mac80211: disable mesh
[linux-2.6] / net / ipv4 / ipmr.c
1 /*
2  *      IP multicast routing support for mrouted 3.6/3.8
3  *
4  *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *        Linux Consultancy and Custom Driver Development
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  *
12  *      Fixes:
13  *      Michael Chastain        :       Incorrect size of copying.
14  *      Alan Cox                :       Added the cache manager code
15  *      Alan Cox                :       Fixed the clone/copy bug and device race.
16  *      Mike McLagan            :       Routing by source
17  *      Malcolm Beattie         :       Buffer handling fixes.
18  *      Alexey Kuznetsov        :       Double buffer free and other fixes.
19  *      SVR Anand               :       Fixed several multicast bugs and problems.
20  *      Alexey Kuznetsov        :       Status, optimisations and more.
21  *      Brad Parker             :       Better behaviour on mrouted upcall
22  *                                      overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
25  *                                      Relax this requrement to work with older peers.
26  *
27  */
28
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <net/ipip.h>
63 #include <net/checksum.h>
64 #include <net/netlink.h>
65
66 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
67 #define CONFIG_IP_PIMSM 1
68 #endif
69
70 /* Big lock, protecting vif table, mrt cache and mroute socket state.
71    Note that the changes are semaphored via rtnl_lock.
72  */
73
74 static DEFINE_RWLOCK(mrt_lock);
75
76 /*
77  *      Multicast router control variables
78  */
79
80 #define VIF_EXISTS(_net, _idx) ((_net)->ipv4.vif_table[_idx].dev != NULL)
81
82 static struct mfc_cache *mfc_unres_queue;               /* Queue of unresolved entries */
83
84 /* Special spinlock for queue of unresolved entries */
85 static DEFINE_SPINLOCK(mfc_unres_lock);
86
87 /* We return to original Alan's scheme. Hash table of resolved
88    entries is changed only in process context and protected
89    with weak lock mrt_lock. Queue of unresolved entries is protected
90    with strong spinlock mfc_unres_lock.
91
92    In this case data path is free of exclusive locks at all.
93  */
94
95 static struct kmem_cache *mrt_cachep __read_mostly;
96
97 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local);
98 static int ipmr_cache_report(struct net *net,
99                              struct sk_buff *pkt, vifi_t vifi, int assert);
100 static int ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm);
101
102 #ifdef CONFIG_IP_PIMSM_V2
103 static struct net_protocol pim_protocol;
104 #endif
105
106 static struct timer_list ipmr_expire_timer;
107
108 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
109
110 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
111 {
112         struct net *net = dev_net(dev);
113
114         dev_close(dev);
115
116         dev = __dev_get_by_name(net, "tunl0");
117         if (dev) {
118                 const struct net_device_ops *ops = dev->netdev_ops;
119                 struct ifreq ifr;
120                 struct ip_tunnel_parm p;
121
122                 memset(&p, 0, sizeof(p));
123                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
124                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
125                 p.iph.version = 4;
126                 p.iph.ihl = 5;
127                 p.iph.protocol = IPPROTO_IPIP;
128                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
129                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
130
131                 if (ops->ndo_do_ioctl) {
132                         mm_segment_t oldfs = get_fs();
133
134                         set_fs(KERNEL_DS);
135                         ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
136                         set_fs(oldfs);
137                 }
138         }
139 }
140
141 static
142 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
143 {
144         struct net_device  *dev;
145
146         dev = __dev_get_by_name(net, "tunl0");
147
148         if (dev) {
149                 const struct net_device_ops *ops = dev->netdev_ops;
150                 int err;
151                 struct ifreq ifr;
152                 struct ip_tunnel_parm p;
153                 struct in_device  *in_dev;
154
155                 memset(&p, 0, sizeof(p));
156                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
157                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
158                 p.iph.version = 4;
159                 p.iph.ihl = 5;
160                 p.iph.protocol = IPPROTO_IPIP;
161                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
162                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
163
164                 if (ops->ndo_do_ioctl) {
165                         mm_segment_t oldfs = get_fs();
166
167                         set_fs(KERNEL_DS);
168                         err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
169                         set_fs(oldfs);
170                 } else
171                         err = -EOPNOTSUPP;
172
173                 dev = NULL;
174
175                 if (err == 0 &&
176                     (dev = __dev_get_by_name(net, p.name)) != NULL) {
177                         dev->flags |= IFF_MULTICAST;
178
179                         in_dev = __in_dev_get_rtnl(dev);
180                         if (in_dev == NULL)
181                                 goto failure;
182
183                         ipv4_devconf_setall(in_dev);
184                         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
185
186                         if (dev_open(dev))
187                                 goto failure;
188                         dev_hold(dev);
189                 }
190         }
191         return dev;
192
193 failure:
194         /* allow the register to be completed before unregistering. */
195         rtnl_unlock();
196         rtnl_lock();
197
198         unregister_netdevice(dev);
199         return NULL;
200 }
201
202 #ifdef CONFIG_IP_PIMSM
203
204 static int reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
205 {
206         struct net *net = dev_net(dev);
207
208         read_lock(&mrt_lock);
209         dev->stats.tx_bytes += skb->len;
210         dev->stats.tx_packets++;
211         ipmr_cache_report(net, skb, net->ipv4.mroute_reg_vif_num,
212                           IGMPMSG_WHOLEPKT);
213         read_unlock(&mrt_lock);
214         kfree_skb(skb);
215         return 0;
216 }
217
218 static const struct net_device_ops reg_vif_netdev_ops = {
219         .ndo_start_xmit = reg_vif_xmit,
220 };
221
222 static void reg_vif_setup(struct net_device *dev)
223 {
224         dev->type               = ARPHRD_PIMREG;
225         dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
226         dev->flags              = IFF_NOARP;
227         dev->netdev_ops         = &reg_vif_netdev_ops,
228         dev->destructor         = free_netdev;
229         dev->features           |= NETIF_F_NETNS_LOCAL;
230 }
231
232 static struct net_device *ipmr_reg_vif(struct net *net)
233 {
234         struct net_device *dev;
235         struct in_device *in_dev;
236
237         dev = alloc_netdev(0, "pimreg", reg_vif_setup);
238
239         if (dev == NULL)
240                 return NULL;
241
242         dev_net_set(dev, net);
243
244         if (register_netdevice(dev)) {
245                 free_netdev(dev);
246                 return NULL;
247         }
248         dev->iflink = 0;
249
250         rcu_read_lock();
251         if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
252                 rcu_read_unlock();
253                 goto failure;
254         }
255
256         ipv4_devconf_setall(in_dev);
257         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
258         rcu_read_unlock();
259
260         if (dev_open(dev))
261                 goto failure;
262
263         dev_hold(dev);
264
265         return dev;
266
267 failure:
268         /* allow the register to be completed before unregistering. */
269         rtnl_unlock();
270         rtnl_lock();
271
272         unregister_netdevice(dev);
273         return NULL;
274 }
275 #endif
276
277 /*
278  *      Delete a VIF entry
279  *      @notify: Set to 1, if the caller is a notifier_call
280  */
281
282 static int vif_delete(struct net *net, int vifi, int notify)
283 {
284         struct vif_device *v;
285         struct net_device *dev;
286         struct in_device *in_dev;
287
288         if (vifi < 0 || vifi >= net->ipv4.maxvif)
289                 return -EADDRNOTAVAIL;
290
291         v = &net->ipv4.vif_table[vifi];
292
293         write_lock_bh(&mrt_lock);
294         dev = v->dev;
295         v->dev = NULL;
296
297         if (!dev) {
298                 write_unlock_bh(&mrt_lock);
299                 return -EADDRNOTAVAIL;
300         }
301
302 #ifdef CONFIG_IP_PIMSM
303         if (vifi == net->ipv4.mroute_reg_vif_num)
304                 net->ipv4.mroute_reg_vif_num = -1;
305 #endif
306
307         if (vifi+1 == net->ipv4.maxvif) {
308                 int tmp;
309                 for (tmp=vifi-1; tmp>=0; tmp--) {
310                         if (VIF_EXISTS(net, tmp))
311                                 break;
312                 }
313                 net->ipv4.maxvif = tmp+1;
314         }
315
316         write_unlock_bh(&mrt_lock);
317
318         dev_set_allmulti(dev, -1);
319
320         if ((in_dev = __in_dev_get_rtnl(dev)) != NULL) {
321                 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
322                 ip_rt_multicast_event(in_dev);
323         }
324
325         if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER) && !notify)
326                 unregister_netdevice(dev);
327
328         dev_put(dev);
329         return 0;
330 }
331
332 static inline void ipmr_cache_free(struct mfc_cache *c)
333 {
334         release_net(mfc_net(c));
335         kmem_cache_free(mrt_cachep, c);
336 }
337
338 /* Destroy an unresolved cache entry, killing queued skbs
339    and reporting error to netlink readers.
