2 * Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org)
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Todo: - add support for the OF persistent properties
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/string.h>
15 #include <linux/nvram.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/errno.h>
20 #include <linux/adb.h>
21 #include <linux/pmu.h>
22 #include <linux/bootmem.h>
23 #include <linux/completion.h>
24 #include <linux/spinlock.h>
25 #include <asm/sections.h>
27 #include <asm/system.h>
29 #include <asm/machdep.h>
30 #include <asm/nvram.h>
37 #define DBG(x...) printk(x)
42 #define NVRAM_SIZE 0x2000 /* 8kB of non-volatile RAM */
44 #define CORE99_SIGNATURE 0x5a
45 #define CORE99_ADLER_START 0x14
47 /* On Core99, nvram is either a sharp, a micron or an AMD flash */
48 #define SM_FLASH_STATUS_DONE 0x80
49 #define SM_FLASH_STATUS_ERR 0x38
51 #define SM_FLASH_CMD_ERASE_CONFIRM 0xd0
52 #define SM_FLASH_CMD_ERASE_SETUP 0x20
53 #define SM_FLASH_CMD_RESET 0xff
54 #define SM_FLASH_CMD_WRITE_SETUP 0x40
55 #define SM_FLASH_CMD_CLEAR_STATUS 0x50
56 #define SM_FLASH_CMD_READ_STATUS 0x70
58 /* CHRP NVRAM header */
67 struct core99_header {
68 struct chrp_header hdr;
75 * Read and write the non-volatile RAM on PowerMacs and CHRP machines.
77 static int nvram_naddrs;
78 static volatile unsigned char __iomem *nvram_data;
79 static int is_core_99;
80 static int core99_bank = 0;
81 static int nvram_partitions[3];
82 // XXX Turn that into a sem
83 static DEFINE_SPINLOCK(nv_lock);
85 static int (*core99_write_bank)(int bank, u8* datas);
86 static int (*core99_erase_bank)(int bank);
88 static char *nvram_image;
91 static unsigned char core99_nvram_read_byte(int addr)
93 if (nvram_image == NULL)
95 return nvram_image[addr];
98 static void core99_nvram_write_byte(int addr, unsigned char val)
100 if (nvram_image == NULL)
102 nvram_image[addr] = val;
105 static ssize_t core99_nvram_read(char *buf, size_t count, loff_t *index)
109 if (nvram_image == NULL)
111 if (*index > NVRAM_SIZE)
115 if (i + count > NVRAM_SIZE)
116 count = NVRAM_SIZE - i;
118 memcpy(buf, &nvram_image[i], count);
123 static ssize_t core99_nvram_write(char *buf, size_t count, loff_t *index)
127 if (nvram_image == NULL)
129 if (*index > NVRAM_SIZE)
133 if (i + count > NVRAM_SIZE)
134 count = NVRAM_SIZE - i;
136 memcpy(&nvram_image[i], buf, count);
141 static ssize_t core99_nvram_size(void)
143 if (nvram_image == NULL)
149 static volatile unsigned char __iomem *nvram_addr;
150 static int nvram_mult;
152 static unsigned char direct_nvram_read_byte(int addr)
154 return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]);
157 static void direct_nvram_write_byte(int addr, unsigned char val)
159 out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val);
163 static unsigned char indirect_nvram_read_byte(int addr)
168 spin_lock_irqsave(&nv_lock, flags);
169 out_8(nvram_addr, addr >> 5);
170 val = in_8(&nvram_data[(addr & 0x1f) << 4]);
171 spin_unlock_irqrestore(&nv_lock, flags);
176 static void indirect_nvram_write_byte(int addr, unsigned char val)
180 spin_lock_irqsave(&nv_lock, flags);
181 out_8(nvram_addr, addr >> 5);
182 out_8(&nvram_data[(addr & 0x1f) << 4], val);
183 spin_unlock_irqrestore(&nv_lock, flags);
187 #ifdef CONFIG_ADB_PMU
189 static void pmu_nvram_complete(struct adb_request *req)
