1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
36 #define DRIVERNAPI "-NAPI"
38 #define DRV_VERSION "7.2.9-k2"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122 struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124 struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring,
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177 struct e1000_rx_ring *rx_ring,
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189 struct sk_buff *skb);
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
198 static int e1000_resume(struct pci_dev *pdev);
200 static void e1000_shutdown(struct pci_dev *pdev);
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
207 extern void e1000_check_options(struct e1000_adapter *adapter);
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210 pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
214 static struct pci_error_handlers e1000_err_handler = {
215 .error_detected = e1000_io_error_detected,
216 .slot_reset = e1000_io_slot_reset,
217 .resume = e1000_io_resume,
220 static struct pci_driver e1000_driver = {
221 .name = e1000_driver_name,
222 .id_table = e1000_pci_tbl,
223 .probe = e1000_probe,
224 .remove = __devexit_p(e1000_remove),
226 /* Power Managment Hooks */
227 .suspend = e1000_suspend,
228 .resume = e1000_resume,
230 .shutdown = e1000_shutdown,
231 .err_handler = &e1000_err_handler
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
251 e1000_init_module(void)
254 printk(KERN_INFO "%s - version %s\n",
255 e1000_driver_string, e1000_driver_version);
257 printk(KERN_INFO "%s\n", e1000_copyright);
259 ret = pci_register_driver(&e1000_driver);
264 module_init(e1000_init_module);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
274 e1000_exit_module(void)
276 pci_unregister_driver(&e1000_driver);
279 module_exit(e1000_exit_module);
281 static int e1000_request_irq(struct e1000_adapter *adapter)
283 struct net_device *netdev = adapter->netdev;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter->hw.mac_type > e1000_82547_rev_2) {
289 adapter->have_msi = TRUE;
290 if ((err = pci_enable_msi(adapter->pdev))) {
292 "Unable to allocate MSI interrupt Error: %d\n", err);
293 adapter->have_msi = FALSE;
296 if (adapter->have_msi)
297 flags &= ~IRQF_SHARED;
299 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300 netdev->name, netdev)))
302 "Unable to allocate interrupt Error: %d\n", err);
307 static void e1000_free_irq(struct e1000_adapter *adapter)
309 struct net_device *netdev = adapter->netdev;
311 free_irq(adapter->pdev->irq, netdev);
313 #ifdef CONFIG_PCI_MSI
314 if (adapter->have_msi)
315 pci_disable_msi(adapter->pdev);
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
325 e1000_irq_disable(struct e1000_adapter *adapter)
327 atomic_inc(&adapter->irq_sem);
328 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329 E1000_WRITE_FLUSH(&adapter->hw);
330 synchronize_irq(adapter->pdev->irq);
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
339 e1000_irq_enable(struct e1000_adapter *adapter)
341 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343 E1000_WRITE_FLUSH(&adapter->hw);
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
350 struct net_device *netdev = adapter->netdev;
351 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352 uint16_t old_vid = adapter->mng_vlan_id;
353 if (adapter->vlgrp) {
354 if (!adapter->vlgrp->vlan_devices[vid]) {
355 if (adapter->hw.mng_cookie.status &
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357 e1000_vlan_rx_add_vid(netdev, vid);
358 adapter->mng_vlan_id = vid;
360 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
362 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
364 !adapter->vlgrp->vlan_devices[old_vid])
365 e1000_vlan_rx_kill_vid(netdev, old_vid);
367 adapter->mng_vlan_id = vid;
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the netowrk i/f is closed.
383 e1000_release_hw_control(struct e1000_adapter *adapter)
389 /* Let firmware taken over control of h/w */
390 switch (adapter->hw.mac_type) {
393 case e1000_80003es2lan:
394 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
399 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400 E1000_WRITE_REG(&adapter->hw, SWSM,
401 swsm & ~E1000_SWSM_DRV_LOAD);
403 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the netowrk i/f is open.
424 e1000_get_hw_control(struct e1000_adapter *adapter)
429 /* Let firmware know the driver has taken over */
430 switch (adapter->hw.mac_type) {
433 case e1000_80003es2lan:
434 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
435 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
436 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
439 swsm = E1000_READ_REG(&adapter->hw, SWSM);
440 E1000_WRITE_REG(&adapter->hw, SWSM,
441 swsm | E1000_SWSM_DRV_LOAD);
444 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
445 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
446 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
454 e1000_up(struct e1000_adapter *adapter)
456 struct net_device *netdev = adapter->netdev;
459 /* hardware has been reset, we need to reload some things */
461 e1000_set_multi(netdev);
463 e1000_restore_vlan(adapter);
465 e1000_configure_tx(adapter);
466 e1000_setup_rctl(adapter);
467 e1000_configure_rx(adapter);
468 /* call E1000_DESC_UNUSED which always leaves
469 * at least 1 descriptor unused to make sure
470 * next_to_use != next_to_clean */
471 for (i = 0; i < adapter->num_rx_queues; i++) {
472 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
473 adapter->alloc_rx_buf(adapter, ring,
474 E1000_DESC_UNUSED(ring));
477 adapter->tx_queue_len = netdev->tx_queue_len;
479 #ifdef CONFIG_E1000_NAPI
480 netif_poll_enable(netdev);
482 e1000_irq_enable(adapter);
484 clear_bit(__E1000_DOWN, &adapter->flags);
486 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
491 * e1000_power_up_phy - restore link in case the phy was powered down
492 * @adapter: address of board private structure
494 * The phy may be powered down to save power and turn off link when the
495 * driver is unloaded and wake on lan is not enabled (among others)
496 * *** this routine MUST be followed by a call to e1000_reset ***
500 void e1000_power_up_phy(struct e1000_adapter *adapter)
502 uint16_t mii_reg = 0;
504 /* Just clear the power down bit to wake the phy back up */
505 if (adapter->hw.media_type == e1000_media_type_copper) {
506 /* according to the manual, the phy will retain its
507 * settings across a power-down/up cycle */
508 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
509 mii_reg &= ~MII_CR_POWER_DOWN;
510 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
514 static void e1000_power_down_phy(struct e1000_adapter *adapter)
516 /* Power down the PHY so no link is implied when interface is down *
517 * The PHY cannot be powered down if any of the following is TRUE *
520 * (c) SoL/IDER session is active */
521 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
522 adapter->hw.media_type == e1000_media_type_copper) {
523 uint16_t mii_reg = 0;
525 switch (adapter->hw.mac_type) {
528 case e1000_82545_rev_3:
530 case e1000_82546_rev_3:
532 case e1000_82541_rev_2:
534 case e1000_82547_rev_2:
535 if (E1000_READ_REG(&adapter->hw, MANC) &
542 case e1000_80003es2lan:
544 if (e1000_check_mng_mode(&adapter->hw) ||
545 e1000_check_phy_reset_block(&adapter->hw))
551 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
552 mii_reg |= MII_CR_POWER_DOWN;
553 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
561 e1000_down(struct e1000_adapter *adapter)
563 struct net_device *netdev = adapter->netdev;
565 /* signal that we're down so the interrupt handler does not
566 * reschedule our watchdog timer */
567 set_bit(__E1000_DOWN, &adapter->flags);
569 e1000_irq_disable(adapter);
571 del_timer_sync(&adapter->tx_fifo_stall_timer);
572 del_timer_sync(&adapter->watchdog_timer);
573 del_timer_sync(&adapter->phy_info_timer);
575 #ifdef CONFIG_E1000_NAPI
576 netif_poll_disable(netdev);
578 netdev->tx_queue_len = adapter->tx_queue_len;
579 adapter->link_speed = 0;
580 adapter->link_duplex = 0;
581 netif_carrier_off(netdev);
582 netif_stop_queue(netdev);
584 e1000_reset(adapter);
585 e1000_clean_all_tx_rings(adapter);
586 e1000_clean_all_rx_rings(adapter);
590 e1000_reinit_locked(struct e1000_adapter *adapter)
592 WARN_ON(in_interrupt());
593 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
597 clear_bit(__E1000_RESETTING, &adapter->flags);
601 e1000_reset(struct e1000_adapter *adapter)
607 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
609 /* Repartition Pba for greater than 9k mtu
610 * To take effect CTRL.RST is required.
613 switch (adapter->hw.mac_type) {
615 case e1000_82547_rev_2:
620 case e1000_80003es2lan:
634 if ((adapter->hw.mac_type != e1000_82573) &&
635 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
636 pba -= 8; /* allocate more FIFO for Tx */
639 if (adapter->hw.mac_type == e1000_82547) {
640 adapter->tx_fifo_head = 0;
641 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
642 adapter->tx_fifo_size =
643 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
644 atomic_set(&adapter->tx_fifo_stall, 0);
647 E1000_WRITE_REG(&adapter->hw, PBA, pba);
649 /* flow control settings */
650 /* Set the FC high water mark to 90% of the FIFO size.
651 * Required to clear last 3 LSB */
652 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
653 /* We can't use 90% on small FIFOs because the remainder
654 * would be less than 1 full frame. In this case, we size
655 * it to allow at least a full frame above the high water
657 if (pba < E1000_PBA_16K)
658 fc_high_water_mark = (pba * 1024) - 1600;
660 adapter->hw.fc_high_water = fc_high_water_mark;
661 adapter->hw.fc_low_water = fc_high_water_mark - 8;
662 if (adapter->hw.mac_type == e1000_80003es2lan)
663 adapter->hw.fc_pause_time = 0xFFFF;
665 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
666 adapter->hw.fc_send_xon = 1;
667 adapter->hw.fc = adapter->hw.original_fc;
669 /* Allow time for pending master requests to run */
670 e1000_reset_hw(&adapter->hw);
671 if (adapter->hw.mac_type >= e1000_82544)
672 E1000_WRITE_REG(&adapter->hw, WUC, 0);
674 /* disable Multiple Reads in Transmit Control Register for debugging */
675 tctl = E1000_READ_REG(hw, TCTL);
676 E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_MULR);
679 if (e1000_init_hw(&adapter->hw))
680 DPRINTK(PROBE, ERR, "Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
683 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
685 e1000_reset_adaptive(&adapter->hw);
686 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
688 if (!adapter->smart_power_down &&
689 (adapter->hw.mac_type == e1000_82571 ||
690 adapter->hw.mac_type == e1000_82572)) {
691 uint16_t phy_data = 0;
692 /* speed up time to link by disabling smart power down, ignore
693 * the return value of this function because there is nothing
694 * different we would do if it failed */
695 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
697 phy_data &= ~IGP02E1000_PM_SPD;
698 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
702 if ((adapter->en_mng_pt) && (adapter->hw.mac_type < e1000_82571)) {
703 manc = E1000_READ_REG(&adapter->hw, MANC);
704 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
705 E1000_WRITE_REG(&adapter->hw, MANC, manc);
710 * e1000_probe - Device Initialization Routine
711 * @pdev: PCI device information struct
712 * @ent: entry in e1000_pci_tbl
714 * Returns 0 on success, negative on failure
716 * e1000_probe initializes an adapter identified by a pci_dev structure.
717 * The OS initialization, configuring of the adapter private structure,
718 * and a hardware reset occur.