340  */
341
342 static void ipmr_destroy_unres(struct mfc_cache *c)
343 {
344         struct sk_buff *skb;
345         struct nlmsgerr *e;
346         struct net *net = mfc_net(c);
347
348         atomic_dec(&net->ipv4.cache_resolve_queue_len);
349
350         while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
351                 if (ip_hdr(skb)->version == 0) {
352                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
353                         nlh->nlmsg_type = NLMSG_ERROR;
354                         nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
355                         skb_trim(skb, nlh->nlmsg_len);
356                         e = NLMSG_DATA(nlh);
357                         e->error = -ETIMEDOUT;
358                         memset(&e->msg, 0, sizeof(e->msg));
359
360                         rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
361                 } else
362                         kfree_skb(skb);
363         }
364
365         ipmr_cache_free(c);
366 }
367
368
369 /* Single timer process for all the unresolved queue. */
370
371 static void ipmr_expire_process(unsigned long dummy)
372 {
373         unsigned long now;
374         unsigned long expires;
375         struct mfc_cache *c, **cp;
376
377         if (!spin_trylock(&mfc_unres_lock)) {
378                 mod_timer(&ipmr_expire_timer, jiffies+HZ/10);
379                 return;
380         }
381
382         if (mfc_unres_queue == NULL)
383                 goto out;
384
385         now = jiffies;
386         expires = 10*HZ;
387         cp = &mfc_unres_queue;
388
389         while ((c=*cp) != NULL) {
390                 if (time_after(c->mfc_un.unres.expires, now)) {
391                         unsigned long interval = c->mfc_un.unres.expires - now;
392                         if (interval < expires)
393                                 expires = interval;
394                         cp = &c->next;
395                         continue;
396                 }
397
398                 *cp = c->next;
399
400                 ipmr_destroy_unres(c);
401         }
402
403         if (mfc_unres_queue != NULL)
404                 mod_timer(&ipmr_expire_timer, jiffies + expires);
405
406 out:
407         spin_unlock(&mfc_unres_lock);
408 }
409
410 /* Fill oifs list. It is called under write locked mrt_lock. */
411
412 static void ipmr_update_thresholds(struct mfc_cache *cache, unsigned char *ttls)
413 {
414         int vifi;
415         struct net *net = mfc_net(cache);
416
417         cache->mfc_un.res.minvif = MAXVIFS;
418         cache->mfc_un.res.maxvif = 0;
419         memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
420
421         for (vifi = 0; vifi < net->ipv4.maxvif; vifi++) {
422                 if (VIF_EXISTS(net, vifi) &&
423                     ttls[vifi] && ttls[vifi] < 255) {
424                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
425                         if (cache->mfc_un.res.minvif > vifi)
426                                 cache->mfc_un.res.minvif = vifi;
427                         if (cache->mfc_un.res.maxvif <= vifi)
428                                 cache->mfc_un.res.maxvif = vifi + 1;
429                 }
430         }
431 }
432
433 static int vif_add(struct net *net, struct vifctl *vifc, int mrtsock)
434 {
435         int vifi = vifc->vifc_vifi;
436         struct vif_device *v = &net->ipv4.vif_table[vifi];
437         struct net_device *dev;
438         struct in_device *in_dev;
439         int err;
440
441         /* Is vif busy ? */
442         if (VIF_EXISTS(net, vifi))
443                 return -EADDRINUSE;
444
445         switch (vifc->vifc_flags) {
446 #ifdef CONFIG_IP_PIMSM
447         case VIFF_REGISTER:
448                 /*
449                  * Special Purpose VIF in PIM
450                  * All the packets will be sent to the daemon
451                  */
452                 if (net->ipv4.mroute_reg_vif_num >= 0)
453                         return -EADDRINUSE;
454                 dev = ipmr_reg_vif(net);
455                 if (!dev)
456                         return -ENOBUFS;
457                 err = dev_set_allmulti(dev, 1);
458                 if (err) {
459                         unregister_netdevice(dev);
460                         dev_put(dev);
461                         return err;
462                 }
463                 break;
464 #endif
465         case VIFF_TUNNEL:
466                 dev = ipmr_new_tunnel(net, vifc);
467                 if (!dev)
468                         return -ENOBUFS;
469                 err = dev_set_allmulti(dev, 1);
470                 if (err) {
471                         ipmr_del_tunnel(dev, vifc);
472                         dev_put(dev);
473                         return err;
474                 }
475                 break;
476         case 0:
477                 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
478                 if (!dev)
479                         return -EADDRNOTAVAIL;
480                 err = dev_set_allmulti(dev, 1);
481                 if (err) {
482                         dev_put(dev);
483                         return err;
484                 }
485                 break;
486         default:
487                 return -EINVAL;
488         }
489
490         if ((in_dev = __in_dev_get_rtnl(dev)) == NULL)
491                 return -EADDRNOTAVAIL;
492         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
493         ip_rt_multicast_event(in_dev);
494
495         /*
496          *      Fill in the VIF structures
497          */
498         v->rate_limit = vifc->vifc_rate_limit;
499         v->local = vifc->vifc_lcl_addr.s_addr;
500         v->remote = vifc->vifc_rmt_addr.s_addr;
501         v->flags = vifc->vifc_flags;
502         if (!mrtsock)
503                 v->flags |= VIFF_STATIC;
504         v->threshold = vifc->vifc_threshold;
505         v->bytes_in = 0;
506         v->bytes_out = 0;
507         v->pkt_in = 0;
508         v->pkt_out = 0;
509         v->link = dev->ifindex;
510         if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
511                 v->link = dev->iflink;
512
513         /* And finish update writing critical data */
514         write_lock_bh(&mrt_lock);
515         v->dev = dev;
516 #ifdef CONFIG_IP_PIMSM
517         if (v->flags&VIFF_REGISTER)
518                 net->ipv4.mroute_reg_vif_num = vifi;
519 #endif
520         if (vifi+1 > net->ipv4.maxvif)
521                 net->ipv4.maxvif = vifi+1;
522         write_unlock_bh(&mrt_lock);
523         return 0;
524 }
525
526 static struct mfc_cache *ipmr_cache_find(struct net *net,
527                                          __be32 origin,
528                                          __be32 mcastgrp)
529 {
530         int line = MFC_HASH(mcastgrp, origin);
531         struct mfc_cache *c;
532
533         for (c = net->ipv4.mfc_cache_array[line]; c; c = c->next) {
534                 if (c->mfc_origin==origin && c->mfc_mcastgrp==mcastgrp)
535                         break;
536         }
537         return c;
538 }
539
540 /*
541  *      Allocate a multicast cache entry
542  */
543 static struct mfc_cache *ipmr_cache_alloc(struct net *net)
544 {
545         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
546         if (c == NULL)
547                 return NULL;
548         c->mfc_un.res.minvif = MAXVIFS;
549         mfc_net_set(c, net);
550         return c;
551 }
552
553 static struct mfc_cache *ipmr_cache_alloc_unres(struct net *net)
554 {
555         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
556         if (c == NULL)
557                 return NULL;
558         skb_queue_head_init(&c->mfc_un.unres.unresolved);
559         c->mfc_un.unres.expires = jiffies + 10*HZ;
560         mfc_net_set(c, net);
561         return c;
562 }
563
564 /*
565  *      A cache entry has gone into a resolved state from queued
566  */
567
568 static void ipmr_cache_resolve(struct mfc_cache *uc, struct mfc_cache *c)
569 {
570         struct sk_buff *skb;
571         struct nlmsgerr *e;
572
573         /*
574          *      Play the pending entries through our router
575          */
576
577         while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
578                 if (ip_hdr(skb)->version == 0) {
579                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
580
581                         if (ipmr_fill_mroute(skb, c, NLMSG_DATA(nlh)) > 0) {
582                                 nlh->nlmsg_len = (skb_tail_pointer(skb) -
583                                                   (u8 *)nlh);
584                         } else {
585                                 nlh->nlmsg_type = NLMSG_ERROR;
586                                 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
587                                 skb_trim(skb, nlh->nlmsg_len);
588                                 e = NLMSG_DATA(nlh);
589                                 e->error = -EMSGSIZE;
590                                 memset(&e->msg, 0, sizeof(e->msg));
591                         }
592
593                         rtnl_unicast(skb, mfc_net(c), NETLINK_CB(skb).pid);
594                 } else
595                         ip_mr_forward(skb, c, 0);
596         }
597 }
598
599 /*
600  *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
601  *      expects the following bizarre scheme.
