(struct scsi_device *sdev, void *data)
2582 {
2583         scsi_internal_device_unblock(sdev);
2584 }
2585
2586 static int
2587 target_unblock(struct device *dev, void *data)
2588 {
2589         if (scsi_is_target_device(dev))
2590                 starget_for_each_device(to_scsi_target(dev), NULL,
2591                                         device_unblock);
2592         return 0;
2593 }
2594
2595 void
2596 scsi_target_unblock(struct device *dev)
2597 {
2598         if (scsi_is_target_device(dev))
2599                 starget_for_each_device(to_scsi_target(dev), NULL,
2600                                         device_unblock);
2601         else
2602                 device_for_each_child(dev, NULL, target_unblock);
2603 }
2604 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2605
2606 /**
2607  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2608  * @sgl:        scatter-gather list
2609  * @sg_count:   number of segments in sg
2610  * @offset:     offset in bytes into sg, on return offset into the mapped area
2611  * @len:        bytes to map, on return number of bytes mapped
2612  *
2613  * Returns virtual address of the start of the mapped page
2614  */
2615 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2616                           size_t *offset, size_t *len)
2617 {
2618         int i;
2619         size_t sg_len = 0, len_complete = 0;
2620         struct scatterlist *sg;
2621         struct page *page;
2622
2623         WARN_ON(!irqs_disabled());
2624
2625         for_each_sg(sgl, sg, sg_count, i) {
2626                 len_complete = sg_len; /* Complete sg-entries */
2627                 sg_len += sg->length;
2628                 if (sg_len > *offset)
2629                         break;
2630         }
2631
2632         if (unlikely(i == sg_count)) {
2633                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2634                         "elements %d\n",
2635                        __func__, sg_len, *offset, sg_count);
2636                 WARN_ON(1);
2637                 return NULL;
2638         }
2639
2640         /* Offset starting from the beginning of first page in this sg-entry */
2641         *offset = *offset - len_complete + sg->offset;
2642
2643         /* Assumption: contiguous pages can be accessed as "page + i" */
2644         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2645         *offset &= ~PAGE_MASK;
2646
2647         /* Bytes in this sg-entry from *offset to the end of the page */
2648         sg_len = PAGE_SIZE - *offset;
2649         if (*len > sg_len)
2650                 *len = sg_len;
2651
2652         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2653 }
2654 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2655
2656 /**
2657  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2658  * @virt:       virtual address to be unmapped
2659  */
2660 void scsi_kunmap_atomic_sg(void *virt)
2661 {
2662         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2663 }
2664 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);