722 e1000_probe(struct pci_dev *pdev,
723 const struct pci_device_id *ent)
725 struct net_device *netdev;
726 struct e1000_adapter *adapter;
727 unsigned long mmio_start, mmio_len;
728 unsigned long flash_start, flash_len;
730 static int cards_found = 0;
731 static int global_quad_port_a = 0; /* global ksp3 port a indication */
732 int i, err, pci_using_dac;
733 uint16_t eeprom_data = 0;
734 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
735 if ((err = pci_enable_device(pdev)))
738 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
739 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
742 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
743 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
744 E1000_ERR("No usable DMA configuration, aborting\n");
750 if ((err = pci_request_regions(pdev, e1000_driver_name)))
753 pci_set_master(pdev);
756 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
758 goto err_alloc_etherdev;
760 SET_MODULE_OWNER(netdev);
761 SET_NETDEV_DEV(netdev, &pdev->dev);
763 pci_set_drvdata(pdev, netdev);
764 adapter = netdev_priv(netdev);
765 adapter->netdev = netdev;
766 adapter->pdev = pdev;
767 adapter->hw.back = adapter;
768 adapter->msg_enable = (1 << debug) - 1;
770 mmio_start = pci_resource_start(pdev, BAR_0);
771 mmio_len = pci_resource_len(pdev, BAR_0);
774 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
775 if (!adapter->hw.hw_addr)
778 for (i = BAR_1; i <= BAR_5; i++) {
779 if (pci_resource_len(pdev, i) == 0)
781 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
782 adapter->hw.io_base = pci_resource_start(pdev, i);
787 netdev->open = &e1000_open;
788 netdev->stop = &e1000_close;
789 netdev->hard_start_xmit = &e1000_xmit_frame;
790 netdev->get_stats = &e1000_get_stats;
791 netdev->set_multicast_list = &e1000_set_multi;
792 netdev->set_mac_address = &e1000_set_mac;
793 netdev->change_mtu = &e1000_change_mtu;
794 netdev->do_ioctl = &e1000_ioctl;
795 e1000_set_ethtool_ops(netdev);
796 netdev->tx_timeout = &e1000_tx_timeout;
797 netdev->watchdog_timeo = 5 * HZ;
798 #ifdef CONFIG_E1000_NAPI
799 netdev->poll = &e1000_clean;
802 netdev->vlan_rx_register = e1000_vlan_rx_register;
803 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
804 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
805 #ifdef CONFIG_NET_POLL_CONTROLLER
806 netdev->poll_controller = e1000_netpoll;
808 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
810 netdev->mem_start = mmio_start;
811 netdev->mem_end = mmio_start + mmio_len;
812 netdev->base_addr = adapter->hw.io_base;
814 adapter->bd_number = cards_found;
816 /* setup the private structure */
818 if ((err = e1000_sw_init(adapter)))
822 /* Flash BAR mapping must happen after e1000_sw_init
823 * because it depends on mac_type */
824 if ((adapter->hw.mac_type == e1000_ich8lan) &&
825 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
826 flash_start = pci_resource_start(pdev, 1);
827 flash_len = pci_resource_len(pdev, 1);
828 adapter->hw.flash_address = ioremap(flash_start, flash_len);
829 if (!adapter->hw.flash_address)
833 if (e1000_check_phy_reset_block(&adapter->hw))
834 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
836 if (adapter->hw.mac_type >= e1000_82543) {
837 netdev->features = NETIF_F_SG |
841 NETIF_F_HW_VLAN_FILTER;
842 if (adapter->hw.mac_type == e1000_ich8lan)
843 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
847 if ((adapter->hw.mac_type >= e1000_82544) &&
848 (adapter->hw.mac_type != e1000_82547))
849 netdev->features |= NETIF_F_TSO;
851 #ifdef NETIF_F_TSO_IPV6
852 if (adapter->hw.mac_type > e1000_82547_rev_2)
853 netdev->features |= NETIF_F_TSO_IPV6;
857 netdev->features |= NETIF_F_HIGHDMA;
859 netdev->features |= NETIF_F_LLTX;
861 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
863 /* initialize eeprom parameters */
865 if (e1000_init_eeprom_params(&adapter->hw)) {
866 E1000_ERR("EEPROM initialization failed\n");
870 /* before reading the EEPROM, reset the controller to
871 * put the device in a known good starting state */
873 e1000_reset_hw(&adapter->hw);
875 /* make sure the EEPROM is good */
877 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
878 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
882 /* copy the MAC address out of the EEPROM */
884 if (e1000_read_mac_addr(&adapter->hw))
885 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
886 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
887 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
889 if (!is_valid_ether_addr(netdev->perm_addr)) {
890 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
894 e1000_get_bus_info(&adapter->hw);
896 init_timer(&adapter->tx_fifo_stall_timer);
897 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
898 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
900 init_timer(&adapter->watchdog_timer);
901 adapter->watchdog_timer.function = &e1000_watchdog;
902 adapter->watchdog_timer.data = (unsigned long) adapter;
904 init_timer(&adapter->phy_info_timer);
905 adapter->phy_info_timer.function = &e1000_update_phy_info;
906 adapter->phy_info_timer.data = (unsigned long) adapter;
908 INIT_WORK(&adapter->reset_task,
909 (void (*)(void *))e1000_reset_task, netdev);
911 e1000_check_options(adapter);
913 /* Initial Wake on LAN setting
914 * If APM wake is enabled in the EEPROM,
915 * enable the ACPI Magic Packet filter
918 switch (adapter->hw.mac_type) {
919 case e1000_82542_rev2_0:
920 case e1000_82542_rev2_1:
924 e1000_read_eeprom(&adapter->hw,
925 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
926 eeprom_apme_mask = E1000_EEPROM_82544_APM;
929 e1000_read_eeprom(&adapter->hw,
930 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
931 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
934 case e1000_82546_rev_3:
936 case e1000_80003es2lan:
937 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
938 e1000_read_eeprom(&adapter->hw,
939 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
944 e1000_read_eeprom(&adapter->hw,
945 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
948 if (eeprom_data & eeprom_apme_mask)
949 adapter->eeprom_wol |= E1000_WUFC_MAG;
951 /* now that we have the eeprom settings, apply the special cases
952 * where the eeprom may be wrong or the board simply won't support
953 * wake on lan on a particular port */
954 switch (pdev->device) {
955 case E1000_DEV_ID_82546GB_PCIE:
956 adapter->eeprom_wol = 0;
958 case E1000_DEV_ID_82546EB_FIBER:
959 case E1000_DEV_ID_82546GB_FIBER:
960 case E1000_DEV_ID_82571EB_FIBER:
961 /* Wake events only supported on port A for dual fiber
962 * regardless of eeprom setting */
963 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
964 adapter->eeprom_wol = 0;
966 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
967 case E1000_DEV_ID_82571EB_QUAD_COPPER:
968 /* if quad port adapter, disable WoL on all but port A */
969 if (global_quad_port_a != 0)
970 adapter->eeprom_wol = 0;
972 adapter->quad_port_a = 1;
973 /* Reset for multiple quad port adapters */
974 if (++global_quad_port_a == 4)
975 global_quad_port_a = 0;
979 /* initialize the wol settings based on the eeprom settings */
980 adapter->wol = adapter->eeprom_wol;
982 /* print bus type/speed/width info */
984 struct e1000_hw *hw = &adapter->hw;
985 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
986 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
987 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
988 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
989 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
990 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
991 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
992 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
993 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
994 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
995 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
999 for (i = 0; i < 6; i++)
1000 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1002 /* reset the hardware with the new settings */
1003 e1000_reset(adapter);
1005 /* If the controller is 82573 and f/w is AMT, do not set
1006 * DRV_LOAD until the interface is up. For all other cases,
1007 * let the f/w know that the h/w is now under the control
1009 if (adapter->hw.mac_type != e1000_82573 ||
1010 !e1000_check_mng_mode(&adapter->hw))
1011 e1000_get_hw_control(adapter);
1013 strcpy(netdev->name, "eth%d");
1014 if ((err = register_netdev(netdev)))
1017 /* tell the stack to leave us alone until e1000_open() is called */
1018 netif_carrier_off(netdev);
1019 netif_stop_queue(netdev);
1021 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1027 e1000_release_hw_control(adapter);
1029 if (!e1000_check_phy_reset_block(&adapter->hw))
1030 e1000_phy_hw_reset(&adapter->hw);
1032 if (adapter->hw.flash_address)
1033 iounmap(adapter->hw.flash_address);
1035 #ifdef CONFIG_E1000_NAPI
1036 for (i = 0; i < adapter->num_rx_queues; i++)
1037 dev_put(&adapter->polling_netdev[i]);
1040 kfree(adapter->tx_ring);
1041 kfree(adapter->rx_ring);
1042 #ifdef CONFIG_E1000_NAPI
1043 kfree(adapter->polling_netdev);
1046 iounmap(adapter->hw.hw_addr);
1048 free_netdev(netdev);
1050 pci_release_regions(pdev);
1053 pci_disable_device(pdev);
1058 * e1000_remove - Device Removal Routine
1059 * @pdev: PCI device information struct
1061 * e1000_remove is called by the PCI subsystem to alert the driver
1062 * that it should release a PCI device. The could be caused by a
1063 * Hot-Plug event, or because the driver is going to be removed from
1067 static void __devexit
1068 e1000_remove(struct pci_dev *pdev)
1070 struct net_device *netdev = pci_get_drvdata(pdev);
1071 struct e1000_adapter *adapter = netdev_priv(netdev);
1073 #ifdef CONFIG_E1000_NAPI
1077 flush_scheduled_work();
1079 if (adapter->hw.mac_type < e1000_82571 &&
1080 adapter->hw.media_type == e1000_media_type_copper) {
1081 manc = E1000_READ_REG(&adapter->hw, MANC);
1082 if (manc & E1000_MANC_SMBUS_EN) {
1083 manc |= E1000_MANC_ARP_EN;
1084 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1088 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1089 * would have already happened in close and is redundant. */
1090 e1000_release_hw_control(adapter);
1092 unregister_netdev(netdev);
1093 #ifdef CONFIG_E1000_NAPI
1094 for (i = 0; i < adapter->num_rx_queues; i++)
1095 dev_put(&adapter->polling_netdev[i]);
1098 if (!e1000_check_phy_reset_block(&adapter->hw))
1099 e1000_phy_hw_reset(&adapter->hw);
1101 kfree(adapter->tx_ring);
1102 kfree(adapter->rx_ring);
1103 #ifdef CONFIG_E1000_NAPI
1104 kfree(adapter->polling_netdev);
1107 iounmap(adapter->hw.hw_addr);
1108 if (adapter->hw.flash_address)
1109 iounmap(adapter->hw.flash_address);
1110 pci_release_regions(pdev);
1112 free_netdev(netdev);
1114 pci_disable_device(pdev);
1118 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1119 * @adapter: board private structure to initialize
1121 * e1000_sw_init initializes the Adapter private data structure.
1122 * Fields are initialized based on PCI device information and
1123 * OS network device settings (MTU size).
1126 static int __devinit
1127 e1000_sw_init(struct e1000_adapter *adapter)
1129 struct e1000_hw *hw = &adapter->hw;
1130 struct net_device *netdev = adapter->netdev;
1131 struct pci_dev *pdev = adapter->pdev;
1132 #ifdef CONFIG_E1000_NAPI
1136 /* PCI config space info */
1138 hw->vendor_id = pdev->vendor;
1139 hw->device_id = pdev->device;
1140 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1141 hw->subsystem_id = pdev->subsystem_device;
1143 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1145 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1147 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1148 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1149 hw->max_frame_size = netdev->mtu +
1150 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1151 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1153 /* identify the MAC */
1155 if (e1000_set_mac_type(hw)) {
1156 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1160 switch (hw->mac_type) {
1165 case e1000_82541_rev_2:
1166 case e1000_82547_rev_2:
1167 hw->phy_init_script = 1;
1171 e1000_set_media_type(hw);
1173 hw->wait_autoneg_complete = FALSE;
1174 hw->tbi_compatibility_en = TRUE;
1175 hw->adaptive_ifs = TRUE;
1177 /* Copper options */
1179 if (hw->media_type == e1000_media_type_copper) {
1180 hw->mdix = AUTO_ALL_MODES;
1181 hw->disable_polarity_correction = FALSE;
1182 hw->master_slave = E1000_MASTER_SLAVE;
1185 adapter->num_tx_queues = 1;
1186 adapter->num_rx_queues = 1;
1188 if (e1000_alloc_queues(adapter)) {
1189 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1193 #ifdef CONFIG_E1000_NAPI
1194 for (i = 0; i < adapter->num_rx_queues; i++) {
1195 adapter->polling_netdev[i].priv = adapter;
1196 adapter->polling_netdev[i].poll = &e1000_clean;
1197 adapter->polling_netdev[i].weight = 64;
1198 dev_hold(&adapter->polling_netdev[i]);
1199 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1201 spin_lock_init(&adapter->tx_queue_lock);
1204 atomic_set(&adapter->irq_sem, 1);
1205 spin_lock_init(&adapter->stats_lock);
1207 set_bit(__E1000_DOWN, &adapter->flags);
1213 * e1000_alloc_queues - Allocate memory for all rings
1214 * @adapter: board private structure to initialize
1216 * We allocate one ring per queue at run-time since we don't know the
1217 * number of queues at compile-time. The polling_netdev array is
1218 * intended for Multiqueue, but should work fine with a single queue.
1221 static int __devinit
1222 e1000_alloc_queues(struct e1000_adapter *adapter)
1226 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1227 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1228 if (!adapter->tx_ring)
1230 memset(adapter->tx_ring, 0, size);
1232 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1233 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1234 if (!adapter->rx_ring) {
1235 kfree(adapter->tx_ring);
1238 memset(adapter->rx_ring, 0, size);
1240 #ifdef CONFIG_E1000_NAPI
1241 size = sizeof(struct net_device) * adapter->num_rx_queues;
1242 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1243 if (!adapter->polling_netdev) {
1244 kfree(adapter->tx_ring);
1245 kfree(adapter->rx_ring);
1248 memset(adapter->polling_netdev, 0, size);
1251 return E1000_SUCCESS;
1255 * e1000_open - Called when a network interface is made active
1256 * @netdev: network interface device structure
1258 * Returns 0 on success, negative value on failure
1260 * The open entry point is called when a network interface is made
1261 * active by the system (IFF_UP). At this point all resources needed
1262 * for transmit and receive operations are allocated, the interrupt
1263 * handler is registered with the OS, the watchdog timer is started,
1264 * and the stack is notified that the interface is ready.
1268 e1000_open(struct net_device *netdev)
1270 struct e1000_adapter *adapter = netdev_priv(netdev);
1273 /* disallow open during test */
1274 if (test_bit(__E1000_TESTING, &adapter->flags))
1277 /* allocate transmit descriptors */
1279 if ((err = e1000_setup_all_tx_resources(adapter)))
1282 /* allocate receive descriptors */
1284 if ((err = e1000_setup_all_rx_resources(adapter)))
1287 err = e1000_request_irq(adapter);
1291 e1000_power_up_phy(adapter);
1293 if ((err = e1000_up(adapter)))
1295 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1296 if ((adapter->hw.mng_cookie.status &
1297 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1298 e1000_update_mng_vlan(adapter);
1301 /* If AMT is enabled, let the firmware know that the network
1302 * interface is now open */
1303 if (adapter->hw.mac_type == e1000_82573 &&
1304 e1000_check_mng_mode(&adapter->hw))
1305 e1000_get_hw_control(adapter);
1307 return E1000_SUCCESS;
1310 e1000_power_down_phy(adapter);
1311 e1000_free_irq(adapter);
1313 e1000_free_all_rx_resources(adapter);
1315 e1000_free_all_tx_resources(adapter);
1317 e1000_reset(adapter);
1323 * e1000_close - Disables a network interface
1324 * @netdev: network interface device structure
1326 * Returns 0, this is not allowed to fail
1328 * The close entry point is called when an interface is de-activated
1329 * by the OS. The hardware is still under the drivers control, but
1330 * needs to be disabled. A global MAC reset is issued to stop the
1331 * hardware, and all transmit and receive resources are freed.
1335 e1000_close(struct net_device *netdev)
1337 struct e1000_adapter *adapter = netdev_priv(netdev);
1339 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1340 e1000_down(adapter);
1341 e1000_power_down_phy(adapter);
1342 e1000_free_irq(adapter);
1344 e1000_free_all_tx_resources(adapter);
1345 e1000_free_all_rx_resources(adapter);
1347 /* kill manageability vlan ID if supported, but not if a vlan with
1348 * the same ID is registered on the host OS (let 8021q kill it) */
1349 if ((adapter->hw.mng_cookie.status &
1350 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1352 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1353 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1356 /* If AMT is enabled, let the firmware know that the network
1357 * interface is now closed */
1358 if (adapter->hw.mac_type == e1000_82573 &&
1359 e1000_check_mng_mode(&adapter->hw))
1360 e1000_release_hw_control(adapter);
1366 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1367 * @adapter: address of board private structure
1368 * @start: address of beginning of memory
1369 * @len: length of memory
1372 e1000_check_64k_bound(struct e1000_adapter *adapter,
1373 void *start, unsigned long len)
1375 unsigned long begin = (unsigned long) start;
1376 unsigned long end = begin + len;
1378 /* First rev 82545 and 82546 need to not allow any memory
1379 * write location to cross 64k boundary due to errata 23 */
1380 if (adapter->hw.mac_type == e1000_82545 ||
1381 adapter->hw.mac_type == e1000_82546) {
1382 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1389 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1390 * @adapter: board private structure
1391 * @txdr: tx descriptor ring (for a specific queue) to setup
1393 * Return 0 on success, negative on failure
1397 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1398 struct e1000_tx_ring *txdr)
1400 struct pci_dev *pdev = adapter->pdev;
1403 size = sizeof(struct e1000_buffer) * txdr->count;
1404 txdr->buffer_info = vmalloc(size);
1405 if (!txdr->buffer_info) {
1407 "Unable to allocate memory for the transmit descriptor ring\n");
1410 memset(txdr->buffer_info, 0, size);
1412 /* round up to nearest 4K */
1414 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1415 E1000_ROUNDUP(txdr->size, 4096);
1417 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1420 vfree(txdr->buffer_info);
1422 "Unable to allocate memory for the transmit descriptor ring\n");
1426 /* Fix for errata 23, can't cross 64kB boundary */
1427 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1428 void *olddesc = txdr->desc;
1429 dma_addr_t olddma = txdr->dma;
1430 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1431 "at %p\n", txdr->size, txdr->desc);
1432 /* Try again, without freeing the previous */
1433 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1434 /* Failed allocation, critical failure */
1436 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1437 goto setup_tx_desc_die;
1440 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1442 pci_free_consistent(pdev, txdr->size, txdr->desc,
1444 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1446 "Unable to allocate aligned memory "
1447 "for the transmit descriptor ring\n");
1448 vfree(txdr->buffer_info);
1451 /* Free old allocation, new allocation was successful */
1452 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1455 memset(txdr->desc, 0, txdr->size);
1457 txdr->next_to_use = 0;
1458 txdr->next_to_clean = 0;
1459 spin_lock_init(&txdr->tx_lock);
1465 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1466 * (Descriptors) for all queues
1467 * @adapter: board private structure
1469 * Return 0 on success, negative on failure
1473 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1477 for (i = 0; i < adapter->num_tx_queues; i++) {
1478 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1481 "Allocation for Tx Queue %u failed\n", i);
1482 for (i-- ; i >= 0; i--)
1483 e1000_free_tx_resources(adapter,
1484 &adapter->tx_ring[i]);
1493 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1494 * @adapter: board private structure
1496 * Configure the Tx unit of the MAC after a reset.