192 complete((struct completion *)req->arg);
195 static unsigned char pmu_nvram_read_byte(int addr)
197 struct adb_request req;
198 DECLARE_COMPLETION_ONSTACK(req_complete);
200 req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
201 if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM,
202 (addr >> 8) & 0xff, addr & 0xff))
204 if (system_state == SYSTEM_RUNNING)
205 wait_for_completion(&req_complete);
206 while (!req.complete)
211 static void pmu_nvram_write_byte(int addr, unsigned char val)
213 struct adb_request req;
214 DECLARE_COMPLETION_ONSTACK(req_complete);
216 req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
217 if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM,
218 (addr >> 8) & 0xff, addr & 0xff, val))
220 if (system_state == SYSTEM_RUNNING)
221 wait_for_completion(&req_complete);
222 while (!req.complete)
226 #endif /* CONFIG_ADB_PMU */
227 #endif /* CONFIG_PPC32 */
229 static u8 chrp_checksum(struct chrp_header* hdr)
232 u16 sum = hdr->signature;
233 for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++)
236 sum = (sum & 0xFF) + (sum>>8);
240 static u32 core99_calc_adler(u8 *buffer)
245 buffer += CORE99_ADLER_START;
248 for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) {
249 if ((cnt % 5000) == 0) {
259 return (high << 16) | low;
262 static u32 core99_check(u8* datas)
264 struct core99_header* hdr99 = (struct core99_header*)datas;
266 if (hdr99->hdr.signature != CORE99_SIGNATURE) {
267 DBG("Invalid signature\n");
270 if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) {
271 DBG("Invalid checksum\n");
274 if (hdr99->adler != core99_calc_adler(datas)) {
275 DBG("Invalid adler\n");
278 return hdr99->generation;
281 static int sm_erase_bank(int bank)
284 unsigned long timeout;
286 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
288 DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank);
290 out_8(base, SM_FLASH_CMD_ERASE_SETUP);
291 out_8(base, SM_FLASH_CMD_ERASE_CONFIRM);
294 if (++timeout > 1000000) {
295 printk(KERN_ERR "nvram: Sharp/Micron flash erase timeout !\n");
298 out_8(base, SM_FLASH_CMD_READ_STATUS);
300 } while (!(stat & SM_FLASH_STATUS_DONE));
302 out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
303 out_8(base, SM_FLASH_CMD_RESET);
305 for (i=0; i<NVRAM_SIZE; i++)
306 if (base[i] != 0xff) {
307 printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n");
313 static int sm_write_bank(int bank, u8* datas)
316 unsigned long timeout;
318 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
320 DBG("nvram: Sharp/Micron Writing bank %d...\n", bank);
322 for (i=0; i<NVRAM_SIZE; i++) {
323 out_8(base+i, SM_FLASH_CMD_WRITE_SETUP);
325 out_8(base+i, datas[i]);
328 if (++timeout > 1000000) {
329 printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n");
332 out_8(base, SM_FLASH_CMD_READ_STATUS);
334 } while (!(stat & SM_FLASH_STATUS_DONE));
335 if (!(stat & SM_FLASH_STATUS_DONE))
338 out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
339 out_8(base, SM_FLASH_CMD_RESET);
340 for (i=0; i<NVRAM_SIZE; i++)
341 if (base[i] != datas[i]) {
342 printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n");
348 static int amd_erase_bank(int bank)
351 unsigned long timeout;
353 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