602  *
603  *      Called under mrt_lock.
604  */
605
606 static int ipmr_cache_report(struct net *net,
607                              struct sk_buff *pkt, vifi_t vifi, int assert)
608 {
609         struct sk_buff *skb;
610         const int ihl = ip_hdrlen(pkt);
611         struct igmphdr *igmp;
612         struct igmpmsg *msg;
613         int ret;
614
615 #ifdef CONFIG_IP_PIMSM
616         if (assert == IGMPMSG_WHOLEPKT)
617                 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
618         else
619 #endif
620                 skb = alloc_skb(128, GFP_ATOMIC);
621
622         if (!skb)
623                 return -ENOBUFS;
624
625 #ifdef CONFIG_IP_PIMSM
626         if (assert == IGMPMSG_WHOLEPKT) {
627                 /* Ugly, but we have no choice with this interface.
628                    Duplicate old header, fix ihl, length etc.
629                    And all this only to mangle msg->im_msgtype and
630                    to set msg->im_mbz to "mbz" :-)
631                  */
632                 skb_push(skb, sizeof(struct iphdr));
633                 skb_reset_network_header(skb);
634                 skb_reset_transport_header(skb);
635                 msg = (struct igmpmsg *)skb_network_header(skb);
636                 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
637                 msg->im_msgtype = IGMPMSG_WHOLEPKT;
638                 msg->im_mbz = 0;
639                 msg->im_vif = net->ipv4.mroute_reg_vif_num;
640                 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
641                 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
642                                              sizeof(struct iphdr));
643         } else
644 #endif
645         {
646
647         /*
648          *      Copy the IP header
649          */
650
651         skb->network_header = skb->tail;
652         skb_put(skb, ihl);
653         skb_copy_to_linear_data(skb, pkt->data, ihl);
654         ip_hdr(skb)->protocol = 0;                      /* Flag to the kernel this is a route add */
655         msg = (struct igmpmsg *)skb_network_header(skb);
656         msg->im_vif = vifi;
657         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
658
659         /*
660          *      Add our header
661          */
662
663         igmp=(struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
664         igmp->type      =
665         msg->im_msgtype = assert;
666         igmp->code      =       0;
667         ip_hdr(skb)->tot_len = htons(skb->len);                 /* Fix the length */
668         skb->transport_header = skb->network_header;
669         }
670
671         if (net->ipv4.mroute_sk == NULL) {
672                 kfree_skb(skb);
673                 return -EINVAL;
674         }
675
676         /*
677          *      Deliver to mrouted
678          */
679         ret = sock_queue_rcv_skb(net->ipv4.mroute_sk, skb);
680         if (ret < 0) {
681                 if (net_ratelimit())
682                         printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
683                 kfree_skb(skb);
684         }
685
686         return ret;
687 }
688
689 /*
690  *      Queue a packet for resolution. It gets locked cache entry!
691  */
692
693 static int
694 ipmr_cache_unresolved(struct net *net, vifi_t vifi, struct sk_buff *skb)
695 {
696         int err;
697         struct mfc_cache *c;
698         const struct iphdr *iph = ip_hdr(skb);
699
700         spin_lock_bh(&mfc_unres_lock);
701         for (c=mfc_unres_queue; c; c=c->next) {
702                 if (net_eq(mfc_net(c), net) &&
703                     c->mfc_mcastgrp == iph->daddr &&
704                     c->mfc_origin == iph->saddr)
705                         break;
706         }
707
708         if (c == NULL) {
709                 /*
710                  *      Create a new entry if allowable
711                  */
712
713                 if (atomic_read(&net->ipv4.cache_resolve_queue_len) >= 10 ||
714                     (c = ipmr_cache_alloc_unres(net)) == NULL) {
715                         spin_unlock_bh(&mfc_unres_lock);
716
717                         kfree_skb(skb);
718                         return -ENOBUFS;
719                 }
720
721                 /*
722                  *      Fill in the new cache entry
723                  */
724                 c->mfc_parent   = -1;
725                 c->mfc_origin   = iph->saddr;
726                 c->mfc_mcastgrp = iph->daddr;
727
728                 /*
729                  *      Reflect first query at mrouted.
730                  */
731                 err = ipmr_cache_report(net, skb, vifi, IGMPMSG_NOCACHE);
732                 if (err < 0) {
733                         /* If the report failed throw the cache entry
734                            out - Brad Parker
735                          */
736                         spin_unlock_bh(&mfc_unres_lock);
737
738                         ipmr_cache_free(c);
739                         kfree_skb(skb);
740                         return err;
741                 }
742
743                 atomic_inc(&net->ipv4.cache_resolve_queue_len);
744                 c->next = mfc_unres_queue;
745                 mfc_unres_queue = c;
746
747                 mod_timer(&ipmr_expire_timer, c->mfc_un.unres.expires);
748         }
749
750         /*
751          *      See if we can append the packet
752          */
753         if (c->mfc_un.unres.unresolved.qlen>3) {
754                 kfree_skb(skb);
755                 err = -ENOBUFS;
756         } else {
757                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
758                 err = 0;
759         }
760
761         spin_unlock_bh(&mfc_unres_lock);
762         return err;
763 }
764
765 /*
766  *      MFC cache manipulation by user space mroute daemon
767  */
768
769 static int ipmr_mfc_delete(struct net *net, struct mfcctl *mfc)
770 {
771         int line;
772         struct mfc_cache *c, **cp;
773
774         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
775
776         for (cp = &net->ipv4.mfc_cache_array[line];
777              (c = *cp) != NULL; cp = &c->next) {
778                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
779                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
780                         write_lock_bh(&mrt_lock);
781                         *cp = c->next;
782                         write_unlock_bh(&mrt_lock);
783
784                         ipmr_cache_free(c);
785                         return 0;
786                 }
787         }
788         return -ENOENT;
789 }
790
791 static int ipmr_mfc_add(struct net *net, struct mfcctl *mfc, int mrtsock)
792 {
793         int line;
794         struct mfc_cache *uc, *c, **cp;
795
796         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
797
798         for (cp = &net->ipv4.mfc_cache_array[line];
799              (c = *cp) != NULL; cp = &c->next) {
800                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
801                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr)
802                         break;
803         }
804
805         if (c != NULL) {
806                 write_lock_bh(&mrt_lock);
807                 c->mfc_parent = mfc->mfcc_parent;
808                 ipmr_update_thresholds(c, mfc->mfcc_ttls);
809                 if (!mrtsock)
810                         c->mfc_flags |= MFC_STATIC;
811                 write_unlock_bh(&mrt_lock);
812                 return 0;
813         }
814
815         if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
816                 return -EINVAL;
817
818         c = ipmr_cache_alloc(net);
819         if (c == NULL)
820                 return -ENOMEM;
821
822         c->mfc_origin = mfc->mfcc_origin.s_addr;
823         c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
824         c->mfc_parent = mfc->mfcc_parent;
825         ipmr_update_thresholds(c, mfc->mfcc_ttls);
826         if (!mrtsock)
827                 c->mfc_flags |= MFC_STATIC;
828
829         write_lock_bh(&mrt_lock);
830         c->next = net->ipv4.mfc_cache_array[line];
831         net->ipv4.mfc_cache_array[line] = c;
832         write_unlock_bh(&mrt_lock);
833
834         /*
835          *      Check to see if we resolved a queued list. If so we
836          *      need to send on the frames and tidy up.