1500 e1000_configure_tx(struct e1000_adapter *adapter)
1503 struct e1000_hw *hw = &adapter->hw;
1504 uint32_t tdlen, tctl, tipg, tarc;
1505 uint32_t ipgr1, ipgr2;
1507 /* Setup the HW Tx Head and Tail descriptor pointers */
1509 switch (adapter->num_tx_queues) {
1512 tdba = adapter->tx_ring[0].dma;
1513 tdlen = adapter->tx_ring[0].count *
1514 sizeof(struct e1000_tx_desc);
1515 E1000_WRITE_REG(hw, TDLEN, tdlen);
1516 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1517 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1518 E1000_WRITE_REG(hw, TDT, 0);
1519 E1000_WRITE_REG(hw, TDH, 0);
1520 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1521 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1525 /* Set the default values for the Tx Inter Packet Gap timer */
1527 if (hw->media_type == e1000_media_type_fiber ||
1528 hw->media_type == e1000_media_type_internal_serdes)
1529 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1531 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1533 switch (hw->mac_type) {
1534 case e1000_82542_rev2_0:
1535 case e1000_82542_rev2_1:
1536 tipg = DEFAULT_82542_TIPG_IPGT;
1537 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1538 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1540 case e1000_80003es2lan:
1541 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1542 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1545 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1546 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1549 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1550 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1551 E1000_WRITE_REG(hw, TIPG, tipg);
1553 /* Set the Tx Interrupt Delay register */
1555 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1556 if (hw->mac_type >= e1000_82540)
1557 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1559 /* Program the Transmit Control Register */
1561 tctl = E1000_READ_REG(hw, TCTL);
1562 tctl &= ~E1000_TCTL_CT;
1563 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1564 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1566 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1567 tarc = E1000_READ_REG(hw, TARC0);
1569 E1000_WRITE_REG(hw, TARC0, tarc);
1570 } else if (hw->mac_type == e1000_80003es2lan) {
1571 tarc = E1000_READ_REG(hw, TARC0);
1573 E1000_WRITE_REG(hw, TARC0, tarc);
1574 tarc = E1000_READ_REG(hw, TARC1);
1576 E1000_WRITE_REG(hw, TARC1, tarc);
1579 e1000_config_collision_dist(hw);
1581 /* Setup Transmit Descriptor Settings for eop descriptor */
1582 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1585 if (hw->mac_type < e1000_82543)
1586 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1588 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1590 /* Cache if we're 82544 running in PCI-X because we'll
1591 * need this to apply a workaround later in the send path. */
1592 if (hw->mac_type == e1000_82544 &&
1593 hw->bus_type == e1000_bus_type_pcix)
1594 adapter->pcix_82544 = 1;
1596 E1000_WRITE_REG(hw, TCTL, tctl);
1601 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1602 * @adapter: board private structure
1603 * @rxdr: rx descriptor ring (for a specific queue) to setup
1605 * Returns 0 on success, negative on failure
1609 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1610 struct e1000_rx_ring *rxdr)
1612 struct pci_dev *pdev = adapter->pdev;
1615 size = sizeof(struct e1000_buffer) * rxdr->count;
1616 rxdr->buffer_info = vmalloc(size);
1617 if (!rxdr->buffer_info) {
1619 "Unable to allocate memory for the receive descriptor ring\n");
1622 memset(rxdr->buffer_info, 0, size);
1624 size = sizeof(struct e1000_ps_page) * rxdr->count;
1625 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1626 if (!rxdr->ps_page) {
1627 vfree(rxdr->buffer_info);
1629 "Unable to allocate memory for the receive descriptor ring\n");
1632 memset(rxdr->ps_page, 0, size);
1634 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1635 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1636 if (!rxdr->ps_page_dma) {
1637 vfree(rxdr->buffer_info);
1638 kfree(rxdr->ps_page);
1640 "Unable to allocate memory for the receive descriptor ring\n");
1643 memset(rxdr->ps_page_dma, 0, size);
1645 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1646 desc_len = sizeof(struct e1000_rx_desc);
1648 desc_len = sizeof(union e1000_rx_desc_packet_split);
1650 /* Round up to nearest 4K */
1652 rxdr->size = rxdr->count * desc_len;
1653 E1000_ROUNDUP(rxdr->size, 4096);
1655 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1659 "Unable to allocate memory for the receive descriptor ring\n");
1661 vfree(rxdr->buffer_info);
1662 kfree(rxdr->ps_page);
1663 kfree(rxdr->ps_page_dma);
1667 /* Fix for errata 23, can't cross 64kB boundary */
1668 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1669 void *olddesc = rxdr->desc;
1670 dma_addr_t olddma = rxdr->dma;
1671 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1672 "at %p\n", rxdr->size, rxdr->desc);
1673 /* Try again, without freeing the previous */
1674 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1675 /* Failed allocation, critical failure */
1677 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1679 "Unable to allocate memory "
1680 "for the receive descriptor ring\n");
1681 goto setup_rx_desc_die;
1684 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1686 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1688 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1690 "Unable to allocate aligned memory "
1691 "for the receive descriptor ring\n");
1692 goto setup_rx_desc_die;
1694 /* Free old allocation, new allocation was successful */
1695 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1698 memset(rxdr->desc, 0, rxdr->size);
1700 rxdr->next_to_clean = 0;
1701 rxdr->next_to_use = 0;
1707 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1708 * (Descriptors) for all queues
1709 * @adapter: board private structure
1711 * Return 0 on success, negative on failure
1715 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1719 for (i = 0; i < adapter->num_rx_queues; i++) {
1720 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1723 "Allocation for Rx Queue %u failed\n", i);
1724 for (i-- ; i >= 0; i--)
1725 e1000_free_rx_resources(adapter,
1726 &adapter->rx_ring[i]);
1735 * e1000_setup_rctl - configure the receive control registers
1736 * @adapter: Board private structure
1738 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1739 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1741 e1000_setup_rctl(struct e1000_adapter *adapter)
1743 uint32_t rctl, rfctl;
1744 uint32_t psrctl = 0;
1745 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1749 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1751 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1753 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1754 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1755 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1757 if (adapter->hw.tbi_compatibility_on == 1)
1758 rctl |= E1000_RCTL_SBP;
1760 rctl &= ~E1000_RCTL_SBP;
1762 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1763 rctl &= ~E1000_RCTL_LPE;
1765 rctl |= E1000_RCTL_LPE;
1767 /* Setup buffer sizes */
1768 rctl &= ~E1000_RCTL_SZ_4096;
1769 rctl |= E1000_RCTL_BSEX;
1770 switch (adapter->rx_buffer_len) {
1771 case E1000_RXBUFFER_256:
1772 rctl |= E1000_RCTL_SZ_256;
1773 rctl &= ~E1000_RCTL_BSEX;
1775 case E1000_RXBUFFER_512:
1776 rctl |= E1000_RCTL_SZ_512;
1777 rctl &= ~E1000_RCTL_BSEX;
1779 case E1000_RXBUFFER_1024:
1780 rctl |= E1000_RCTL_SZ_1024;
1781 rctl &= ~E1000_RCTL_BSEX;
1783 case E1000_RXBUFFER_2048:
1785 rctl |= E1000_RCTL_SZ_2048;
1786 rctl &= ~E1000_RCTL_BSEX;
1788 case E1000_RXBUFFER_4096:
1789 rctl |= E1000_RCTL_SZ_4096;
1791 case E1000_RXBUFFER_8192:
1792 rctl |= E1000_RCTL_SZ_8192;
1794 case E1000_RXBUFFER_16384:
1795 rctl |= E1000_RCTL_SZ_16384;
1799 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1800 /* 82571 and greater support packet-split where the protocol
1801 * header is placed in skb->data and the packet data is
1802 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1803 * In the case of a non-split, skb->data is linearly filled,
1804 * followed by the page buffers. Therefore, skb->data is
1805 * sized to hold the largest protocol header.
1807 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1808 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1810 adapter->rx_ps_pages = pages;
1812 adapter->rx_ps_pages = 0;
1814 if (adapter->rx_ps_pages) {
1815 /* Configure extra packet-split registers */
1816 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1817 rfctl |= E1000_RFCTL_EXTEN;
1818 /* disable IPv6 packet split support */
1819 rfctl |= E1000_RFCTL_IPV6_DIS;
1820 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1822 rctl |= E1000_RCTL_DTYP_PS;
1824 psrctl |= adapter->rx_ps_bsize0 >>
1825 E1000_PSRCTL_BSIZE0_SHIFT;
1827 switch (adapter->rx_ps_pages) {
1829 psrctl |= PAGE_SIZE <<
1830 E1000_PSRCTL_BSIZE3_SHIFT;
1832 psrctl |= PAGE_SIZE <<
1833 E1000_PSRCTL_BSIZE2_SHIFT;
1835 psrctl |= PAGE_SIZE >>
1836 E1000_PSRCTL_BSIZE1_SHIFT;
1840 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1843 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1850 * Configure the Rx unit of the MAC after a reset.