355 DBG("nvram: AMD Erasing bank %d...\n", bank);
358 out_8(base+0x555, 0xaa);
361 out_8(base+0x2aa, 0x55);
365 out_8(base+0x555, 0x80);
367 out_8(base+0x555, 0xaa);
369 out_8(base+0x2aa, 0x55);
376 if (++timeout > 1000000) {
377 printk(KERN_ERR "nvram: AMD flash erase timeout !\n");
380 stat = in_8(base) ^ in_8(base);
387 for (i=0; i<NVRAM_SIZE; i++)
388 if (base[i] != 0xff) {
389 printk(KERN_ERR "nvram: AMD flash erase failed !\n");
395 static int amd_write_bank(int bank, u8* datas)
398 unsigned long timeout;
400 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
402 DBG("nvram: AMD Writing bank %d...\n", bank);
404 for (i=0; i<NVRAM_SIZE; i++) {
406 out_8(base+0x555, 0xaa);
409 out_8(base+0x2aa, 0x55);
412 /* Write single word */
413 out_8(base+0x555, 0xa0);
415 out_8(base+i, datas[i]);
419 if (++timeout > 1000000) {
420 printk(KERN_ERR "nvram: AMD flash write timeout !\n");
423 stat = in_8(base) ^ in_8(base);
433 for (i=0; i<NVRAM_SIZE; i++)
434 if (base[i] != datas[i]) {
435 printk(KERN_ERR "nvram: AMD flash write failed !\n");
441 static void __init lookup_partitions(void)
445 struct chrp_header* hdr;
448 nvram_partitions[pmac_nvram_OF] = -1;
449 nvram_partitions[pmac_nvram_XPRAM] = -1;
450 nvram_partitions[pmac_nvram_NR] = -1;
451 hdr = (struct chrp_header *)buffer;
457 buffer[i] = ppc_md.nvram_read_val(offset+i);
458 if (!strcmp(hdr->name, "common"))
459 nvram_partitions[pmac_nvram_OF] = offset + 0x10;
460 if (!strcmp(hdr->name, "APL,MacOS75")) {
461 nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10;
462 nvram_partitions[pmac_nvram_NR] = offset + 0x110;
464 offset += (hdr->len * 0x10);
465 } while(offset < NVRAM_SIZE);
467 nvram_partitions[pmac_nvram_OF] = 0x1800;
468 nvram_partitions[pmac_nvram_XPRAM] = 0x1300;
469 nvram_partitions[pmac_nvram_NR] = 0x1400;
471 DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]);
472 DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]);
473 DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]);
476 static void core99_nvram_sync(void)
478 struct core99_header* hdr99;
481 if (!is_core_99 || !nvram_data || !nvram_image)
484 spin_lock_irqsave(&nv_lock, flags);
485 if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE,
489 DBG("Updating nvram...\n");
491 hdr99 = (struct core99_header*)nvram_image;
493 hdr99->hdr.signature = CORE99_SIGNATURE;
494 hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr);
495 hdr99->adler = core99_calc_adler(nvram_image);
496 core99_bank = core99_bank ? 0 : 1;
497 if (core99_erase_bank)
498 if (core99_erase_bank(core99_bank)) {
499 printk("nvram: Error erasing bank %d\n", core99_bank);
502 if (core99_write_bank)
503 if (core99_write_bank(core99_bank, nvram_image))
504 printk("nvram: Error writing bank %d\n", core99_bank);
506 spin_unlock_irqrestore(&nv_lock, flags);
513 static int __init core99_nvram_setup(struct device_node *dp, unsigned long addr)
516 u32 gen_bank0, gen_bank1;
518 if (nvram_naddrs < 1) {
519 printk(KERN_ERR "nvram: no address\n");
522 nvram_image = alloc_bootmem(NVRAM_SIZE);
523 if (nvram_image == NULL) {
524 printk(KERN_ERR "nvram: can't allocate ram image\n");
527 nvram_data = ioremap(addr, NVRAM_SIZE*2);
528 nvram_naddrs = 1; /* Make sure we get the correct case */
530 DBG("nvram: Checking bank 0...\n");
532 gen_bank0 = core99_check((u8 *)nvram_data);