837          */
838         spin_lock_bh(&mfc_unres_lock);
839         for (cp = &mfc_unres_queue; (uc=*cp) != NULL;
840              cp = &uc->next) {
841                 if (net_eq(mfc_net(uc), net) &&
842                     uc->mfc_origin == c->mfc_origin &&
843                     uc->mfc_mcastgrp == c->mfc_mcastgrp) {
844                         *cp = uc->next;
845                         atomic_dec(&net->ipv4.cache_resolve_queue_len);
846                         break;
847                 }
848         }
849         if (mfc_unres_queue == NULL)
850                 del_timer(&ipmr_expire_timer);
851         spin_unlock_bh(&mfc_unres_lock);
852
853         if (uc) {
854                 ipmr_cache_resolve(uc, c);
855                 ipmr_cache_free(uc);
856         }
857         return 0;
858 }
859
860 /*
861  *      Close the multicast socket, and clear the vif tables etc
862  */
863
864 static void mroute_clean_tables(struct net *net)
865 {
866         int i;
867
868         /*
869          *      Shut down all active vif entries
870          */
871         for (i = 0; i < net->ipv4.maxvif; i++) {
872                 if (!(net->ipv4.vif_table[i].flags&VIFF_STATIC))
873                         vif_delete(net, i, 0);
874         }
875
876         /*
877          *      Wipe the cache
878          */
879         for (i=0; i<MFC_LINES; i++) {
880                 struct mfc_cache *c, **cp;
881
882                 cp = &net->ipv4.mfc_cache_array[i];
883                 while ((c = *cp) != NULL) {
884                         if (c->mfc_flags&MFC_STATIC) {
885                                 cp = &c->next;
886                                 continue;
887                         }
888                         write_lock_bh(&mrt_lock);
889                         *cp = c->next;
890                         write_unlock_bh(&mrt_lock);
891
892                         ipmr_cache_free(c);
893                 }
894         }
895
896         if (atomic_read(&net->ipv4.cache_resolve_queue_len) != 0) {
897                 struct mfc_cache *c, **cp;
898
899                 spin_lock_bh(&mfc_unres_lock);
900                 cp = &mfc_unres_queue;
901                 while ((c = *cp) != NULL) {
902                         if (!net_eq(mfc_net(c), net)) {
903                                 cp = &c->next;
904                                 continue;
905                         }
906                         *cp = c->next;
907
908                         ipmr_destroy_unres(c);
909                 }
910                 spin_unlock_bh(&mfc_unres_lock);
911         }
912 }
913
914 static void mrtsock_destruct(struct sock *sk)
915 {
916         struct net *net = sock_net(sk);
917
918         rtnl_lock();
919         if (sk == net->ipv4.mroute_sk) {
920                 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
921
922                 write_lock_bh(&mrt_lock);
923                 net->ipv4.mroute_sk = NULL;
924                 write_unlock_bh(&mrt_lock);
925
926                 mroute_clean_tables(net);
927         }
928         rtnl_unlock();
929 }
930
931 /*
932  *      Socket options and virtual interface manipulation. The whole
933  *      virtual interface system is a complete heap, but unfortunately
934  *      that's how BSD mrouted happens to think. Maybe one day with a proper
935  *      MOSPF/PIM router set up we can clean this up.
936  */
937
938 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, int optlen)
939 {
940         int ret;
941         struct vifctl vif;
942         struct mfcctl mfc;
943         struct net *net = sock_net(sk);
944
945         if (optname != MRT_INIT) {
946                 if (sk != net->ipv4.mroute_sk && !capable(CAP_NET_ADMIN))
947                         return -EACCES;
948         }
949
950         switch (optname) {
951         case MRT_INIT:
952                 if (sk->sk_type != SOCK_RAW ||
953                     inet_sk(sk)->num != IPPROTO_IGMP)
954                         return -EOPNOTSUPP;
955                 if (optlen != sizeof(int))
956                         return -ENOPROTOOPT;
957
958                 rtnl_lock();
959                 if (net->ipv4.mroute_sk) {
960                         rtnl_unlock();
961                         return -EADDRINUSE;
962                 }
963
964                 ret = ip_ra_control(sk, 1, mrtsock_destruct);
965                 if (ret == 0) {
966                         write_lock_bh(&mrt_lock);
967                         net->ipv4.mroute_sk = sk;
968                         write_unlock_bh(&mrt_lock);
969
970                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
971                 }
972                 rtnl_unlock();
973                 return ret;
974         case MRT_DONE:
975                 if (sk != net->ipv4.mroute_sk)
976                         return -EACCES;
977                 return ip_ra_control(sk, 0, NULL);
978         case MRT_ADD_VIF:
979         case MRT_DEL_VIF:
980                 if (optlen != sizeof(vif))
981                         return -EINVAL;
982                 if (copy_from_user(&vif, optval, sizeof(vif)))
983                         return -EFAULT;
984                 if (vif.vifc_vifi >= MAXVIFS)
985                         return -ENFILE;
986                 rtnl_lock();
987                 if (optname == MRT_ADD_VIF) {
988                         ret = vif_add(net, &vif, sk == net->ipv4.mroute_sk);
989                 } else {
990                         ret = vif_delete(net, vif.vifc_vifi, 0);
991                 }
992                 rtnl_unlock();
993                 return ret;
994
995                 /*
996                  *      Manipulate the forwarding caches. These live
997                  *      in a sort of kernel/user symbiosis.
998                  */
999         case MRT_ADD_MFC:
1000         case MRT_DEL_MFC:
1001                 if (optlen != sizeof(mfc))
1002                         return -EINVAL;
1003                 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1004                         return -EFAULT;
1005                 rtnl_lock();
1006                 if (optname == MRT_DEL_MFC)
1007                         ret = ipmr_mfc_delete(net, &mfc);
1008                 else
1009                         ret = ipmr_mfc_add(net, &mfc, sk == net->ipv4.mroute_sk);
1010                 rtnl_unlock();
1011                 return ret;
1012                 /*
1013                  *      Control PIM assert.
1014                  */
1015         case MRT_ASSERT:
1016         {
1017                 int v;
1018                 if (get_user(v,(int __user *)optval))
1019                         return -EFAULT;
1020                 net->ipv4.mroute_do_assert = (v) ? 1 : 0;
1021                 return 0;
1022         }
1023 #ifdef CONFIG_IP_PIMSM
1024         case MRT_PIM:
1025         {
1026                 int v;
1027
1028                 if (get_user(v,(int __user *)optval))
1029                         return -EFAULT;
1030                 v = (v) ? 1 : 0;
1031
1032                 rtnl_lock();
1033                 ret = 0;
1034                 if (v != net->ipv4.mroute_do_pim) {
1035                         net->ipv4.mroute_do_pim = v;
1036                         net->ipv4.mroute_do_assert = v;
1037                 }
1038                 rtnl_unlock();
1039                 return ret;
1040         }
1041 #endif
1042         /*
1043          *      Spurious command, or MRT_VERSION which you cannot
1044          *      set.
1045          */
1046         default:
1047                 return -ENOPROTOOPT;
1048         }
1049 }
1050
1051 /*
1052  *      Getsock opt support for the multicast routing system.
1053  */
1054
1055 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1056 {
1057         int olr;
1058         int val;
1059         struct net *net = sock_net(sk);
1060
1061         if (optname != MRT_VERSION &&
1062 #ifdef CONFIG_IP_PIMSM
1063            optname!=MRT_PIM &&
1064 #endif
1065            optname!=MRT_ASSERT)
1066                 return -ENOPROTOOPT;
1067
1068         if (get_user(olr, optlen))
1069                 return -EFAULT;
1070
1071         olr = min_t(unsigned int, olr, sizeof(int));
1072         if (olr < 0)
1073                 return -EINVAL;
1074
1075         if (put_user(olr, optlen))
1076                 return -EFAULT;
1077         if (optname == MRT_VERSION)
1078                 val = 0x0305;
1079 #ifdef CONFIG_IP_PIMSM
1080         else if (optname == MRT_PIM)
1081                 val = net->ipv4.mroute_do_pim;
1082 #endif
1083         else
1084                 val = net->ipv4.mroute_do_assert;
1085         if (copy_to_user(optval, &val, olr))
1086                 return -EFAULT;
1087         return 0;
1088 }
1089
1090 /*
1091  *      The IP multicast ioctl support routines.