1854 e1000_configure_rx(struct e1000_adapter *adapter)
1857 struct e1000_hw *hw = &adapter->hw;
1858 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1860 if (adapter->rx_ps_pages) {
1861 /* this is a 32 byte descriptor */
1862 rdlen = adapter->rx_ring[0].count *
1863 sizeof(union e1000_rx_desc_packet_split);
1864 adapter->clean_rx = e1000_clean_rx_irq_ps;
1865 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1867 rdlen = adapter->rx_ring[0].count *
1868 sizeof(struct e1000_rx_desc);
1869 adapter->clean_rx = e1000_clean_rx_irq;
1870 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1873 /* disable receives while setting up the descriptors */
1874 rctl = E1000_READ_REG(hw, RCTL);
1875 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1877 /* set the Receive Delay Timer Register */
1878 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1880 if (hw->mac_type >= e1000_82540) {
1881 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1882 if (adapter->itr > 1)
1883 E1000_WRITE_REG(hw, ITR,
1884 1000000000 / (adapter->itr * 256));
1887 if (hw->mac_type >= e1000_82571) {
1888 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1889 /* Reset delay timers after every interrupt */
1890 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1891 #ifdef CONFIG_E1000_NAPI
1892 /* Auto-Mask interrupts upon ICR read. */
1893 ctrl_ext |= E1000_CTRL_EXT_IAME;
1895 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1896 E1000_WRITE_REG(hw, IAM, ~0);
1897 E1000_WRITE_FLUSH(hw);
1900 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1901 * the Base and Length of the Rx Descriptor Ring */
1902 switch (adapter->num_rx_queues) {
1905 rdba = adapter->rx_ring[0].dma;
1906 E1000_WRITE_REG(hw, RDLEN, rdlen);
1907 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1908 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1909 E1000_WRITE_REG(hw, RDT, 0);
1910 E1000_WRITE_REG(hw, RDH, 0);
1911 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1912 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1916 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1917 if (hw->mac_type >= e1000_82543) {
1918 rxcsum = E1000_READ_REG(hw, RXCSUM);
1919 if (adapter->rx_csum == TRUE) {
1920 rxcsum |= E1000_RXCSUM_TUOFL;
1922 /* Enable 82571 IPv4 payload checksum for UDP fragments
1923 * Must be used in conjunction with packet-split. */
1924 if ((hw->mac_type >= e1000_82571) &&
1925 (adapter->rx_ps_pages)) {
1926 rxcsum |= E1000_RXCSUM_IPPCSE;
1929 rxcsum &= ~E1000_RXCSUM_TUOFL;
1930 /* don't need to clear IPPCSE as it defaults to 0 */
1932 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1935 /* Enable Receives */
1936 E1000_WRITE_REG(hw, RCTL, rctl);
1940 * e1000_free_tx_resources - Free Tx Resources per Queue
1941 * @adapter: board private structure
1942 * @tx_ring: Tx descriptor ring for a specific queue
1944 * Free all transmit software resources
1948 e1000_free_tx_resources(struct e1000_adapter *adapter,
1949 struct e1000_tx_ring *tx_ring)
1951 struct pci_dev *pdev = adapter->pdev;
1953 e1000_clean_tx_ring(adapter, tx_ring);
1955 vfree(tx_ring->buffer_info);
1956 tx_ring->buffer_info = NULL;
1958 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1960 tx_ring->desc = NULL;
1964 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1965 * @adapter: board private structure
1967 * Free all transmit software resources
1971 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1975 for (i = 0; i < adapter->num_tx_queues; i++)
1976 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1980 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1981 struct e1000_buffer *buffer_info)
1983 if (buffer_info->dma) {
1984 pci_unmap_page(adapter->pdev,
1986 buffer_info->length,
1989 if (buffer_info->skb)
1990 dev_kfree_skb_any(buffer_info->skb);
1991 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1995 * e1000_clean_tx_ring - Free Tx Buffers
1996 * @adapter: board private structure
1997 * @tx_ring: ring to be cleaned
2001 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2002 struct e1000_tx_ring *tx_ring)
2004 struct e1000_buffer *buffer_info;
2008 /* Free all the Tx ring sk_buffs */
2010 for (i = 0; i < tx_ring->count; i++) {
2011 buffer_info = &tx_ring->buffer_info[i];
2012 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2015 size = sizeof(struct e1000_buffer) * tx_ring->count;
2016 memset(tx_ring->buffer_info, 0, size);
2018 /* Zero out the descriptor ring */
2020 memset(tx_ring->desc, 0, tx_ring->size);
2022 tx_ring->next_to_use = 0;
2023 tx_ring->next_to_clean = 0;
2024 tx_ring->last_tx_tso = 0;
2026 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2027 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2031 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2032 * @adapter: board private structure
2036 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2040 for (i = 0; i < adapter->num_tx_queues; i++)
2041 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2045 * e1000_free_rx_resources - Free Rx Resources
2046 * @adapter: board private structure
2047 * @rx_ring: ring to clean the resources from
2049 * Free all receive software resources
2053 e1000_free_rx_resources(struct e1000_adapter *adapter,
2054 struct e1000_rx_ring *rx_ring)
2056 struct pci_dev *pdev = adapter->pdev;
2058 e1000_clean_rx_ring(adapter, rx_ring);
2060 vfree(rx_ring->buffer_info);
2061 rx_ring->buffer_info = NULL;
2062 kfree(rx_ring->ps_page);
2063 rx_ring->ps_page = NULL;
2064 kfree(rx_ring->ps_page_dma);
2065 rx_ring->ps_page_dma = NULL;
2067 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2069 rx_ring->desc = NULL;
2073 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2074 * @adapter: board private structure
2076 * Free all receive software resources
2080 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2084 for (i = 0; i < adapter->num_rx_queues; i++)
2085 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2089 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2090 * @adapter: board private structure
2091 * @rx_ring: ring to free buffers from
2095 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2096 struct e1000_rx_ring *rx_ring)
2098 struct e1000_buffer *buffer_info;
2099 struct e1000_ps_page *ps_page;
2100 struct e1000_ps_page_dma *ps_page_dma;
2101 struct pci_dev *pdev = adapter->pdev;
2105 /* Free all the Rx ring sk_buffs */
2106 for (i = 0; i < rx_ring->count; i++) {
2107 buffer_info = &rx_ring->buffer_info[i];
2108 if (buffer_info->skb) {
2109 pci_unmap_single(pdev,
2111 buffer_info->length,
2112 PCI_DMA_FROMDEVICE);
2114 dev_kfree_skb(buffer_info->skb);
2115 buffer_info->skb = NULL;
2117 ps_page = &rx_ring->ps_page[i];
2118 ps_page_dma = &rx_ring->ps_page_dma[i];
2119 for (j = 0; j < adapter->rx_ps_pages; j++) {
2120 if (!ps_page->ps_page[j]) break;
2121 pci_unmap_page(pdev,
2122 ps_page_dma->ps_page_dma[j],
2123 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2124 ps_page_dma->ps_page_dma[j] = 0;
2125 put_page(ps_page->ps_page[j]);
2126 ps_page->ps_page[j] = NULL;
2130 size = sizeof(struct e1000_buffer) * rx_ring->count;
2131 memset(rx_ring->buffer_info, 0, size);
2132 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2133 memset(rx_ring->ps_page, 0, size);
2134 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2135 memset(rx_ring->ps_page_dma, 0, size);
2137 /* Zero out the descriptor ring */
2139 memset(rx_ring->desc, 0, rx_ring->size);
2141 rx_ring->next_to_clean = 0;
2142 rx_ring->next_to_use = 0;
2144 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2145 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2149 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2150 * @adapter: board private structure
2154 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2158 for (i = 0; i < adapter->num_rx_queues; i++)
2159 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2162 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2163 * and memory write and invalidate disabled for certain operations
2166 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2168 struct net_device *netdev = adapter->netdev;
2171 e1000_pci_clear_mwi(&adapter->hw);
2173 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2174 rctl |= E1000_RCTL_RST;
2175 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2176 E1000_WRITE_FLUSH(&adapter->hw);
2179 if (netif_running(netdev))
2180 e1000_clean_all_rx_rings(adapter);
2184 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2186 struct net_device *netdev = adapter->netdev;
2189 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2190 rctl &= ~E1000_RCTL_RST;
2191 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2192 E1000_WRITE_FLUSH(&adapter->hw);
2195 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2196 e1000_pci_set_mwi(&adapter->hw);
2198 if (netif_running(netdev)) {
2199 /* No need to loop, because 82542 supports only 1 queue */
2200 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2201 e1000_configure_rx(adapter);
2202 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2207 * e1000_set_mac - Change the Ethernet Address of the NIC
2208 * @netdev: network interface device structure
2209 * @p: pointer to an address structure
2211 * Returns 0 on success, negative on failure
2215 e1000_set_mac(struct net_device *netdev, void *p)
2217 struct e1000_adapter *adapter = netdev_priv(netdev);
2218 struct sockaddr *addr = p;
2220 if (!is_valid_ether_addr(addr->sa_data))
2221 return -EADDRNOTAVAIL;
2223 /* 82542 2.0 needs to be in reset to write receive address registers */
2225 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2226 e1000_enter_82542_rst(adapter);
2228 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2229 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2231 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2233 /* With 82571 controllers, LAA may be overwritten (with the default)
2234 * due to controller reset from the other port. */
2235 if (adapter->hw.mac_type == e1000_82571) {
2236 /* activate the work around */
2237 adapter->hw.laa_is_present = 1;
2239 /* Hold a copy of the LAA in RAR[14] This is done so that
2240 * between the time RAR[0] gets clobbered and the time it
2241 * gets fixed (in e1000_watchdog), the actual LAA is in one
2242 * of the RARs and no incoming packets directed to this port
2243 * are dropped. Eventaully the LAA will be in RAR[0] and
2245 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2246 E1000_RAR_ENTRIES - 1);
2249 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2250 e1000_leave_82542_rst(adapter);
2256 * e1000_set_multi - Multicast and Promiscuous mode set
2257 * @netdev: network interface device structure
2259 * The set_multi entry point is called whenever the multicast address
2260 * list or the network interface flags are updated. This routine is
2261 * responsible for configuring the hardware for proper multicast,
2262 * promiscuous mode, and all-multi behavior.
2266 e1000_set_multi(struct net_device *netdev)
2268 struct e1000_adapter *adapter = netdev_priv(netdev);
2269 struct e1000_hw *hw = &adapter->hw;
2270 struct dev_mc_list *mc_ptr;
2272 uint32_t hash_value;
2273 int i, rar_entries = E1000_RAR_ENTRIES;
2274 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2275 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2276 E1000_NUM_MTA_REGISTERS;
2278 if (adapter->hw.mac_type == e1000_ich8lan)
2279 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2281 /* reserve RAR[14] for LAA over-write work-around */
2282 if (adapter->hw.mac_type == e1000_82571)
2285 /* Check for Promiscuous and All Multicast modes */
2287 rctl = E1000_READ_REG(hw, RCTL);
2289 if (netdev->flags & IFF_PROMISC) {
2290 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2291 } else if (netdev->flags & IFF_ALLMULTI) {
2292 rctl |= E1000_RCTL_MPE;
2293 rctl &= ~E1000_RCTL_UPE;
2295 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2298 E1000_WRITE_REG(hw, RCTL, rctl);
2300 /* 82542 2.0 needs to be in reset to write receive address registers */
2302 if (hw->mac_type == e1000_82542_rev2_0)
2303 e1000_enter_82542_rst(adapter);
2305 /* load the first 14 multicast address into the exact filters 1-14
2306 * RAR 0 is used for the station MAC adddress
2307 * if there are not 14 addresses, go ahead and clear the filters
2308 * -- with 82571 controllers only 0-13 entries are filled here
2310 mc_ptr = netdev->mc_list;
2312 for (i = 1; i < rar_entries; i++) {
2314 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2315 mc_ptr = mc_ptr->next;
2317 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2318 E1000_WRITE_FLUSH(hw);
2319 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2320 E1000_WRITE_FLUSH(hw);
2324 /* clear the old settings from the multicast hash table */
2326 for (i = 0; i < mta_reg_count; i++) {
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2328 E1000_WRITE_FLUSH(hw);
2331 /* load any remaining addresses into the hash table */
2333 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2334 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2335 e1000_mta_set(hw, hash_value);
2338 if (hw->mac_type == e1000_82542_rev2_0)
2339 e1000_leave_82542_rst(adapter);
2342 /* Need to wait a few seconds after link up to get diagnostic information from
2346 e1000_update_phy_info(unsigned long data)
2348 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2349 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2353 * e1000_82547_tx_fifo_stall - Timer Call-back
2354 * @data: pointer to adapter cast into an unsigned long
2358 e1000_82547_tx_fifo_stall(unsigned long data)
2360 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2361 struct net_device *netdev = adapter->netdev;
2364 if (atomic_read(&adapter->tx_fifo_stall)) {
2365 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2366 E1000_READ_REG(&adapter->hw, TDH)) &&
2367 (E1000_READ_REG(&adapter->hw, TDFT) ==
2368 E1000_READ_REG(&adapter->hw, TDFH)) &&
2369 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2370 E1000_READ_REG(&adapter->hw, TDFHS))) {
2371 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2372 E1000_WRITE_REG(&adapter->hw, TCTL,
2373 tctl & ~E1000_TCTL_EN);
2374 E1000_WRITE_REG(&adapter->hw, TDFT,
2375 adapter->tx_head_addr);
2376 E1000_WRITE_REG(&adapter->hw, TDFH,
2377 adapter->tx_head_addr);
2378 E1000_WRITE_REG(&adapter->hw, TDFTS,
2379 adapter->tx_head_addr);
2380 E1000_WRITE_REG(&adapter->hw, TDFHS,
2381 adapter->tx_head_addr);
2382 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2383 E1000_WRITE_FLUSH(&adapter->hw);
2385 adapter->tx_fifo_head = 0;
2386 atomic_set(&adapter->tx_fifo_stall, 0);
2387 netif_wake_queue(netdev);
2389 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2395 * e1000_watchdog - Timer Call-back
2396 * @data: pointer to adapter cast into an unsigned long
2399 e1000_watchdog(unsigned long data)
2401 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2402 struct net_device *netdev = adapter->netdev;
2403 struct e1000_tx_ring *txdr = adapter->tx_ring;
2404 uint32_t link, tctl;
2407 ret_val = e1000_check_for_link(&adapter->hw);
2408 if ((ret_val == E1000_ERR_PHY) &&
2409 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2410 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2411 /* See e1000_kumeran_lock_loss_workaround() */
2413 "Gigabit has been disabled, downgrading speed\n");
2415 if (adapter->hw.mac_type == e1000_82573) {
2416 e1000_enable_tx_pkt_filtering(&adapter->hw);
2417 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2418 e1000_update_mng_vlan(adapter);
2421 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2422 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2423 link = !adapter->hw.serdes_link_down;
2425 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2428 if (!netif_carrier_ok(netdev)) {
2429 boolean_t txb2b = 1;
2430 e1000_get_speed_and_duplex(&adapter->hw,
2431 &adapter->link_speed,
2432 &adapter->link_duplex);
2434 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2435 adapter->link_speed,
2436 adapter->link_duplex == FULL_DUPLEX ?
2437 "Full Duplex" : "Half Duplex");
2439 /* tweak tx_queue_len according to speed/duplex
2440 * and adjust the timeout factor */
2441 netdev->tx_queue_len = adapter->tx_queue_len;
2442 adapter->tx_timeout_factor = 1;
2443 switch (adapter->link_speed) {
2446 netdev->tx_queue_len = 10;
2447 adapter->tx_timeout_factor = 8;
2451 netdev->tx_queue_len = 100;
2452 /* maybe add some timeout factor ? */
2456 if ((adapter->hw.mac_type == e1000_82571 ||
2457 adapter->hw.mac_type == e1000_82572) &&
2459 #define SPEED_MODE_BIT (1 << 21)
2461 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2462 tarc0 &= ~SPEED_MODE_BIT;
2463 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2467 /* disable TSO for pcie and 10/100 speeds, to avoid
2468 * some hardware issues */
2469 if (!adapter->tso_force &&
2470 adapter->hw.bus_type == e1000_bus_type_pci_express){
2471 switch (adapter->link_speed) {
2475 "10/100 speed: disabling TSO\n");
2476 netdev->features &= ~NETIF_F_TSO;
2479 netdev->features |= NETIF_F_TSO;
2488 /* enable transmits in the hardware, need to do this
2489 * after setting TARC0 */
2490 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2491 tctl |= E1000_TCTL_EN;
2492 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2494 netif_carrier_on(netdev);
2495 netif_wake_queue(netdev);
2496 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2497 adapter->smartspeed = 0;
2500 if (netif_carrier_ok(netdev)) {
2501 adapter->link_speed = 0;
2502 adapter->link_duplex = 0;
2503 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2504 netif_carrier_off(netdev);
2505 netif_stop_queue(netdev);
2506 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2508 /* 80003ES2LAN workaround--
2509 * For packet buffer work-around on link down event;
2510 * disable receives in the ISR and
2511 * reset device here in the watchdog
2513 if (adapter->hw.mac_type == e1000_80003es2lan)
2515 schedule_work(&adapter->reset_task);
2518 e1000_smartspeed(adapter);
2521 e1000_update_stats(adapter);
2523 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2524 adapter->tpt_old = adapter->stats.tpt;
2525 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2526 adapter->colc_old = adapter->stats.colc;
2528 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2529 adapter->gorcl_old = adapter->stats.gorcl;
2530 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2531 adapter->gotcl_old = adapter->stats.gotcl;
2533 e1000_update_adaptive(&adapter->hw);
2535 if (!netif_carrier_ok(netdev)) {
2536 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2537 /* We've lost link, so the controller stops DMA,
2538 * but we've got queued Tx work that's never going
2539 * to get done, so reset controller to flush Tx.
