2 * linux/arch/ia64/kernel/time.c
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/profile.h>
22 #include <linux/timex.h>
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/ptrace.h>
29 #include <asm/sections.h>
30 #include <asm/system.h>
32 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
34 #ifdef CONFIG_IA64_DEBUG_IRQ
36 unsigned long last_cli_ip;
37 EXPORT_SYMBOL(last_cli_ip);
41 static struct time_interpolator itc_interpolator = {
43 .mask = 0xffffffffffffffffLL,
44 .source = TIME_SOURCE_CPU
48 timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
50 unsigned long new_itm;
52 if (unlikely(cpu_is_offline(smp_processor_id()))) {
56 platform_timer_interrupt(irq, dev_id, regs);
58 new_itm = local_cpu_data->itm_next;
60 if (!time_after(ia64_get_itc(), new_itm))
61 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
62 ia64_get_itc(), new_itm);
64 profile_tick(CPU_PROFILING, regs);
67 update_process_times(user_mode(regs));
69 new_itm += local_cpu_data->itm_delta;
71 if (smp_processor_id() == time_keeper_id) {
73 * Here we are in the timer irq handler. We have irqs locally
74 * disabled, but we don't know if the timer_bh is running on
75 * another CPU. We need to avoid to SMP race by acquiring the
78 write_seqlock(&xtime_lock);
80 local_cpu_data->itm_next = new_itm;
81 write_sequnlock(&xtime_lock);
83 local_cpu_data->itm_next = new_itm;
85 if (time_after(new_itm, ia64_get_itc()))
91 * If we're too close to the next clock tick for
92 * comfort, we increase the safety margin by
93 * intentionally dropping the next tick(s). We do NOT
94 * update itm.next because that would force us to call
95 * do_timer() which in turn would let our clock run
96 * too fast (with the potentially devastating effect
97 * of losing monotony of time).
99 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
100 new_itm += local_cpu_data->itm_delta;
101 ia64_set_itm(new_itm);
102 /* double check, in case we got hit by a (slow) PMI: */
103 } while (time_after_eq(ia64_get_itc(), new_itm));
108 * Encapsulate access to the itm structure for SMP.
111 ia64_cpu_local_tick (void)
113 int cpu = smp_processor_id();
114 unsigned long shift = 0, delta;
116 /* arrange for the cycle counter to generate a timer interrupt: */
117 ia64_set_itv(IA64_TIMER_VECTOR);
119 delta = local_cpu_data->itm_delta;
121 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
125 unsigned long hi = 1UL << ia64_fls(cpu);
126 shift = (2*(cpu - hi) + 1) * delta/hi/2;
128 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
129 ia64_set_itm(local_cpu_data->itm_next);
134 static int __init nojitter_setup(char *str)
137 printk("Jitter checking for ITC timers disabled\n");
141 __setup("nojitter", nojitter_setup);
147 unsigned long platform_base_freq, itc_freq;
148 struct pal_freq_ratio itc_ratio, proc_ratio;
149 long status, platform_base_drift, itc_drift;
152 * According to SAL v2.6, we need to use a SAL call to determine the platform base
153 * frequency and then a PAL call to determine the frequency ratio between the ITC
154 * and the base frequency.
156 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
157 &platform_base_freq, &platform_base_drift);
159 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
161 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
163 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
166 /* invent "random" values */
168 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
169 platform_base_freq = 100000000;
170 platform_base_drift = -1; /* no drift info */
174 if (platform_base_freq < 40000000) {
175 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
177 platform_base_freq = 75000000;
178 platform_base_drift = -1;
181 proc_ratio.den = 1; /* avoid division by zero */
183 itc_ratio.den = 1; /* avoid division by zero */
185 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
187 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
188 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
189 "ITC freq=%lu.%03luMHz", smp_processor_id(),
190 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
191 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
193 if (platform_base_drift != -1) {
194 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
195 printk("+/-%ldppm\n", itc_drift);
201 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
202 local_cpu_data->itc_freq = itc_freq;
203 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
204 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
205 + itc_freq/2)/itc_freq;
207 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
208 itc_interpolator.frequency = local_cpu_data->itc_freq;
209 itc_interpolator.drift = itc_drift;
211 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
212 * Jitter compensation requires a cmpxchg which may limit
213 * the scalability of the syscalls for retrieving time.
214 * The ITC synchronization is usually successful to within a few
215 * ITC ticks but this is not a sure thing. If you need to improve
216 * timer performance in SMP situations then boot the kernel with the
217 * "nojitter" option. However, doing so may result in time fluctuating (maybe
218 * even going backward) if the ITC offsets between the individual CPUs
221 if (!nojitter) itc_interpolator.jitter = 1;
223 register_time_interpolator(&itc_interpolator);
226 /* Setup the CPU local timer tick */
227 ia64_cpu_local_tick();
230 static struct irqaction timer_irqaction = {
231 .handler = timer_interrupt,
232 .flags = IRQF_DISABLED,
236 void __devinit ia64_disable_timer(void)
238 ia64_set_itv(1 << 16);
244 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
245 efi_gettimeofday(&xtime);
249 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
250 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
252 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
256 * Generic udelay assumes that if preemption is allowed and the thread
257 * migrates to another CPU, that the ITC values are synchronized across
261 ia64_itc_udelay (unsigned long usecs)
263 unsigned long start = ia64_get_itc();
264 unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
266 while (time_before(ia64_get_itc(), end))
270 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
273 udelay (unsigned long usecs)
275 (*ia64_udelay)(usecs);
277 EXPORT_SYMBOL(udelay);
279 static unsigned long long ia64_itc_printk_clock(void)
281 if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
282 return sched_clock();
286 static unsigned long long ia64_default_printk_clock(void)
288 return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
292 unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
294 unsigned long long printk_clock(void)
296 return ia64_printk_clock();
300 ia64_setup_printk_clock(void)
302 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
303 ia64_printk_clock = ia64_itc_printk_clock;