1092  */
1093
1094 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1095 {
1096         struct sioc_sg_req sr;
1097         struct sioc_vif_req vr;
1098         struct vif_device *vif;
1099         struct mfc_cache *c;
1100         struct net *net = sock_net(sk);
1101
1102         switch (cmd) {
1103         case SIOCGETVIFCNT:
1104                 if (copy_from_user(&vr, arg, sizeof(vr)))
1105                         return -EFAULT;
1106                 if (vr.vifi >= net->ipv4.maxvif)
1107                         return -EINVAL;
1108                 read_lock(&mrt_lock);
1109                 vif = &net->ipv4.vif_table[vr.vifi];
1110                 if (VIF_EXISTS(net, vr.vifi)) {
1111                         vr.icount = vif->pkt_in;
1112                         vr.ocount = vif->pkt_out;
1113                         vr.ibytes = vif->bytes_in;
1114                         vr.obytes = vif->bytes_out;
1115                         read_unlock(&mrt_lock);
1116
1117                         if (copy_to_user(arg, &vr, sizeof(vr)))
1118                                 return -EFAULT;
1119                         return 0;
1120                 }
1121                 read_unlock(&mrt_lock);
1122                 return -EADDRNOTAVAIL;
1123         case SIOCGETSGCNT:
1124                 if (copy_from_user(&sr, arg, sizeof(sr)))
1125                         return -EFAULT;
1126
1127                 read_lock(&mrt_lock);
1128                 c = ipmr_cache_find(net, sr.src.s_addr, sr.grp.s_addr);
1129                 if (c) {
1130                         sr.pktcnt = c->mfc_un.res.pkt;
1131                         sr.bytecnt = c->mfc_un.res.bytes;
1132                         sr.wrong_if = c->mfc_un.res.wrong_if;
1133                         read_unlock(&mrt_lock);
1134
1135                         if (copy_to_user(arg, &sr, sizeof(sr)))
1136                                 return -EFAULT;
1137                         return 0;
1138                 }
1139                 read_unlock(&mrt_lock);
1140                 return -EADDRNOTAVAIL;
1141         default:
1142                 return -ENOIOCTLCMD;
1143         }
1144 }
1145
1146
1147 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1148 {
1149         struct net_device *dev = ptr;
1150         struct net *net = dev_net(dev);
1151         struct vif_device *v;
1152         int ct;
1153
1154         if (!net_eq(dev_net(dev), net))
1155                 return NOTIFY_DONE;
1156
1157         if (event != NETDEV_UNREGISTER)
1158                 return NOTIFY_DONE;
1159         v = &net->ipv4.vif_table[0];
1160         for (ct = 0; ct < net->ipv4.maxvif; ct++, v++) {
1161                 if (v->dev == dev)
1162                         vif_delete(net, ct, 1);
1163         }
1164         return NOTIFY_DONE;
1165 }
1166
1167
1168 static struct notifier_block ip_mr_notifier = {
1169         .notifier_call = ipmr_device_event,
1170 };
1171
1172 /*
1173  *      Encapsulate a packet by attaching a valid IPIP header to it.
1174  *      This avoids tunnel drivers and other mess and gives us the speed so
1175  *      important for multicast video.
1176  */
1177
1178 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1179 {
1180         struct iphdr *iph;
1181         struct iphdr *old_iph = ip_hdr(skb);
1182
1183         skb_push(skb, sizeof(struct iphdr));
1184         skb->transport_header = skb->network_header;
1185         skb_reset_network_header(skb);
1186         iph = ip_hdr(skb);
1187
1188         iph->version    =       4;
1189         iph->tos        =       old_iph->tos;
1190         iph->ttl        =       old_iph->ttl;
1191         iph->frag_off   =       0;
1192         iph->daddr      =       daddr;
1193         iph->saddr      =       saddr;
1194         iph->protocol   =       IPPROTO_IPIP;
1195         iph->ihl        =       5;
1196         iph->tot_len    =       htons(skb->len);
1197         ip_select_ident(iph, skb_dst(skb), NULL);
1198         ip_send_check(iph);
1199
1200         memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1201         nf_reset(skb);
1202 }
1203
1204 static inline int ipmr_forward_finish(struct sk_buff *skb)
1205 {
1206         struct ip_options * opt = &(IPCB(skb)->opt);
1207
1208         IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1209
1210         if (unlikely(opt->optlen))
1211                 ip_forward_options(skb);
1212
1213         return dst_output(skb);
1214 }
1215
1216 /*
1217  *      Processing handlers for ipmr_forward
1218  */
1219
1220 static void ipmr_queue_xmit(struct sk_buff *skb, struct mfc_cache *c, int vifi)
1221 {
1222         struct net *net = mfc_net(c);
1223         const struct iphdr *iph = ip_hdr(skb);
1224         struct vif_device *vif = &net->ipv4.vif_table[vifi];
1225         struct net_device *dev;
1226         struct rtable *rt;
1227         int    encap = 0;
1228
1229         if (vif->dev == NULL)
1230                 goto out_free;
1231
1232 #ifdef CONFIG_IP_PIMSM
1233         if (vif->flags & VIFF_REGISTER) {
1234                 vif->pkt_out++;
1235                 vif->bytes_out += skb->len;
1236                 vif->dev->stats.tx_bytes += skb->len;
1237                 vif->dev->stats.tx_packets++;
1238                 ipmr_cache_report(net, skb, vifi, IGMPMSG_WHOLEPKT);
1239                 goto out_free;
1240         }
1241 #endif
1242
1243         if (vif->flags&VIFF_TUNNEL) {
1244                 struct flowi fl = { .oif = vif->link,
1245                                     .nl_u = { .ip4_u =
1246                                               { .daddr = vif->remote,
1247                                                 .saddr = vif->local,
1248                                                 .tos = RT_TOS(iph->tos) } },
1249                                     .proto = IPPROTO_IPIP };
1250                 if (ip_route_output_key(net, &rt, &fl))
1251                         goto out_free;
1252                 encap = sizeof(struct iphdr);
1253         } else {
1254                 struct flowi fl = { .oif = vif->link,
1255                                     .nl_u = { .ip4_u =
1256                                               { .daddr = iph->daddr,
1257                                                 .tos = RT_TOS(iph->tos) } },
1258                                     .proto = IPPROTO_IPIP };
1259                 if (ip_route_output_key(net, &rt, &fl))
1260                         goto out_free;
1261         }
1262
1263         dev = rt->u.dst.dev;
1264
1265         if (skb->len+encap > dst_mtu(&rt->u.dst) && (ntohs(iph->frag_off) & IP_DF)) {
1266                 /* Do not fragment multicasts. Alas, IPv4 does not
1267                    allow to send ICMP, so that packets will disappear
1268                    to blackhole.
1269                  */
1270
1271                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1272                 ip_rt_put(rt);
1273                 goto out_free;
1274         }
1275
1276         encap += LL_RESERVED_SPACE(dev) + rt->u.dst.header_len;
1277
1278         if (skb_cow(skb, encap)) {
1279                 ip_rt_put(rt);
1280                 goto out_free;
1281         }
1282
1283         vif->pkt_out++;
1284         vif->bytes_out += skb->len;
1285
1286         skb_dst_drop(skb);
1287         skb_dst_set(skb, &rt->u.dst);
1288         ip_decrease_ttl(ip_hdr(skb));
1289
1290         /* FIXME: forward and output firewalls used to be called here.
1291          * What do we do with netfilter? -- RR */
1292         if (vif->flags & VIFF_TUNNEL) {
1293                 ip_encap(skb, vif->local, vif->remote);
1294                 /* FIXME: extra output firewall step used to be here. --RR */
1295                 vif->dev->stats.tx_packets++;
1296                 vif->dev->stats.tx_bytes += skb->len;
1297         }
1298
1299         IPCB(skb)->flags |= IPSKB_FORWARDED;
1300
1301         /*
1302          * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1303          * not only before forwarding, but after forwarding on all output
1304          * interfaces. It is clear, if mrouter runs a multicasting
1305          * program, it should receive packets not depending to what interface
1306          * program is joined.
1307          * If we will not make it, the program will have to join on all
1308          * interfaces. On the other hand, multihoming host (or router, but
1309          * not mrouter) cannot join to more than one interface - it will
1310          * result in receiving multiple packets.