2540 * (Do the reset outside of interrupt context). */
2541 adapter->tx_timeout_count++;
2542 schedule_work(&adapter->reset_task);
2546 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2547 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2548 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2549 * asymmetrical Tx or Rx gets ITR=8000; everyone
2550 * else is between 2000-8000. */
2551 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2552 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2553 adapter->gotcl - adapter->gorcl :
2554 adapter->gorcl - adapter->gotcl) / 10000;
2555 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2556 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2559 /* Cause software interrupt to ensure rx ring is cleaned */
2560 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2562 /* Force detection of hung controller every watchdog period */
2563 adapter->detect_tx_hung = TRUE;
2565 /* With 82571 controllers, LAA may be overwritten due to controller
2566 * reset from the other port. Set the appropriate LAA in RAR[0] */
2567 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2568 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2570 /* Reset the timer */
2571 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2574 #define E1000_TX_FLAGS_CSUM 0x00000001
2575 #define E1000_TX_FLAGS_VLAN 0x00000002
2576 #define E1000_TX_FLAGS_TSO 0x00000004
2577 #define E1000_TX_FLAGS_IPV4 0x00000008
2578 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2579 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2582 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2583 struct sk_buff *skb)
2586 struct e1000_context_desc *context_desc;
2587 struct e1000_buffer *buffer_info;
2589 uint32_t cmd_length = 0;
2590 uint16_t ipcse = 0, tucse, mss;
2591 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2594 if (skb_is_gso(skb)) {
2595 if (skb_header_cloned(skb)) {
2596 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2601 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2602 mss = skb_shinfo(skb)->gso_size;
2603 if (skb->protocol == htons(ETH_P_IP)) {
2604 skb->nh.iph->tot_len = 0;
2605 skb->nh.iph->check = 0;
2607 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2612 cmd_length = E1000_TXD_CMD_IP;
2613 ipcse = skb->h.raw - skb->data - 1;
2614 #ifdef NETIF_F_TSO_IPV6
2615 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2616 skb->nh.ipv6h->payload_len = 0;
2618 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2619 &skb->nh.ipv6h->daddr,
2626 ipcss = skb->nh.raw - skb->data;
2627 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2628 tucss = skb->h.raw - skb->data;
2629 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2632 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2633 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2635 i = tx_ring->next_to_use;
2636 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2637 buffer_info = &tx_ring->buffer_info[i];
2639 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2640 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2641 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2642 context_desc->upper_setup.tcp_fields.tucss = tucss;
2643 context_desc->upper_setup.tcp_fields.tucso = tucso;
2644 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2645 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2646 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2647 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2649 buffer_info->time_stamp = jiffies;
2651 if (++i == tx_ring->count) i = 0;
2652 tx_ring->next_to_use = i;
2662 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2663 struct sk_buff *skb)
2665 struct e1000_context_desc *context_desc;
2666 struct e1000_buffer *buffer_info;
2670 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2671 css = skb->h.raw - skb->data;
2673 i = tx_ring->next_to_use;
2674 buffer_info = &tx_ring->buffer_info[i];
2675 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2677 context_desc->upper_setup.tcp_fields.tucss = css;
2678 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2679 context_desc->upper_setup.tcp_fields.tucse = 0;
2680 context_desc->tcp_seg_setup.data = 0;
2681 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2683 buffer_info->time_stamp = jiffies;
2685 if (unlikely(++i == tx_ring->count)) i = 0;
2686 tx_ring->next_to_use = i;
2694 #define E1000_MAX_TXD_PWR 12
2695 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2698 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2699 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2700 unsigned int nr_frags, unsigned int mss)
2702 struct e1000_buffer *buffer_info;
2703 unsigned int len = skb->len;
2704 unsigned int offset = 0, size, count = 0, i;
2706 len -= skb->data_len;
2708 i = tx_ring->next_to_use;
2711 buffer_info = &tx_ring->buffer_info[i];
2712 size = min(len, max_per_txd);
2714 /* Workaround for Controller erratum --
2715 * descriptor for non-tso packet in a linear SKB that follows a
2716 * tso gets written back prematurely before the data is fully
2717 * DMA'd to the controller */
2718 if (!skb->data_len && tx_ring->last_tx_tso &&
2720 tx_ring->last_tx_tso = 0;
2724 /* Workaround for premature desc write-backs
2725 * in TSO mode. Append 4-byte sentinel desc */
2726 if (unlikely(mss && !nr_frags && size == len && size > 8))
2729 /* work-around for errata 10 and it applies
2730 * to all controllers in PCI-X mode
2731 * The fix is to make sure that the first descriptor of a
2732 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2734 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2735 (size > 2015) && count == 0))
2738 /* Workaround for potential 82544 hang in PCI-X. Avoid
2739 * terminating buffers within evenly-aligned dwords. */
2740 if (unlikely(adapter->pcix_82544 &&
2741 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2745 buffer_info->length = size;
2747 pci_map_single(adapter->pdev,
2751 buffer_info->time_stamp = jiffies;
2756 if (unlikely(++i == tx_ring->count)) i = 0;
2759 for (f = 0; f < nr_frags; f++) {
2760 struct skb_frag_struct *frag;
2762 frag = &skb_shinfo(skb)->frags[f];
2764 offset = frag->page_offset;
2767 buffer_info = &tx_ring->buffer_info[i];
2768 size = min(len, max_per_txd);
2770 /* Workaround for premature desc write-backs
2771 * in TSO mode. Append 4-byte sentinel desc */
2772 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2775 /* Workaround for potential 82544 hang in PCI-X.
2776 * Avoid terminating buffers within evenly-aligned
2778 if (unlikely(adapter->pcix_82544 &&
2779 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2783 buffer_info->length = size;
2785 pci_map_page(adapter->pdev,
2790 buffer_info->time_stamp = jiffies;
2795 if (unlikely(++i == tx_ring->count)) i = 0;
2799 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2800 tx_ring->buffer_info[i].skb = skb;
2801 tx_ring->buffer_info[first].next_to_watch = i;
2807 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2808 int tx_flags, int count)
2810 struct e1000_tx_desc *tx_desc = NULL;
2811 struct e1000_buffer *buffer_info;
2812 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2815 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2816 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2818 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2820 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2821 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2824 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2825 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2826 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2829 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2830 txd_lower |= E1000_TXD_CMD_VLE;
2831 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2834 i = tx_ring->next_to_use;
2837 buffer_info = &tx_ring->buffer_info[i];
2838 tx_desc = E1000_TX_DESC(*tx_ring, i);
2839 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2840 tx_desc->lower.data =
2841 cpu_to_le32(txd_lower | buffer_info->length);
2842 tx_desc->upper.data = cpu_to_le32(txd_upper);
2843 if (unlikely(++i == tx_ring->count)) i = 0;
2846 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2848 /* Force memory writes to complete before letting h/w
2849 * know there are new descriptors to fetch. (Only
2850 * applicable for weak-ordered memory model archs,
2851 * such as IA-64). */
2854 tx_ring->next_to_use = i;
2855 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2859 * 82547 workaround to avoid controller hang in half-duplex environment.
2860 * The workaround is to avoid queuing a large packet that would span
2861 * the internal Tx FIFO ring boundary by notifying the stack to resend
2862 * the packet at a later time. This gives the Tx FIFO an opportunity to
2863 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2864 * to the beginning of the Tx FIFO.
2867 #define E1000_FIFO_HDR 0x10
2868 #define E1000_82547_PAD_LEN 0x3E0
2871 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2873 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2874 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2876 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2878 if (adapter->link_duplex != HALF_DUPLEX)
2879 goto no_fifo_stall_required;
2881 if (atomic_read(&adapter->tx_fifo_stall))
2884 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2885 atomic_set(&adapter->tx_fifo_stall, 1);
2889 no_fifo_stall_required:
2890 adapter->tx_fifo_head += skb_fifo_len;
2891 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2892 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2896 #define MINIMUM_DHCP_PACKET_SIZE 282
2898 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2900 struct e1000_hw *hw = &adapter->hw;
2901 uint16_t length, offset;
2902 if (vlan_tx_tag_present(skb)) {
2903 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2904 ( adapter->hw.mng_cookie.status &
2905 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2908 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2909 struct ethhdr *eth = (struct ethhdr *) skb->data;
2910 if ((htons(ETH_P_IP) == eth->h_proto)) {
2911 const struct iphdr *ip =
2912 (struct iphdr *)((uint8_t *)skb->data+14);
2913 if (IPPROTO_UDP == ip->protocol) {
2914 struct udphdr *udp =
2915 (struct udphdr *)((uint8_t *)ip +
2917 if (ntohs(udp->dest) == 67) {
2918 offset = (uint8_t *)udp + 8 - skb->data;
2919 length = skb->len - offset;
2921 return e1000_mng_write_dhcp_info(hw,
2931 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2933 struct e1000_adapter *adapter = netdev_priv(netdev);
2934 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2936 netif_stop_queue(netdev);
2937 /* Herbert's original patch had:
2938 * smp_mb__after_netif_stop_queue();
2939 * but since that doesn't exist yet, just open code it. */
2942 /* We need to check again in a case another CPU has just
2943 * made room available. */
2944 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2948 netif_start_queue(netdev);
2952 static int e1000_maybe_stop_tx(struct net_device *netdev,
2953 struct e1000_tx_ring *tx_ring, int size)
2955 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2957 return __e1000_maybe_stop_tx(netdev, size);
2960 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2962 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2964 struct e1000_adapter *adapter = netdev_priv(netdev);
2965 struct e1000_tx_ring *tx_ring;
2966 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2967 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2968 unsigned int tx_flags = 0;
2969 unsigned int len = skb->len;
2970 unsigned long flags;
2971 unsigned int nr_frags = 0;
2972 unsigned int mss = 0;
2976 len -= skb->data_len;
2978 /* This goes back to the question of how to logically map a tx queue
2979 * to a flow. Right now, performance is impacted slightly negatively
2980 * if using multiple tx queues. If the stack breaks away from a
2981 * single qdisc implementation, we can look at this again. */
2982 tx_ring = adapter->tx_ring;
2984 if (unlikely(skb->len <= 0)) {
2985 dev_kfree_skb_any(skb);
2986 return NETDEV_TX_OK;
2990 mss = skb_shinfo(skb)->gso_size;
2991 /* The controller does a simple calculation to
2992 * make sure there is enough room in the FIFO before
2993 * initiating the DMA for each buffer. The calc is:
2994 * 4 = ceil(buffer len/mss). To make sure we don't
2995 * overrun the FIFO, adjust the max buffer len if mss
2999 max_per_txd = min(mss << 2, max_per_txd);
3000 max_txd_pwr = fls(max_per_txd) - 1;
3002 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3003 * points to just header, pull a few bytes of payload from
3004 * frags into skb->data */
3005 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3006 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3007 switch (adapter->hw.mac_type) {
3008 unsigned int pull_size;
3013 pull_size = min((unsigned int)4, skb->data_len);
3014 if (!__pskb_pull_tail(skb, pull_size)) {
3016 "__pskb_pull_tail failed.\n");
3017 dev_kfree_skb_any(skb);
3018 return NETDEV_TX_OK;
3020 len = skb->len - skb->data_len;
3029 /* reserve a descriptor for the offload context */
3030 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3034 if (skb->ip_summed == CHECKSUM_PARTIAL)
3039 /* Controller Erratum workaround */
3040 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3044 count += TXD_USE_COUNT(len, max_txd_pwr);
3046 if (adapter->pcix_82544)
3049 /* work-around for errata 10 and it applies to all controllers
3050 * in PCI-X mode, so add one more descriptor to the count
3052 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3056 nr_frags = skb_shinfo(skb)->nr_frags;
3057 for (f = 0; f < nr_frags; f++)
3058 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3060 if (adapter->pcix_82544)
3064 if (adapter->hw.tx_pkt_filtering &&
3065 (adapter->hw.mac_type == e1000_82573))
3066 e1000_transfer_dhcp_info(adapter, skb);
3068 local_irq_save(flags);
3069 if (!spin_trylock(&tx_ring->tx_lock)) {
3070 /* Collision - tell upper layer to requeue */
3071 local_irq_restore(flags);
3072 return NETDEV_TX_LOCKED;
3075 /* need: count + 2 desc gap to keep tail from touching
3076 * head, otherwise try next time */
3077 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3078 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3079 return NETDEV_TX_BUSY;
3082 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3083 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3084 netif_stop_queue(netdev);
3085 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3086 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3087 return NETDEV_TX_BUSY;
3091 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3092 tx_flags |= E1000_TX_FLAGS_VLAN;
3093 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3096 first = tx_ring->next_to_use;
3098 tso = e1000_tso(adapter, tx_ring, skb);
3100 dev_kfree_skb_any(skb);
3101 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3102 return NETDEV_TX_OK;
3106 tx_ring->last_tx_tso = 1;
3107 tx_flags |= E1000_TX_FLAGS_TSO;
3108 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3109 tx_flags |= E1000_TX_FLAGS_CSUM;
3111 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3112 * 82571 hardware supports TSO capabilities for IPv6 as well...
3113 * no longer assume, we must. */
3114 if (likely(skb->protocol == htons(ETH_P_IP)))
3115 tx_flags |= E1000_TX_FLAGS_IPV4;
3117 e1000_tx_queue(adapter, tx_ring, tx_flags,
3118 e1000_tx_map(adapter, tx_ring, skb, first,
3119 max_per_txd, nr_frags, mss));
3121 netdev->trans_start = jiffies;
3123 /* Make sure there is space in the ring for the next send. */
3124 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3126 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3127 return NETDEV_TX_OK;
3131 * e1000_tx_timeout - Respond to a Tx Hang
3132 * @netdev: network interface device structure
3136 e1000_tx_timeout(struct net_device *netdev)
3138 struct e1000_adapter *adapter = netdev_priv(netdev);
3140 /* Do the reset outside of interrupt context */
3141 adapter->tx_timeout_count++;
3142 schedule_work(&adapter->reset_task);
3146 e1000_reset_task(struct net_device *netdev)
3148 struct e1000_adapter *adapter = netdev_priv(netdev);
3150 e1000_reinit_locked(adapter);
3154 * e1000_get_stats - Get System Network Statistics
3155 * @netdev: network interface device structure
3157 * Returns the address of the device statistics structure.
3158 * The statistics are actually updated from the timer callback.