533 gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE);
534 core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0;
536 DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1);
537 DBG("nvram: Active bank is: %d\n", core99_bank);
539 for (i=0; i<NVRAM_SIZE; i++)
540 nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE];
542 ppc_md.nvram_read_val = core99_nvram_read_byte;
543 ppc_md.nvram_write_val = core99_nvram_write_byte;
544 ppc_md.nvram_read = core99_nvram_read;
545 ppc_md.nvram_write = core99_nvram_write;
546 ppc_md.nvram_size = core99_nvram_size;
547 ppc_md.nvram_sync = core99_nvram_sync;
548 ppc_md.machine_shutdown = core99_nvram_sync;
550 * Maybe we could be smarter here though making an exclusive list
551 * of known flash chips is a bit nasty as older OF didn't provide us
552 * with a useful "compatible" entry. A solution would be to really
553 * identify the chip using flash id commands and base ourselves on
554 * a list of known chips IDs
556 if (device_is_compatible(dp, "amd-0137")) {
557 core99_erase_bank = amd_erase_bank;
558 core99_write_bank = amd_write_bank;
560 core99_erase_bank = sm_erase_bank;
561 core99_write_bank = sm_write_bank;
566 int __init pmac_nvram_init(void)
568 struct device_node *dp;
569 struct resource r1, r2;
570 unsigned int s1 = 0, s2 = 0;
575 dp = of_find_node_by_name(NULL, "nvram");
577 printk(KERN_ERR "Can't find NVRAM device\n");
581 /* Try to obtain an address */
582 if (of_address_to_resource(dp, 0, &r1) == 0) {
584 s1 = (r1.end - r1.start) + 1;
585 if (of_address_to_resource(dp, 1, &r2) == 0) {
587 s2 = (r2.end - r2.start) + 1;
591 is_core_99 = device_is_compatible(dp, "nvram,flash");
593 err = core99_nvram_setup(dp, r1.start);
598 if (machine_is(chrp) && nvram_naddrs == 1) {
599 nvram_data = ioremap(r1.start, s1);
601 ppc_md.nvram_read_val = direct_nvram_read_byte;
602 ppc_md.nvram_write_val = direct_nvram_write_byte;
603 } else if (nvram_naddrs == 1) {
604 nvram_data = ioremap(r1.start, s1);
605 nvram_mult = (s1 + NVRAM_SIZE - 1) / NVRAM_SIZE;
606 ppc_md.nvram_read_val = direct_nvram_read_byte;
607 ppc_md.nvram_write_val = direct_nvram_write_byte;
608 } else if (nvram_naddrs == 2) {
609 nvram_addr = ioremap(r1.start, s1);
610 nvram_data = ioremap(r2.start, s2);
611 ppc_md.nvram_read_val = indirect_nvram_read_byte;
612 ppc_md.nvram_write_val = indirect_nvram_write_byte;
613 } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) {
614 #ifdef CONFIG_ADB_PMU
616 ppc_md.nvram_read_val = pmu_nvram_read_byte;
617 ppc_md.nvram_write_val = pmu_nvram_write_byte;
618 #endif /* CONFIG_ADB_PMU */
620 printk(KERN_ERR "Incompatible type of NVRAM\n");
623 #endif /* CONFIG_PPC32 */
631 int pmac_get_partition(int partition)
633 return nvram_partitions[partition];
636 u8 pmac_xpram_read(int xpaddr)
638 int offset = pmac_get_partition(pmac_nvram_XPRAM);
640 if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
643 return ppc_md.nvram_read_val(xpaddr + offset);
646 void pmac_xpram_write(int xpaddr, u8 data)
648 int offset = pmac_get_partition(pmac_nvram_XPRAM);
650 if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
653 ppc_md.nvram_write_val(xpaddr + offset, data);
656 EXPORT_SYMBOL(pmac_get_partition);
657 EXPORT_SYMBOL(pmac_xpram_read);
658 EXPORT_SYMBOL(pmac_xpram_write);