1311          */
1312         NF_HOOK(PF_INET, NF_INET_FORWARD, skb, skb->dev, dev,
1313                 ipmr_forward_finish);
1314         return;
1315
1316 out_free:
1317         kfree_skb(skb);
1318         return;
1319 }
1320
1321 static int ipmr_find_vif(struct net_device *dev)
1322 {
1323         struct net *net = dev_net(dev);
1324         int ct;
1325         for (ct = net->ipv4.maxvif-1; ct >= 0; ct--) {
1326                 if (net->ipv4.vif_table[ct].dev == dev)
1327                         break;
1328         }
1329         return ct;
1330 }
1331
1332 /* "local" means that we should preserve one skb (for local delivery) */
1333
1334 static int ip_mr_forward(struct sk_buff *skb, struct mfc_cache *cache, int local)
1335 {
1336         int psend = -1;
1337         int vif, ct;
1338         struct net *net = mfc_net(cache);
1339
1340         vif = cache->mfc_parent;
1341         cache->mfc_un.res.pkt++;
1342         cache->mfc_un.res.bytes += skb->len;
1343
1344         /*
1345          * Wrong interface: drop packet and (maybe) send PIM assert.
1346          */
1347         if (net->ipv4.vif_table[vif].dev != skb->dev) {
1348                 int true_vifi;
1349
1350                 if (skb_rtable(skb)->fl.iif == 0) {
1351                         /* It is our own packet, looped back.
1352                            Very complicated situation...
1353
1354                            The best workaround until routing daemons will be
1355                            fixed is not to redistribute packet, if it was
1356                            send through wrong interface. It means, that
1357                            multicast applications WILL NOT work for
1358                            (S,G), which have default multicast route pointing
1359                            to wrong oif. In any case, it is not a good
1360                            idea to use multicasting applications on router.
1361                          */
1362                         goto dont_forward;
1363                 }
1364
1365                 cache->mfc_un.res.wrong_if++;
1366                 true_vifi = ipmr_find_vif(skb->dev);
1367
1368                 if (true_vifi >= 0 && net->ipv4.mroute_do_assert &&
1369                     /* pimsm uses asserts, when switching from RPT to SPT,
1370                        so that we cannot check that packet arrived on an oif.
1371                        It is bad, but otherwise we would need to move pretty
1372                        large chunk of pimd to kernel. Ough... --ANK
1373                      */
1374                     (net->ipv4.mroute_do_pim ||
1375                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
1376                     time_after(jiffies,
1377                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1378                         cache->mfc_un.res.last_assert = jiffies;
1379                         ipmr_cache_report(net, skb, true_vifi, IGMPMSG_WRONGVIF);
1380                 }
1381                 goto dont_forward;
1382         }
1383
1384         net->ipv4.vif_table[vif].pkt_in++;
1385         net->ipv4.vif_table[vif].bytes_in += skb->len;
1386
1387         /*
1388          *      Forward the frame
1389          */
1390         for (ct = cache->mfc_un.res.maxvif-1; ct >= cache->mfc_un.res.minvif; ct--) {
1391                 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1392                         if (psend != -1) {
1393                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1394                                 if (skb2)
1395                                         ipmr_queue_xmit(skb2, cache, psend);
1396                         }
1397                         psend = ct;
1398                 }
1399         }
1400         if (psend != -1) {
1401                 if (local) {
1402                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1403                         if (skb2)
1404                                 ipmr_queue_xmit(skb2, cache, psend);
1405                 } else {
1406                         ipmr_queue_xmit(skb, cache, psend);
1407                         return 0;
1408                 }
1409         }
1410
1411 dont_forward:
1412         if (!local)
1413                 kfree_skb(skb);
1414         return 0;
1415 }
1416
1417
1418 /*
1419  *      Multicast packets for forwarding arrive here
1420  */
1421
1422 int ip_mr_input(struct sk_buff *skb)
1423 {
1424         struct mfc_cache *cache;
1425         struct net *net = dev_net(skb->dev);
1426         int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1427
1428         /* Packet is looped back after forward, it should not be
1429            forwarded second time, but still can be delivered locally.
1430          */
1431         if (IPCB(skb)->flags&IPSKB_FORWARDED)
1432                 goto dont_forward;
1433
1434         if (!local) {
1435                     if (IPCB(skb)->opt.router_alert) {
1436                             if (ip_call_ra_chain(skb))
1437                                     return 0;
1438                     } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP){
1439                             /* IGMPv1 (and broken IGMPv2 implementations sort of
1440                                Cisco IOS <= 11.2(8)) do not put router alert
1441                                option to IGMP packets destined to routable
1442                                groups. It is very bad, because it means
1443                                that we can forward NO IGMP messages.
1444                              */
1445                             read_lock(&mrt_lock);
1446                             if (net->ipv4.mroute_sk) {
1447                                     nf_reset(skb);
1448                                     raw_rcv(net->ipv4.mroute_sk, skb);
1449                                     read_unlock(&mrt_lock);
1450                                     return 0;
1451                             }
1452                             read_unlock(&mrt_lock);
1453                     }
1454         }
1455
1456         read_lock(&mrt_lock);
1457         cache = ipmr_cache_find(net, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1458
1459         /*
1460          *      No usable cache entry
1461          */
1462         if (cache == NULL) {
1463                 int vif;
1464
1465                 if (local) {
1466                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1467                         ip_local_deliver(skb);
1468                         if (skb2 == NULL) {
1469                                 read_unlock(&mrt_lock);
1470                                 return -ENOBUFS;
1471                         }
1472                         skb = skb2;
1473                 }
1474
1475                 vif = ipmr_find_vif(skb->dev);
1476                 if (vif >= 0) {
1477                         int err = ipmr_cache_unresolved(net, vif, skb);
1478                         read_unlock(&mrt_lock);
1479
1480                         return err;
1481                 }
1482                 read_unlock(&mrt_lock);
1483                 kfree_skb(skb);
1484                 return -ENODEV;
1485         }
1486
1487         ip_mr_forward(skb, cache, local);
1488
1489         read_unlock(&mrt_lock);
1490
1491         if (local)
1492                 return ip_local_deliver(skb);
1493
1494         return 0;
1495
1496 dont_forward:
1497         if (local)
1498                 return ip_local_deliver(skb);
1499         kfree_skb(skb);
1500         return 0;
1501 }
1502
1503 #ifdef CONFIG_IP_PIMSM
1504 static int __pim_rcv(struct sk_buff *skb, unsigned int pimlen)
1505 {
1506         struct net_device *reg_dev = NULL;
1507         struct iphdr *encap;
1508         struct net *net = dev_net(skb->dev);
1509
1510         encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1511         /*
1512            Check that:
1513            a. packet is really destinted to a multicast group
1514            b. packet is not a NULL-REGISTER
1515            c. packet is not truncated
1516          */
1517         if (!ipv4_is_multicast(encap->daddr) ||
1518             encap->tot_len == 0 ||
1519             ntohs(encap->tot_len) + pimlen > skb->len)
1520                 return 1;
1521
1522         read_lock(&mrt_lock);
1523         if (net->ipv4.mroute_reg_vif_num >= 0)
1524                 reg_dev = net->ipv4.vif_table[net->ipv4.mroute_reg_vif_num].dev;
1525         if (reg_dev)
1526                 dev_hold(reg_dev);
1527         read_unlock(&mrt_lock);
1528
1529         if (reg_dev == NULL)
1530                 return 1;
1531
1532         skb->mac_header = skb->network_header;
1533         skb_pull(skb, (u8*)encap - skb->data);
1534         skb_reset_network_header(skb);
1535         skb->dev = reg_dev;
1536         skb->protocol = htons(ETH_P_IP);
1537         skb->ip_summed = 0;