3161 static struct net_device_stats *
3162 e1000_get_stats(struct net_device *netdev)
3164 struct e1000_adapter *adapter = netdev_priv(netdev);
3166 /* only return the current stats */
3167 return &adapter->net_stats;
3171 * e1000_change_mtu - Change the Maximum Transfer Unit
3172 * @netdev: network interface device structure
3173 * @new_mtu: new value for maximum frame size
3175 * Returns 0 on success, negative on failure
3179 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3181 struct e1000_adapter *adapter = netdev_priv(netdev);
3182 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3183 uint16_t eeprom_data = 0;
3185 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3186 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3187 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3191 /* Adapter-specific max frame size limits. */
3192 switch (adapter->hw.mac_type) {
3193 case e1000_undefined ... e1000_82542_rev2_1:
3195 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3196 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3201 /* Jumbo Frames not supported if:
3202 * - this is not an 82573L device
3203 * - ASPM is enabled in any way (0x1A bits 3:2) */
3204 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3206 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3207 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3208 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3210 "Jumbo Frames not supported.\n");
3215 /* ERT will be enabled later to enable wire speed receives */
3217 /* fall through to get support */
3220 case e1000_80003es2lan:
3221 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3222 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3223 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3228 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3232 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3233 * means we reserve 2 more, this pushes us to allocate from the next
3235 * i.e. RXBUFFER_2048 --> size-4096 slab */
3237 if (max_frame <= E1000_RXBUFFER_256)
3238 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3239 else if (max_frame <= E1000_RXBUFFER_512)
3240 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3241 else if (max_frame <= E1000_RXBUFFER_1024)
3242 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3243 else if (max_frame <= E1000_RXBUFFER_2048)
3244 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3245 else if (max_frame <= E1000_RXBUFFER_4096)
3246 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3247 else if (max_frame <= E1000_RXBUFFER_8192)
3248 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3249 else if (max_frame <= E1000_RXBUFFER_16384)
3250 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3252 /* adjust allocation if LPE protects us, and we aren't using SBP */
3253 if (!adapter->hw.tbi_compatibility_on &&
3254 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3255 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3256 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3258 netdev->mtu = new_mtu;
3260 if (netif_running(netdev))
3261 e1000_reinit_locked(adapter);
3263 adapter->hw.max_frame_size = max_frame;
3269 * e1000_update_stats - Update the board statistics counters
3270 * @adapter: board private structure
3274 e1000_update_stats(struct e1000_adapter *adapter)
3276 struct e1000_hw *hw = &adapter->hw;
3277 struct pci_dev *pdev = adapter->pdev;
3278 unsigned long flags;
3281 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3284 * Prevent stats update while adapter is being reset, or if the pci
3285 * connection is down.
3287 if (adapter->link_speed == 0)
3289 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3292 spin_lock_irqsave(&adapter->stats_lock, flags);
3294 /* these counters are modified from e1000_adjust_tbi_stats,
3295 * called from the interrupt context, so they must only
3296 * be written while holding adapter->stats_lock
3299 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3300 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3301 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3302 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3303 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3304 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3305 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3307 if (adapter->hw.mac_type != e1000_ich8lan) {
3308 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3309 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3310 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3311 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3312 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3313 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3316 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3317 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3318 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3319 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3320 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3321 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3322 adapter->stats.dc += E1000_READ_REG(hw, DC);
3323 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3324 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3325 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3326 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3327 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3328 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3329 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3330 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3331 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3332 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3333 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3334 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3335 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3336 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3337 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3338 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3339 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3340 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3341 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3343 if (adapter->hw.mac_type != e1000_ich8lan) {
3344 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3345 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3346 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3347 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3348 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3349 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3352 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3353 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3355 /* used for adaptive IFS */
3357 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3358 adapter->stats.tpt += hw->tx_packet_delta;
3359 hw->collision_delta = E1000_READ_REG(hw, COLC);
3360 adapter->stats.colc += hw->collision_delta;
3362 if (hw->mac_type >= e1000_82543) {
3363 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3364 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3365 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3366 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3367 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3368 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3370 if (hw->mac_type > e1000_82547_rev_2) {
3371 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3372 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3374 if (adapter->hw.mac_type != e1000_ich8lan) {
3375 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3376 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3377 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3378 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3379 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3380 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3381 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3385 /* Fill out the OS statistics structure */
3387 adapter->net_stats.rx_packets = adapter->stats.gprc;
3388 adapter->net_stats.tx_packets = adapter->stats.gptc;
3389 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3390 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3391 adapter->net_stats.multicast = adapter->stats.mprc;
3392 adapter->net_stats.collisions = adapter->stats.colc;
3396 /* RLEC on some newer hardware can be incorrect so build
3397 * our own version based on RUC and ROC */
3398 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3399 adapter->stats.crcerrs + adapter->stats.algnerrc +
3400 adapter->stats.ruc + adapter->stats.roc +
3401 adapter->stats.cexterr;
3402 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3403 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3404 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3405 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3406 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3409 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3410 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3411 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3412 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3413 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3415 /* Tx Dropped needs to be maintained elsewhere */
3419 if (hw->media_type == e1000_media_type_copper) {
3420 if ((adapter->link_speed == SPEED_1000) &&
3421 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3422 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3423 adapter->phy_stats.idle_errors += phy_tmp;
3426 if ((hw->mac_type <= e1000_82546) &&
3427 (hw->phy_type == e1000_phy_m88) &&
3428 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3429 adapter->phy_stats.receive_errors += phy_tmp;
3432 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3436 * e1000_intr - Interrupt Handler
3437 * @irq: interrupt number
3438 * @data: pointer to a network interface device structure
3439 * @pt_regs: CPU registers structure
3443 e1000_intr(int irq, void *data, struct pt_regs *regs)
3445 struct net_device *netdev = data;
3446 struct e1000_adapter *adapter = netdev_priv(netdev);
3447 struct e1000_hw *hw = &adapter->hw;
3448 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3449 #ifndef CONFIG_E1000_NAPI
3452 /* Interrupt Auto-Mask...upon reading ICR,
3453 * interrupts are masked. No need for the
3454 * IMC write, but it does mean we should
3455 * account for it ASAP. */
3456 if (likely(hw->mac_type >= e1000_82571))
3457 atomic_inc(&adapter->irq_sem);
3460 if (unlikely(!icr)) {
3461 #ifdef CONFIG_E1000_NAPI
3462 if (hw->mac_type >= e1000_82571)
3463 e1000_irq_enable(adapter);
3465 return IRQ_NONE; /* Not our interrupt */
3468 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3469 hw->get_link_status = 1;
3470 /* 80003ES2LAN workaround--
3471 * For packet buffer work-around on link down event;
3472 * disable receives here in the ISR and
3473 * reset adapter in watchdog
3475 if (netif_carrier_ok(netdev) &&
3476 (adapter->hw.mac_type == e1000_80003es2lan)) {
3477 /* disable receives */
3478 rctl = E1000_READ_REG(hw, RCTL);
3479 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3481 /* guard against interrupt when we're going down */
3482 if (!test_bit(__E1000_DOWN, &adapter->flags))
3483 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3486 #ifdef CONFIG_E1000_NAPI
3487 if (unlikely(hw->mac_type < e1000_82571)) {
3488 atomic_inc(&adapter->irq_sem);
3489 E1000_WRITE_REG(hw, IMC, ~0);
3490 E1000_WRITE_FLUSH(hw);
3492 if (likely(netif_rx_schedule_prep(netdev)))
3493 __netif_rx_schedule(netdev);
3495 e1000_irq_enable(adapter);
3497 /* Writing IMC and IMS is needed for 82547.
3498 * Due to Hub Link bus being occupied, an interrupt
3499 * de-assertion message is not able to be sent.
3500 * When an interrupt assertion message is generated later,
3501 * two messages are re-ordered and sent out.
3502 * That causes APIC to think 82547 is in de-assertion
3503 * state, while 82547 is in assertion state, resulting
3504 * in dead lock. Writing IMC forces 82547 into
3505 * de-assertion state.
3507 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3508 atomic_inc(&adapter->irq_sem);
3509 E1000_WRITE_REG(hw, IMC, ~0);
3512 for (i = 0; i < E1000_MAX_INTR; i++)
3513 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3514 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3517 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3518 e1000_irq_enable(adapter);
3525 #ifdef CONFIG_E1000_NAPI
3527 * e1000_clean - NAPI Rx polling callback
3528 * @adapter: board private structure
3532 e1000_clean(struct net_device *poll_dev, int *budget)
3534 struct e1000_adapter *adapter;
3535 int work_to_do = min(*budget, poll_dev->quota);
3536 int tx_cleaned = 0, work_done = 0;
3538 /* Must NOT use netdev_priv macro here. */
3539 adapter = poll_dev->priv;
3541 /* Keep link state information with original netdev */
3542 if (!netif_carrier_ok(poll_dev))
3545 /* e1000_clean is called per-cpu. This lock protects
3546 * tx_ring[0] from being cleaned by multiple cpus
3547 * simultaneously. A failure obtaining the lock means
3548 * tx_ring[0] is currently being cleaned anyway. */
3549 if (spin_trylock(&adapter->tx_queue_lock)) {
3550 tx_cleaned = e1000_clean_tx_irq(adapter,
3551 &adapter->tx_ring[0]);
3552 spin_unlock(&adapter->tx_queue_lock);
3555 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3556 &work_done, work_to_do);
3558 *budget -= work_done;
3559 poll_dev->quota -= work_done;
3561 /* If no Tx and not enough Rx work done, exit the polling mode */
3562 if ((!tx_cleaned && (work_done == 0)) ||
3563 !netif_running(poll_dev)) {
3565 netif_rx_complete(poll_dev);
3566 e1000_irq_enable(adapter);
3575 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3576 * @adapter: board private structure
3580 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3581 struct e1000_tx_ring *tx_ring)
3583 struct net_device *netdev = adapter->netdev;
3584 struct e1000_tx_desc *tx_desc, *eop_desc;
3585 struct e1000_buffer *buffer_info;
3586 unsigned int i, eop;
3587 #ifdef CONFIG_E1000_NAPI
3588 unsigned int count = 0;
3590 boolean_t cleaned = FALSE;
3592 i = tx_ring->next_to_clean;
3593 eop = tx_ring->buffer_info[i].next_to_watch;
3594 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3596 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3597 for (cleaned = FALSE; !cleaned; ) {
3598 tx_desc = E1000_TX_DESC(*tx_ring, i);
3599 buffer_info = &tx_ring->buffer_info[i];
3600 cleaned = (i == eop);
3602 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3603 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3605 if (unlikely(++i == tx_ring->count)) i = 0;
3609 eop = tx_ring->buffer_info[i].next_to_watch;
3610 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3611 #ifdef CONFIG_E1000_NAPI
3612 #define E1000_TX_WEIGHT 64
3613 /* weight of a sort for tx, to avoid endless transmit cleanup */
3614 if (count++ == E1000_TX_WEIGHT) break;
3618 tx_ring->next_to_clean = i;
3620 #define TX_WAKE_THRESHOLD 32
3621 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3622 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3623 /* Make sure that anybody stopping the queue after this
3624 * sees the new next_to_clean.
3627 if (netif_queue_stopped(netdev))
3628 netif_wake_queue(netdev);
3631 if (adapter->detect_tx_hung) {
3632 /* Detect a transmit hang in hardware, this serializes the
3633 * check with the clearing of time_stamp and movement of i */
3634 adapter->detect_tx_hung = FALSE;
3635 if (tx_ring->buffer_info[eop].dma &&
3636 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3637 (adapter->tx_timeout_factor * HZ))
3638 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3639 E1000_STATUS_TXOFF)) {
3641 /* detected Tx unit hang */
3642 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3646 " next_to_use <%x>\n"
3647 " next_to_clean <%x>\n"
3648 "buffer_info[next_to_clean]\n"
3649 " time_stamp <%lx>\n"
3650 " next_to_watch <%x>\n"
3652 " next_to_watch.status <%x>\n",
3653 (unsigned long)((tx_ring - adapter->tx_ring) /
3654 sizeof(struct e1000_tx_ring)),
3655 readl(adapter->hw.hw_addr + tx_ring->tdh),
3656 readl(adapter->hw.hw_addr + tx_ring->tdt),
3657 tx_ring->next_to_use,
3658 tx_ring->next_to_clean,
3659 tx_ring->buffer_info[eop].time_stamp,
3662 eop_desc->upper.fields.status);
3663 netif_stop_queue(netdev);
3670 * e1000_rx_checksum - Receive Checksum Offload for 82543
3671 * @adapter: board private structure
3672 * @status_err: receive descriptor status and error fields
3673 * @csum: receive descriptor csum field
3674 * @sk_buff: socket buffer with received data
3678 e1000_rx_checksum(struct e1000_adapter *adapter,
3679 uint32_t status_err, uint32_t csum,
3680 struct sk_buff *skb)
3682 uint16_t status = (uint16_t)status_err;
3683 uint8_t errors = (uint8_t)(status_err >> 24);
3684 skb->ip_summed = CHECKSUM_NONE;
3686 /* 82543 or newer only */
3687 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3688 /* Ignore Checksum bit is set */
3689 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3690 /* TCP/UDP checksum error bit is set */
3691 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3692 /* let the stack verify checksum errors */
3693 adapter->hw_csum_err++;
3696 /* TCP/UDP Checksum has not been calculated */
3697 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3698 if (!(status & E1000_RXD_STAT_TCPCS))
3701 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3704 /* It must be a TCP or UDP packet with a valid checksum */
3705 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3706 /* TCP checksum is good */
3707 skb->ip_summed = CHECKSUM_UNNECESSARY;
3708 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3709 /* IP fragment with UDP payload */
3710 /* Hardware complements the payload checksum, so we undo it
3711 * and then put the value in host order for further stack use.
3713 csum = ntohl(csum ^ 0xFFFF);
3715 skb->ip_summed = CHECKSUM_COMPLETE;
3717 adapter->hw_csum_good++;
3721 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3722 * @adapter: board private structure
3726 #ifdef CONFIG_E1000_NAPI
3727 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3728 struct e1000_rx_ring *rx_ring,
3729 int *work_done, int work_to_do)
3731 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3732 struct e1000_rx_ring *rx_ring)
3735 struct net_device *netdev = adapter->netdev;
3736 struct pci_dev *pdev = adapter->pdev;
3737 struct e1000_rx_desc *rx_desc, *next_rxd;
3738 struct e1000_buffer *buffer_info, *next_buffer;
3739 unsigned long flags;
3743 int cleaned_count = 0;
3744 boolean_t cleaned = FALSE;
3746 i = rx_ring->next_to_clean;
3747 rx_desc = E1000_RX_DESC(*rx_ring, i);
3748 buffer_info = &rx_ring->buffer_info[i];
3750 while (rx_desc->status & E1000_RXD_STAT_DD) {
3751 struct sk_buff *skb;
3753 #ifdef CONFIG_E1000_NAPI
3754 if (*work_done >= work_to_do)
3758 status = rx_desc->status;
3759 skb = buffer_info->skb;
3760 buffer_info->skb = NULL;
3762 prefetch(skb->data - NET_IP_ALIGN);
3764 if (++i == rx_ring->count) i = 0;
3765 next_rxd = E1000_RX_DESC(*rx_ring, i);
3768 next_buffer = &rx_ring->buffer_info[i];
3772 pci_unmap_single(pdev,
3774 buffer_info->length,
3775 PCI_DMA_FROMDEVICE);
3777 length = le16_to_cpu(rx_desc->length);
3779 /* adjust length to remove Ethernet CRC */
3782 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3783 /* All receives must fit into a single buffer */
3784 E1000_DBG("%s: Receive packet consumed multiple"
3785 " buffers\n", netdev->name);
3787 buffer_info->skb = skb;
3791 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3792 last_byte = *(skb->data + length - 1);
3793 if (TBI_ACCEPT(&adapter->hw, status,
3794 rx_desc->errors, length, last_byte)) {
3795 spin_lock_irqsave(&adapter->stats_lock, flags);
3796 e1000_tbi_adjust_stats(&adapter->hw,
3799 spin_unlock_irqrestore(&adapter->stats_lock,
3804 buffer_info->skb = skb;
3809 /* code added for copybreak, this should improve
3810 * performance for small packets with large amounts
3811 * of reassembly being done in the stack */
3812 #define E1000_CB_LENGTH 256
3813 if (length < E1000_CB_LENGTH) {
3814 struct sk_buff *new_skb =
3815 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3817 skb_reserve(new_skb, NET_IP_ALIGN);
3818 memcpy(new_skb->data - NET_IP_ALIGN,
3819 skb->data - NET_IP_ALIGN,
3820 length + NET_IP_ALIGN);
3821 /* save the skb in buffer_info as good */
3822 buffer_info->skb = skb;
3824 skb_put(skb, length);
3827 skb_put(skb, length);
3829 /* end copybreak code */
3831 /* Receive Checksum Offload */
3832 e1000_rx_checksum(adapter,
3833 (uint32_t)(status) |
3834 ((uint32_t)(rx_desc->errors) << 24),
3835 le16_to_cpu(rx_desc->csum), skb);
3837 skb->protocol = eth_type_trans(skb, netdev);
3838 #ifdef CONFIG_E1000_NAPI
3839 if (unlikely(adapter->vlgrp &&
3840 (status & E1000_RXD_STAT_VP))) {
3841 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3842 le16_to_cpu(rx_desc->special) &
3843 E1000_RXD_SPC_VLAN_MASK);
3845 netif_receive_skb(skb);
3847 #else /* CONFIG_E1000_NAPI */
3848 if (unlikely(adapter->vlgrp &&
3849 (status & E1000_RXD_STAT_VP))) {
3850 vlan_hwaccel_rx(skb, adapter->vlgrp,
3851 le16_to_cpu(rx_desc->special) &
3852 E1000_RXD_SPC_VLAN_MASK);
3856 #endif /* CONFIG_E1000_NAPI */
3857 netdev->last_rx = jiffies;
3860 rx_desc->status = 0;
3862 /* return some buffers to hardware, one at a time is too slow */
3863 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3864 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3868 /* use prefetched values */
3870 buffer_info = next_buffer;
3872 rx_ring->next_to_clean = i;
3874 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3876 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3882 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3883 * @adapter: board private structure
3887 #ifdef CONFIG_E1000_NAPI
3888 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3889 struct e1000_rx_ring *rx_ring,
3890 int *work_done, int work_to_do)
3892 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3893 struct e1000_rx_ring *rx_ring)
3896 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3897 struct net_device *netdev = adapter->netdev;
3898 struct pci_dev *pdev = adapter->pdev;
3899 struct e1000_buffer *buffer_info, *next_buffer;
3900 struct e1000_ps_page *ps_page;
3901 struct e1000_ps_page_dma *ps_page_dma;
3902 struct sk_buff *skb;
3904 uint32_t length, staterr;
3905 int cleaned_count = 0;
3906 boolean_t cleaned = FALSE;
3908 i = rx_ring->next_to_clean;
3909 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3910 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3911 buffer_info = &rx_ring->buffer_info[i];
3913 while (staterr & E1000_RXD_STAT_DD) {
3914 ps_page = &rx_ring->ps_page[i];
3915 ps_page_dma = &rx_ring->ps_page_dma[i];
3916 #ifdef CONFIG_E1000_NAPI
3917 if (unlikely(*work_done >= work_to_do))
3921 skb = buffer_info->skb;
3923 /* in the packet split case this is header only */
3924 prefetch(skb->data - NET_IP_ALIGN);
3926 if (++i == rx_ring->count) i = 0;
3927 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3930 next_buffer = &rx_ring->buffer_info[i];
3934 pci_unmap_single(pdev, buffer_info->dma,
3935 buffer_info->length,
3936 PCI_DMA_FROMDEVICE);
3938 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3939 E1000_DBG("%s: Packet Split buffers didn't pick up"
3940 " the full packet\n", netdev->name);
3941 dev_kfree_skb_irq(skb);
3945 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3946 dev_kfree_skb_irq(skb);
3950 length = le16_to_cpu(rx_desc->wb.middle.length0);
3952 if (unlikely(!length)) {
3953 E1000_DBG("%s: Last part of the packet spanning"
3954 " multiple descriptors\n", netdev->name);
3955 dev_kfree_skb_irq(skb);
3960 skb_put(skb, length);
3963 /* this looks ugly, but it seems compiler issues make it
3964 more efficient than reusing j */
3965 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3967 /* page alloc/put takes too long and effects small packet
3968 * throughput, so unsplit small packets and save the alloc/put*/
3969 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3971 /* there is no documentation about how to call
3972 * kmap_atomic, so we can't hold the mapping
3974 pci_dma_sync_single_for_cpu(pdev,
3975 ps_page_dma->ps_page_dma[0],
3977 PCI_DMA_FROMDEVICE);
3978 vaddr = kmap_atomic(ps_page->ps_page[0],
3979 KM_SKB_DATA_SOFTIRQ);
3980 memcpy(skb->tail, vaddr, l1);
3981 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3982 pci_dma_sync_single_for_device(pdev,
3983 ps_page_dma->ps_page_dma[0],
3984 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3985 /* remove the CRC */
3992 for (j = 0; j < adapter->rx_ps_pages; j++) {
3993 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3995 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3996 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3997 ps_page_dma->ps_page_dma[j] = 0;
3998 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4000 ps_page->ps_page[j] = NULL;
4002 skb->data_len += length;
4003 skb->truesize += length;
4006 /* strip the ethernet crc, problem is we're using pages now so
4007 * this whole operation can get a little cpu intensive */
4008 pskb_trim(skb, skb->len - 4);
4011 e1000_rx_checksum(adapter, staterr,
4012 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4013 skb->protocol = eth_type_trans(skb, netdev);
4015 if (likely(rx_desc->wb.upper.header_status &
4016 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4017 adapter->rx_hdr_split++;
4018 #ifdef CONFIG_E1000_NAPI
4019 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4020 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4021 le16_to_cpu(rx_desc->wb.middle.vlan) &
4022 E1000_RXD_SPC_VLAN_MASK);
4024 netif_receive_skb(skb);
4026 #else /* CONFIG_E1000_NAPI */
4027 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4028 vlan_hwaccel_rx(skb, adapter->vlgrp,
4029 le16_to_cpu(rx_desc->wb.middle.vlan) &
4030 E1000_RXD_SPC_VLAN_MASK);
4034 #endif /* CONFIG_E1000_NAPI */
4035 netdev->last_rx = jiffies;
4038 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4039 buffer_info->skb = NULL;
4041 /* return some buffers to hardware, one at a time is too slow */
4042 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4043 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4047 /* use prefetched values */
4049 buffer_info = next_buffer;
4051 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4053 rx_ring->next_to_clean = i;
4055 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4057 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4063 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4064 * @adapter: address of board private structure
4068 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4069 struct e1000_rx_ring *rx_ring,
4072 struct net_device *netdev = adapter->netdev;
4073 struct pci_dev *pdev = adapter->pdev;
4074 struct e1000_rx_desc *rx_desc;
4075 struct e1000_buffer *buffer_info;
4076 struct sk_buff *skb;
4078 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4080 i = rx_ring->next_to_use;
4081 buffer_info = &rx_ring->buffer_info[i];
4083 while (cleaned_count--) {
4084 skb = buffer_info->skb;
4090 skb = netdev_alloc_skb(netdev, bufsz);
4091 if (unlikely(!skb)) {
4092 /* Better luck next round */
4093 adapter->alloc_rx_buff_failed++;
4097 /* Fix for errata 23, can't cross 64kB boundary */
4098 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4099 struct sk_buff *oldskb = skb;
4100 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4101 "at %p\n", bufsz, skb->data);
4102 /* Try again, without freeing the previous */
4103 skb = netdev_alloc_skb(netdev, bufsz);
4104 /* Failed allocation, critical failure */
4106 dev_kfree_skb(oldskb);
4110 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4113 dev_kfree_skb(oldskb);
4114 break; /* while !buffer_info->skb */
4117 /* Use new allocation */
4118 dev_kfree_skb(oldskb);
4120 /* Make buffer alignment 2 beyond a 16 byte boundary
4121 * this will result in a 16 byte aligned IP header after
4122 * the 14 byte MAC header is removed
4124 skb_reserve(skb, NET_IP_ALIGN);
4126 buffer_info->skb = skb;
4127 buffer_info->length = adapter->rx_buffer_len;
4129 buffer_info->dma = pci_map_single(pdev,
4131 adapter->rx_buffer_len,
4132 PCI_DMA_FROMDEVICE);
4134 /* Fix for errata 23, can't cross 64kB boundary */
4135 if (!e1000_check_64k_bound(adapter,
4136 (void *)(unsigned long)buffer_info->dma,
4137 adapter->rx_buffer_len)) {
4138 DPRINTK(RX_ERR, ERR,
4139 "dma align check failed: %u bytes at %p\n",
4140 adapter->rx_buffer_len,
4141 (void *)(unsigned long)buffer_info->dma);
4143 buffer_info->skb = NULL;
4145 pci_unmap_single(pdev, buffer_info->dma,
4146 adapter->rx_buffer_len,
4147 PCI_DMA_FROMDEVICE);
4149 break; /* while !buffer_info->skb */
4151 rx_desc = E1000_RX_DESC(*rx_ring, i);
4152 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4154 if (unlikely(++i == rx_ring->count))
4156 buffer_info = &rx_ring->buffer_info[i];
4159 if (likely(rx_ring->next_to_use != i)) {
4160 rx_ring->next_to_use = i;
4161 if (unlikely(i-- == 0))
4162 i = (rx_ring->count - 1);
4164 /* Force memory writes to complete before letting h/w
4165 * know there are new descriptors to fetch. (Only
4166 * applicable for weak-ordered memory model archs,
4167 * such as IA-64). */
4169 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4174 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4175 * @adapter: address of board private structure
4179 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4180 struct e1000_rx_ring *rx_ring,
4183 struct net_device *netdev = adapter->netdev;
4184 struct pci_dev *pdev = adapter->pdev;
4185 union e1000_rx_desc_packet_split *rx_desc;
4186 struct e1000_buffer *buffer_info;
4187 struct e1000_ps_page *ps_page;
4188 struct e1000_ps_page_dma *ps_page_dma;
4189 struct sk_buff *skb;
4192 i = rx_ring->next_to_use;
4193 buffer_info = &rx_ring->buffer_info[i];
4194 ps_page = &rx_ring->ps_page[i];
4195 ps_page_dma = &rx_ring->ps_page_dma[i];
4197 while (cleaned_count--) {
4198 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4200 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4201 if (j < adapter->rx_ps_pages) {
4202 if (likely(!ps_page->ps_page[j])) {
4203 ps_page->ps_page[j] =
4204 alloc_page(GFP_ATOMIC);
4205 if (unlikely(!ps_page->ps_page[j])) {
4206 adapter->alloc_rx_buff_failed++;
4209 ps_page_dma->ps_page_dma[j] =
4211 ps_page->ps_page[j],
4213 PCI_DMA_FROMDEVICE);
4215 /* Refresh the desc even if buffer_addrs didn't
4216 * change because each write-back erases
4219 rx_desc->read.buffer_addr[j+1] =
4220 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4222 rx_desc->read.buffer_addr[j+1] = ~0;
4225 skb = netdev_alloc_skb(netdev,
4226 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4228 if (unlikely(!skb)) {
4229 adapter->alloc_rx_buff_failed++;
4233 /* Make buffer alignment 2 beyond a 16 byte boundary
4234 * this will result in a 16 byte aligned IP header after
4235 * the 14 byte MAC header is removed
4237 skb_reserve(skb, NET_IP_ALIGN);
4239 buffer_info->skb = skb;
4240 buffer_info->length = adapter->rx_ps_bsize0;
4241 buffer_info->dma = pci_map_single(pdev, skb->data,
4242 adapter->rx_ps_bsize0,
4243 PCI_DMA_FROMDEVICE);
4245 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4247 if (unlikely(++i == rx_ring->count)) i = 0;
4248 buffer_info = &rx_ring->buffer_info[i];
4249 ps_page = &rx_ring->ps_page[i];
4250 ps_page_dma = &rx_ring->ps_page_dma[i];
4254 if (likely(rx_ring->next_to_use != i)) {
4255 rx_ring->next_to_use = i;
4256 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4258 /* Force memory writes to complete before letting h/w
4259 * know there are new descriptors to fetch. (Only
4260 * applicable for weak-ordered memory model archs,
4261 * such as IA-64). */
4263 /* Hardware increments by 16 bytes, but packet split
4264 * descriptors are 32 bytes...so we increment tail
4267 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4272 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4277 e1000_smartspeed(struct e1000_adapter *adapter)
4279 uint16_t phy_status;
4282 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4283 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4286 if (adapter->smartspeed == 0) {
4287 /* If Master/Slave config fault is asserted twice,
4288 * we assume back-to-back */
4289 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4290 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4291 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4292 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4293 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4294 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4295 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4296 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4298 adapter->smartspeed++;
4299 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4300 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4302 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4303 MII_CR_RESTART_AUTO_NEG);
4304 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4309 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4310 /* If still no link, perhaps using 2/3 pair cable */
4311 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4312 phy_ctrl |= CR_1000T_MS_ENABLE;
4313 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4314 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4315 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4316 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4317 MII_CR_RESTART_AUTO_NEG);