1538         skb->pkt_type = PACKET_HOST;
1539         skb_dst_drop(skb);
1540         reg_dev->stats.rx_bytes += skb->len;
1541         reg_dev->stats.rx_packets++;
1542         nf_reset(skb);
1543         netif_rx(skb);
1544         dev_put(reg_dev);
1545
1546         return 0;
1547 }
1548 #endif
1549
1550 #ifdef CONFIG_IP_PIMSM_V1
1551 /*
1552  * Handle IGMP messages of PIMv1
1553  */
1554
1555 int pim_rcv_v1(struct sk_buff * skb)
1556 {
1557         struct igmphdr *pim;
1558         struct net *net = dev_net(skb->dev);
1559
1560         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1561                 goto drop;
1562
1563         pim = igmp_hdr(skb);
1564
1565         if (!net->ipv4.mroute_do_pim ||
1566             pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1567                 goto drop;
1568
1569         if (__pim_rcv(skb, sizeof(*pim))) {
1570 drop:
1571                 kfree_skb(skb);
1572         }
1573         return 0;
1574 }
1575 #endif
1576
1577 #ifdef CONFIG_IP_PIMSM_V2
1578 static int pim_rcv(struct sk_buff * skb)
1579 {
1580         struct pimreghdr *pim;
1581
1582         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1583                 goto drop;
1584
1585         pim = (struct pimreghdr *)skb_transport_header(skb);
1586         if (pim->type != ((PIM_VERSION<<4)|(PIM_REGISTER)) ||
1587             (pim->flags&PIM_NULL_REGISTER) ||
1588             (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1589              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1590                 goto drop;
1591
1592         if (__pim_rcv(skb, sizeof(*pim))) {
1593 drop:
1594                 kfree_skb(skb);
1595         }
1596         return 0;
1597 }
1598 #endif
1599
1600 static int
1601 ipmr_fill_mroute(struct sk_buff *skb, struct mfc_cache *c, struct rtmsg *rtm)
1602 {
1603         int ct;
1604         struct rtnexthop *nhp;
1605         struct net *net = mfc_net(c);
1606         struct net_device *dev = net->ipv4.vif_table[c->mfc_parent].dev;
1607         u8 *b = skb_tail_pointer(skb);
1608         struct rtattr *mp_head;
1609
1610         if (dev)
1611                 RTA_PUT(skb, RTA_IIF, 4, &dev->ifindex);
1612
1613         mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
1614
1615         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
1616                 if (c->mfc_un.res.ttls[ct] < 255) {
1617                         if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
1618                                 goto rtattr_failure;
1619                         nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
1620                         nhp->rtnh_flags = 0;
1621                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
1622                         nhp->rtnh_ifindex = net->ipv4.vif_table[ct].dev->ifindex;
1623                         nhp->rtnh_len = sizeof(*nhp);
1624                 }
1625         }
1626         mp_head->rta_type = RTA_MULTIPATH;
1627         mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
1628         rtm->rtm_type = RTN_MULTICAST;
1629         return 1;
1630
1631 rtattr_failure:
1632         nlmsg_trim(skb, b);
1633         return -EMSGSIZE;
1634 }
1635
1636 int ipmr_get_route(struct net *net,
1637                    struct sk_buff *skb, struct rtmsg *rtm, int nowait)
1638 {
1639         int err;
1640         struct mfc_cache *cache;
1641         struct rtable *rt = skb_rtable(skb);
1642
1643         read_lock(&mrt_lock);
1644         cache = ipmr_cache_find(net, rt->rt_src, rt->rt_dst);
1645
1646         if (cache == NULL) {
1647                 struct sk_buff *skb2;
1648                 struct iphdr *iph;
1649                 struct net_device *dev;
1650                 int vif;
1651
1652                 if (nowait) {
1653                         read_unlock(&mrt_lock);
1654                         return -EAGAIN;
1655                 }
1656
1657                 dev = skb->dev;
1658                 if (dev == NULL || (vif = ipmr_find_vif(dev)) < 0) {
1659                         read_unlock(&mrt_lock);
1660                         return -ENODEV;
1661                 }
1662                 skb2 = skb_clone(skb, GFP_ATOMIC);
1663                 if (!skb2) {
1664                         read_unlock(&mrt_lock);
1665                         return -ENOMEM;
1666                 }
1667
1668                 skb_push(skb2, sizeof(struct iphdr));
1669                 skb_reset_network_header(skb2);
1670                 iph = ip_hdr(skb2);
1671                 iph->ihl = sizeof(struct iphdr) >> 2;
1672                 iph->saddr = rt->rt_src;
1673                 iph->daddr = rt->rt_dst;
1674                 iph->version = 0;
1675                 err = ipmr_cache_unresolved(net, vif, skb2);
1676                 read_unlock(&mrt_lock);
1677                 return err;
1678         }
1679
1680         if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
1681                 cache->mfc_flags |= MFC_NOTIFY;
1682         err = ipmr_fill_mroute(skb, cache, rtm);
1683         read_unlock(&mrt_lock);
1684         return err;
1685 }
1686
1687 #ifdef CONFIG_PROC_FS
1688 /*
1689  *      The /proc interfaces to multicast routing /proc/ip_mr_cache /proc/ip_mr_vif
1690  */
1691 struct ipmr_vif_iter {
1692         struct seq_net_private p;
1693         int ct;
1694 };
1695
1696 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
1697                                            struct ipmr_vif_iter *iter,
1698                                            loff_t pos)
1699 {
1700         for (iter->ct = 0; iter->ct < net->ipv4.maxvif; ++iter->ct) {
1701                 if (!VIF_EXISTS(net, iter->ct))
1702                         continue;
1703                 if (pos-- == 0)
1704                         return &net->ipv4.vif_table[iter->ct];
1705         }
1706         return NULL;
1707 }
1708
1709 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
1710         __acquires(mrt_lock)
1711 {
1712         struct net *net = seq_file_net(seq);
1713
1714         read_lock(&mrt_lock);
1715         return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
1716                 : SEQ_START_TOKEN;
1717 }
1718
1719 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1720 {
1721         struct ipmr_vif_iter *iter = seq->private;
1722         struct net *net = seq_file_net(seq);
1723
1724         ++*pos;
1725         if (v == SEQ_START_TOKEN)
1726                 return ipmr_vif_seq_idx(net, iter, 0);
1727
1728         while (++iter->ct < net->ipv4.maxvif) {
1729                 if (!VIF_EXISTS(net, iter->ct))
1730                         continue;
1731                 return &net->ipv4.vif_table[iter->ct];
1732         }
1733         return NULL;
1734 }
1735
1736 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
1737         __releases(mrt_lock)
1738 {
1739         read_unlock(&mrt_lock);
1740 }
1741
1742 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
1743 {
1744         struct net *net = seq_file_net(seq);
1745
1746         if (v == SEQ_START_TOKEN) {
1747                 seq_puts(seq,
1748                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
1749         } else {
1750                 const struct vif_device *vif = v;
1751                 const char *name =  vif->dev ? vif->dev->name : "none";
1752
1753                 seq_printf(seq,
1754                            "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
1755                            vif - net->ipv4.vif_table,
1756                            name, vif->bytes_in, vif->pkt_in,
1757                            vif->bytes_out, vif->pkt_out,
1758                            vif->flags, vif->local, vif->remote);
1759         }
1760         return 0;
1761 }
1762
1763 static const struct seq_operations ipmr_vif_seq_ops = {
1764         .start = ipmr_vif_seq_start,
1765         .next  = ipmr_vif_seq_next,
1766         .stop  = ipmr_vif_seq_stop,
1767         .show  = ipmr_vif_seq_show,
1768 };
1769
1770 static int ipmr_vif_open(struct inode *inode, struct file *file)
1771 {
1772         return seq_open_net(inode, file, &ipmr_vif_seq_ops,
1773                             sizeof(struct ipmr_vif_iter));
1774 }
1775
1776 static const struct file_operations ipmr_vif_fops = {
1777         .owner   = THIS_MODULE,
1778         .open    = ipmr_vif_open,
1779         .read    = seq_read,
1780         .llseek  = seq_lseek,
1781         .release = seq_release_net,
1782 };
1783
1784 struct ipmr_mfc_iter {
1785         struct seq_net_private p;
1786         struct mfc_cache **cache;
1787         int ct;
1788 };
1789
1790
1791 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
1792                                           struct ipmr_mfc_iter *it, loff_t pos)
1793 {
1794         struct mfc_cache *mfc;
1795
1796         it->cache = net->ipv4.mfc_cache_array;
1797         read_lock(&mrt_lock);