4318 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4321 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4322 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4323 adapter->smartspeed = 0;
4334 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4340 return e1000_mii_ioctl(netdev, ifr, cmd);
4354 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4356 struct e1000_adapter *adapter = netdev_priv(netdev);
4357 struct mii_ioctl_data *data = if_mii(ifr);
4361 unsigned long flags;
4363 if (adapter->hw.media_type != e1000_media_type_copper)
4368 data->phy_id = adapter->hw.phy_addr;
4371 if (!capable(CAP_NET_ADMIN))
4373 spin_lock_irqsave(&adapter->stats_lock, flags);
4374 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4376 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4379 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4382 if (!capable(CAP_NET_ADMIN))
4384 if (data->reg_num & ~(0x1F))
4386 mii_reg = data->val_in;
4387 spin_lock_irqsave(&adapter->stats_lock, flags);
4388 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4390 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4393 if (adapter->hw.media_type == e1000_media_type_copper) {
4394 switch (data->reg_num) {
4396 if (mii_reg & MII_CR_POWER_DOWN)
4398 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4399 adapter->hw.autoneg = 1;
4400 adapter->hw.autoneg_advertised = 0x2F;
4403 spddplx = SPEED_1000;
4404 else if (mii_reg & 0x2000)
4405 spddplx = SPEED_100;
4408 spddplx += (mii_reg & 0x100)
4411 retval = e1000_set_spd_dplx(adapter,
4414 spin_unlock_irqrestore(
4415 &adapter->stats_lock,
4420 if (netif_running(adapter->netdev))
4421 e1000_reinit_locked(adapter);
4423 e1000_reset(adapter);
4425 case M88E1000_PHY_SPEC_CTRL:
4426 case M88E1000_EXT_PHY_SPEC_CTRL:
4427 if (e1000_phy_reset(&adapter->hw)) {
4428 spin_unlock_irqrestore(
4429 &adapter->stats_lock, flags);
4435 switch (data->reg_num) {
4437 if (mii_reg & MII_CR_POWER_DOWN)
4439 if (netif_running(adapter->netdev))
4440 e1000_reinit_locked(adapter);
4442 e1000_reset(adapter);
4446 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4451 return E1000_SUCCESS;
4455 e1000_pci_set_mwi(struct e1000_hw *hw)
4457 struct e1000_adapter *adapter = hw->back;
4458 int ret_val = pci_set_mwi(adapter->pdev);
4461 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4465 e1000_pci_clear_mwi(struct e1000_hw *hw)
4467 struct e1000_adapter *adapter = hw->back;
4469 pci_clear_mwi(adapter->pdev);
4473 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4475 struct e1000_adapter *adapter = hw->back;
4477 pci_read_config_word(adapter->pdev, reg, value);
4481 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4483 struct e1000_adapter *adapter = hw->back;
4485 pci_write_config_word(adapter->pdev, reg, *value);
4489 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4491 struct e1000_adapter *adapter = hw->back;
4492 uint16_t cap_offset;
4494 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4496 return -E1000_ERR_CONFIG;
4498 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4500 return E1000_SUCCESS;
4505 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4511 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4513 struct e1000_adapter *adapter = netdev_priv(netdev);
4514 uint32_t ctrl, rctl;
4516 e1000_irq_disable(adapter);
4517 adapter->vlgrp = grp;
4520 /* enable VLAN tag insert/strip */
4521 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4522 ctrl |= E1000_CTRL_VME;
4523 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4525 if (adapter->hw.mac_type != e1000_ich8lan) {
4526 /* enable VLAN receive filtering */
4527 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4528 rctl |= E1000_RCTL_VFE;
4529 rctl &= ~E1000_RCTL_CFIEN;
4530 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4531 e1000_update_mng_vlan(adapter);
4534 /* disable VLAN tag insert/strip */
4535 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4536 ctrl &= ~E1000_CTRL_VME;
4537 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4539 if (adapter->hw.mac_type != e1000_ich8lan) {
4540 /* disable VLAN filtering */
4541 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4542 rctl &= ~E1000_RCTL_VFE;
4543 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4544 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4545 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4546 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4551 e1000_irq_enable(adapter);
4555 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4557 struct e1000_adapter *adapter = netdev_priv(netdev);
4558 uint32_t vfta, index;
4560 if ((adapter->hw.mng_cookie.status &
4561 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4562 (vid == adapter->mng_vlan_id))
4564 /* add VID to filter table */
4565 index = (vid >> 5) & 0x7F;
4566 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4567 vfta |= (1 << (vid & 0x1F));
4568 e1000_write_vfta(&adapter->hw, index, vfta);
4572 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4574 struct e1000_adapter *adapter = netdev_priv(netdev);
4575 uint32_t vfta, index;
4577 e1000_irq_disable(adapter);
4580 adapter->vlgrp->vlan_devices[vid] = NULL;
4582 e1000_irq_enable(adapter);
4584 if ((adapter->hw.mng_cookie.status &
4585 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4586 (vid == adapter->mng_vlan_id)) {
4587 /* release control to f/w */
4588 e1000_release_hw_control(adapter);
4592 /* remove VID from filter table */
4593 index = (vid >> 5) & 0x7F;
4594 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4595 vfta &= ~(1 << (vid & 0x1F));
4596 e1000_write_vfta(&adapter->hw, index, vfta);
4600 e1000_restore_vlan(struct e1000_adapter *adapter)
4602 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4604 if (adapter->vlgrp) {
4606 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4607 if (!adapter->vlgrp->vlan_devices[vid])
4609 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4615 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4617 adapter->hw.autoneg = 0;
4619 /* Fiber NICs only allow 1000 gbps Full duplex */
4620 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4621 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4622 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4627 case SPEED_10 + DUPLEX_HALF:
4628 adapter->hw.forced_speed_duplex = e1000_10_half;
4630 case SPEED_10 + DUPLEX_FULL:
4631 adapter->hw.forced_speed_duplex = e1000_10_full;
4633 case SPEED_100 + DUPLEX_HALF:
4634 adapter->hw.forced_speed_duplex = e1000_100_half;
4636 case SPEED_100 + DUPLEX_FULL:
4637 adapter->hw.forced_speed_duplex = e1000_100_full;
4639 case SPEED_1000 + DUPLEX_FULL:
4640 adapter->hw.autoneg = 1;
4641 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4643 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4645 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4652 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4653 * bus we're on (PCI(X) vs. PCI-E)
4655 #define PCIE_CONFIG_SPACE_LEN 256
4656 #define PCI_CONFIG_SPACE_LEN 64
4658 e1000_pci_save_state(struct e1000_adapter *adapter)
4660 struct pci_dev *dev = adapter->pdev;
4664 if (adapter->hw.mac_type >= e1000_82571)
4665 size = PCIE_CONFIG_SPACE_LEN;
4667 size = PCI_CONFIG_SPACE_LEN;
4669 WARN_ON(adapter->config_space != NULL);
4671 adapter->config_space = kmalloc(size, GFP_KERNEL);
4672 if (!adapter->config_space) {
4673 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4676 for (i = 0; i < (size / 4); i++)
4677 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4682 e1000_pci_restore_state(struct e1000_adapter *adapter)
4684 struct pci_dev *dev = adapter->pdev;
4688 if (adapter->config_space == NULL)
4691 if (adapter->hw.mac_type >= e1000_82571)
4692 size = PCIE_CONFIG_SPACE_LEN;
4694 size = PCI_CONFIG_SPACE_LEN;
4695 for (i = 0; i < (size / 4); i++)
4696 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4697 kfree(adapter->config_space);
4698 adapter->config_space = NULL;
4701 #endif /* CONFIG_PM */
4704 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4706 struct net_device *netdev = pci_get_drvdata(pdev);
4707 struct e1000_adapter *adapter = netdev_priv(netdev);
4708 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4709 uint32_t wufc = adapter->wol;
4714 netif_device_detach(netdev);
4716 if (netif_running(netdev)) {
4717 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4718 e1000_down(adapter);
4722 /* Implement our own version of pci_save_state(pdev) because pci-
4723 * express adapters have 256-byte config spaces. */
4724 retval = e1000_pci_save_state(adapter);
4729 status = E1000_READ_REG(&adapter->hw, STATUS);
4730 if (status & E1000_STATUS_LU)
4731 wufc &= ~E1000_WUFC_LNKC;
4734 e1000_setup_rctl(adapter);
4735 e1000_set_multi(netdev);
4737 /* turn on all-multi mode if wake on multicast is enabled */
4738 if (wufc & E1000_WUFC_MC) {
4739 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4740 rctl |= E1000_RCTL_MPE;
4741 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4744 if (adapter->hw.mac_type >= e1000_82540) {
4745 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4746 /* advertise wake from D3Cold */
4747 #define E1000_CTRL_ADVD3WUC 0x00100000
4748 /* phy power management enable */
4749 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4750 ctrl |= E1000_CTRL_ADVD3WUC |
4751 E1000_CTRL_EN_PHY_PWR_MGMT;
4752 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4755 if (adapter->hw.media_type == e1000_media_type_fiber ||
4756 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4757 /* keep the laser running in D3 */
4758 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4759 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4760 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4763 /* Allow time for pending master requests to run */
4764 e1000_disable_pciex_master(&adapter->hw);
4766 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4767 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4768 pci_enable_wake(pdev, PCI_D3hot, 1);
4769 pci_enable_wake(pdev, PCI_D3cold, 1);
4771 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4772 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4773 pci_enable_wake(pdev, PCI_D3hot, 0);
4774 pci_enable_wake(pdev, PCI_D3cold, 0);
4777 if (adapter->hw.mac_type < e1000_82571 &&
4778 adapter->hw.media_type == e1000_media_type_copper) {
4779 manc = E1000_READ_REG(&adapter->hw, MANC);
4780 if (manc & E1000_MANC_SMBUS_EN) {
4781 manc |= E1000_MANC_ARP_EN;
4782 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4783 pci_enable_wake(pdev, PCI_D3hot, 1);
4784 pci_enable_wake(pdev, PCI_D3cold, 1);
4788 if (adapter->hw.phy_type == e1000_phy_igp_3)
4789 e1000_phy_powerdown_workaround(&adapter->hw);
4791 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4792 * would have already happened in close and is redundant. */
4793 e1000_release_hw_control(adapter);
4795 pci_disable_device(pdev);
4797 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4804 e1000_resume(struct pci_dev *pdev)
4806 struct net_device *netdev = pci_get_drvdata(pdev);
4807 struct e1000_adapter *adapter = netdev_priv(netdev);
4810 pci_set_power_state(pdev, PCI_D0);
4811 e1000_pci_restore_state(adapter);
4812 if ((err = pci_enable_device(pdev))) {
4813 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4816 pci_set_master(pdev);
4818 pci_enable_wake(pdev, PCI_D3hot, 0);
4819 pci_enable_wake(pdev, PCI_D3cold, 0);
4821 e1000_reset(adapter);
4822 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4824 if (netif_running(netdev))
4827 netif_device_attach(netdev);
4829 if (adapter->hw.mac_type < e1000_82571 &&
4830 adapter->hw.media_type == e1000_media_type_copper) {
4831 manc = E1000_READ_REG(&adapter->hw, MANC);
4832 manc &= ~(E1000_MANC_ARP_EN);
4833 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4836 /* If the controller is 82573 and f/w is AMT, do not set
4837 * DRV_LOAD until the interface is up. For all other cases,
4838 * let the f/w know that the h/w is now under the control
4840 if (adapter->hw.mac_type != e1000_82573 ||
4841 !e1000_check_mng_mode(&adapter->hw))
4842 e1000_get_hw_control(adapter);
4848 static void e1000_shutdown(struct pci_dev *pdev)
4850 e1000_suspend(pdev, PMSG_SUSPEND);
4853 #ifdef CONFIG_NET_POLL_CONTROLLER
4855 * Polling 'interrupt' - used by things like netconsole to send skbs
4856 * without having to re-enable interrupts. It's not called while
4857 * the interrupt routine is executing.
4860 e1000_netpoll(struct net_device *netdev)
4862 struct e1000_adapter *adapter = netdev_priv(netdev);
4864 disable_irq(adapter->pdev->irq);
4865 e1000_intr(adapter->pdev->irq, netdev, NULL);
4866 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4867 #ifndef CONFIG_E1000_NAPI
4868 adapter->clean_rx(adapter, adapter->rx_ring);
4870 enable_irq(adapter->pdev->irq);
4875 * e1000_io_error_detected - called when PCI error is detected
4876 * @pdev: Pointer to PCI device
4877 * @state: The current pci conneection state
4879 * This function is called after a PCI bus error affecting
4880 * this device has been detected.
4882 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4884 struct net_device *netdev = pci_get_drvdata(pdev);
4885 struct e1000_adapter *adapter = netdev->priv;
4887 netif_device_detach(netdev);
4889 if (netif_running(netdev))
4890 e1000_down(adapter);
4891 pci_disable_device(pdev);
4893 /* Request a slot slot reset. */
4894 return PCI_ERS_RESULT_NEED_RESET;
4898 * e1000_io_slot_reset - called after the pci bus has been reset.
4899 * @pdev: Pointer to PCI device
4901 * Restart the card from scratch, as if from a cold-boot. Implementation
4902 * resembles the first-half of the e1000_resume routine.
4904 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4906 struct net_device *netdev = pci_get_drvdata(pdev);
4907 struct e1000_adapter *adapter = netdev->priv;
4909 if (pci_enable_device(pdev)) {
4910 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4911 return PCI_ERS_RESULT_DISCONNECT;
4913 pci_set_master(pdev);
4915 pci_enable_wake(pdev, PCI_D3hot, 0);
4916 pci_enable_wake(pdev, PCI_D3cold, 0);
4918 /* Perform card reset only on one instance of the card */
4919 if (PCI_FUNC (pdev->devfn) != 0)
4920 return PCI_ERS_RESULT_RECOVERED;
4922 e1000_reset(adapter);
4923 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4925 return PCI_ERS_RESULT_RECOVERED;
4929 * e1000_io_resume - called when traffic can start flowing again.
4930 * @pdev: Pointer to PCI device
4932 * This callback is called when the error recovery driver tells us that
4933 * its OK to resume normal operation. Implementation resembles the
4934 * second-half of the e1000_resume routine.
4936 static void e1000_io_resume(struct pci_dev *pdev)
4938 struct net_device *netdev = pci_get_drvdata(pdev);
4939 struct e1000_adapter *adapter = netdev->priv;
4940 uint32_t manc, swsm;
4942 if (netif_running(netdev)) {
4943 if (e1000_up(adapter)) {
4944 printk("e1000: can't bring device back up after reset\n");
4949 netif_device_attach(netdev);
4951 if (adapter->hw.mac_type >= e1000_82540 &&
4952 adapter->hw.media_type == e1000_media_type_copper) {
4953 manc = E1000_READ_REG(&adapter->hw, MANC);
4954 manc &= ~(E1000_MANC_ARP_EN);
4955 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4958 switch (adapter->hw.mac_type) {
4960 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4961 E1000_WRITE_REG(&adapter->hw, SWSM,
4962 swsm | E1000_SWSM_DRV_LOAD);
4968 if (netif_running(netdev))
4969 mod_timer(&adapter->watchdog_timer, jiffies);