1798         for (it->ct = 0; it->ct < MFC_LINES; it->ct++)
1799                 for (mfc = net->ipv4.mfc_cache_array[it->ct];
1800                      mfc; mfc = mfc->next)
1801                         if (pos-- == 0)
1802                                 return mfc;
1803         read_unlock(&mrt_lock);
1804
1805         it->cache = &mfc_unres_queue;
1806         spin_lock_bh(&mfc_unres_lock);
1807         for (mfc = mfc_unres_queue; mfc; mfc = mfc->next)
1808                 if (net_eq(mfc_net(mfc), net) &&
1809                     pos-- == 0)
1810                         return mfc;
1811         spin_unlock_bh(&mfc_unres_lock);
1812
1813         it->cache = NULL;
1814         return NULL;
1815 }
1816
1817
1818 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
1819 {
1820         struct ipmr_mfc_iter *it = seq->private;
1821         struct net *net = seq_file_net(seq);
1822
1823         it->cache = NULL;
1824         it->ct = 0;
1825         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
1826                 : SEQ_START_TOKEN;
1827 }
1828
1829 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1830 {
1831         struct mfc_cache *mfc = v;
1832         struct ipmr_mfc_iter *it = seq->private;
1833         struct net *net = seq_file_net(seq);
1834
1835         ++*pos;
1836
1837         if (v == SEQ_START_TOKEN)
1838                 return ipmr_mfc_seq_idx(net, seq->private, 0);
1839
1840         if (mfc->next)
1841                 return mfc->next;
1842
1843         if (it->cache == &mfc_unres_queue)
1844                 goto end_of_list;
1845
1846         BUG_ON(it->cache != net->ipv4.mfc_cache_array);
1847
1848         while (++it->ct < MFC_LINES) {
1849                 mfc = net->ipv4.mfc_cache_array[it->ct];
1850                 if (mfc)
1851                         return mfc;
1852         }
1853
1854         /* exhausted cache_array, show unresolved */
1855         read_unlock(&mrt_lock);
1856         it->cache = &mfc_unres_queue;
1857         it->ct = 0;
1858
1859         spin_lock_bh(&mfc_unres_lock);
1860         mfc = mfc_unres_queue;
1861         while (mfc && !net_eq(mfc_net(mfc), net))
1862                 mfc = mfc->next;
1863         if (mfc)
1864                 return mfc;
1865
1866  end_of_list:
1867         spin_unlock_bh(&mfc_unres_lock);
1868         it->cache = NULL;
1869
1870         return NULL;
1871 }
1872
1873 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
1874 {
1875         struct ipmr_mfc_iter *it = seq->private;
1876         struct net *net = seq_file_net(seq);
1877
1878         if (it->cache == &mfc_unres_queue)
1879                 spin_unlock_bh(&mfc_unres_lock);
1880         else if (it->cache == net->ipv4.mfc_cache_array)
1881                 read_unlock(&mrt_lock);
1882 }
1883
1884 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
1885 {
1886         int n;
1887         struct net *net = seq_file_net(seq);
1888
1889         if (v == SEQ_START_TOKEN) {
1890                 seq_puts(seq,
1891                  "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
1892         } else {
1893                 const struct mfc_cache *mfc = v;
1894                 const struct ipmr_mfc_iter *it = seq->private;
1895
1896                 seq_printf(seq, "%08lX %08lX %-3hd",
1897                            (unsigned long) mfc->mfc_mcastgrp,
1898                            (unsigned long) mfc->mfc_origin,
1899                            mfc->mfc_parent);
1900
1901                 if (it->cache != &mfc_unres_queue) {
1902                         seq_printf(seq, " %8lu %8lu %8lu",
1903                                    mfc->mfc_un.res.pkt,
1904                                    mfc->mfc_un.res.bytes,
1905                                    mfc->mfc_un.res.wrong_if);
1906                         for (n = mfc->mfc_un.res.minvif;
1907                              n < mfc->mfc_un.res.maxvif; n++ ) {
1908                                 if (VIF_EXISTS(net, n) &&
1909                                     mfc->mfc_un.res.ttls[n] < 255)
1910                                         seq_printf(seq,
1911                                            " %2d:%-3d",
1912                                            n, mfc->mfc_un.res.ttls[n]);
1913                         }
1914                 } else {
1915                         /* unresolved mfc_caches don't contain
1916                          * pkt, bytes and wrong_if values
1917                          */
1918                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
1919                 }
1920                 seq_putc(seq, '\n');
1921         }
1922         return 0;
1923 }
1924
1925 static const struct seq_operations ipmr_mfc_seq_ops = {
1926         .start = ipmr_mfc_seq_start,
1927         .next  = ipmr_mfc_seq_next,
1928         .stop  = ipmr_mfc_seq_stop,
1929         .show  = ipmr_mfc_seq_show,
1930 };
1931
1932 static int ipmr_mfc_open(struct inode *inode, struct file *file)
1933 {
1934         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
1935                             sizeof(struct ipmr_mfc_iter));
1936 }
1937
1938 static const struct file_operations ipmr_mfc_fops = {
1939         .owner   = THIS_MODULE,
1940         .open    = ipmr_mfc_open,
1941         .read    = seq_read,
1942         .llseek  = seq_lseek,
1943         .release = seq_release_net,
1944 };
1945 #endif
1946
1947 #ifdef CONFIG_IP_PIMSM_V2
1948 static struct net_protocol pim_protocol = {
1949         .handler        =       pim_rcv,
1950         .netns_ok       =       1,
1951 };
1952 #endif
1953
1954
1955 /*
1956  *      Setup for IP multicast routing
1957  */
1958 static int __net_init ipmr_net_init(struct net *net)
1959 {
1960         int err = 0;
1961
1962         net->ipv4.vif_table = kcalloc(MAXVIFS, sizeof(struct vif_device),
1963                                       GFP_KERNEL);
1964         if (!net->ipv4.vif_table) {
1965                 err = -ENOMEM;
1966                 goto fail;
1967         }
1968
1969         /* Forwarding cache */
1970         net->ipv4.mfc_cache_array = kcalloc(MFC_LINES,
1971                                             sizeof(struct mfc_cache *),
1972                                             GFP_KERNEL);
1973         if (!net->ipv4.mfc_cache_array) {
1974                 err = -ENOMEM;
1975                 goto fail_mfc_cache;
1976         }
1977
1978 #ifdef CONFIG_IP_PIMSM
1979         net->ipv4.mroute_reg_vif_num = -1;
1980 #endif
1981
1982 #ifdef CONFIG_PROC_FS
1983         err = -ENOMEM;
1984         if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
1985                 goto proc_vif_fail;
1986         if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
1987                 goto proc_cache_fail;
1988 #endif
1989         return 0;
1990
1991 #ifdef CONFIG_PROC_FS
1992 proc_cache_fail:
1993         proc_net_remove(net, "ip_mr_vif");
1994 proc_vif_fail:
1995         kfree(net->ipv4.mfc_cache_array);
1996 #endif
1997 fail_mfc_cache:
1998         kfree(net->ipv4.vif_table);
1999 fail:
2000         return err;
2001 }
2002
2003 static void __net_exit ipmr_net_exit(struct net *net)
2004 {
2005 #ifdef CONFIG_PROC_FS
2006         proc_net_remove(net, "ip_mr_cache");
2007         proc_net_remove(net, "ip_mr_vif");
2008 #endif
2009         kfree(net->ipv4.mfc_cache_array);
2010         kfree(net->ipv4.vif_table);
2011 }
2012
2013 static struct pernet_operations ipmr_net_ops = {
2014         .init = ipmr_net_init,
2015         .exit = ipmr_net_exit,
2016 };
2017
2018 int __init ip_mr_init(void)
2019 {
2020         int err;
2021
2022         mrt_cachep = kmem_cache_create("ip_mrt_cache",
2023                                        sizeof(struct mfc_cache),
2024                                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2025                                        NULL);
2026         if (!mrt_cachep)
2027                 return -ENOMEM;
2028
2029         err = register_pernet_subsys(&ipmr_net_ops);
2030         if (err)
2031                 goto reg_pernet_fail;
2032
2033         setup_timer(&ipmr_expire_timer, ipmr_expire_process, 0);
2034         err = register_netdevice_notifier(&ip_mr_notifier);
2035         if (err)
2036                 goto reg_notif_fail;
2037 #ifdef CONFIG_IP_PIMSM_V2
2038         if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2039                 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2040                 err = -EAGAIN;
2041                 goto add_proto_fail;
2042         }
2043 #endif
2044         return 0;
2045
2046 #ifdef CONFIG_IP_PIMSM_V2
2047 add_proto_fail:
2048         unregister_netdevice_notifier(&ip_mr_notifier);
2049 #endif
2050 reg_notif_fail:
2051         del_timer(&ipmr_expire_timer);
2052         unregister_pernet_subsys(&ipmr_net_ops);
2053 reg_pernet_fail:
2054         kmem_cache_destroy(mrt_cachep);
2055         return err;
2056 }