3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/rtmutex.h>
112 #include <asm/uaccess.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 #include <asm/page.h>
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
131 #define FORCED_DEBUG 1
135 #define FORCED_DEBUG 0
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
154 #define ARCH_KMALLOC_MINALIGN 0
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 /* Legal flag mask for kmem_cache_create(). */
174 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
190 * Bufctl's are used for linking objs within a slab
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 typedef unsigned int kmem_bufctl_t;
207 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
209 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
225 unsigned short nodeid;
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct rcu_head head;
246 struct kmem_cache *cachep;
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
265 unsigned int batchcount;
266 unsigned int touched;
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
272 * [0] is for gcc 2.95. It should really be [].
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned int free_limit;
295 unsigned int colour_next; /* Per-node cache coloring */
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
304 * Need this for bootstrapping a per node allocator.
306 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308 #define CACHE_CACHE 0
310 #define SIZE_L3 (1 + MAX_NUMNODES)
312 static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 static int enable_cpucache(struct kmem_cache *cachep);
317 static void cache_reap(void *unused);
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
323 static __always_inline int index_of(const size_t size)
325 extern void __bad_size(void);
327 if (__builtin_constant_p(size)) {
335 #include "linux/kmalloc_sizes.h"
343 static int slab_early_init = 1;
345 #define INDEX_AC index_of(sizeof(struct arraycache_init))
346 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
348 static void kmem_list3_init(struct kmem_list3 *parent)
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
355 parent->colour_next = 0;
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
361 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
367 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 /* 1) per-cpu data, touched during every alloc/free */
382 struct array_cache *array[NR_CPUS];
383 /* 2) Cache tunables. Protected by cache_chain_mutex */
384 unsigned int batchcount;
388 unsigned int buffer_size;
389 /* 3) touched by every alloc & free from the backend */
390 struct kmem_list3 *nodelists[MAX_NUMNODES];
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
395 /* 4) cache_grow/shrink */
396 /* order of pgs per slab (2^n) */
397 unsigned int gfporder;
399 /* force GFP flags, e.g. GFP_DMA */
402 size_t colour; /* cache colouring range */
403 unsigned int colour_off; /* colour offset */
404 struct kmem_cache *slabp_cache;
405 unsigned int slab_size;
406 unsigned int dflags; /* dynamic flags */
408 /* constructor func */
409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
411 /* de-constructor func */
412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
414 /* 5) cache creation/removal */
416 struct list_head next;
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
429 unsigned long node_overflow;
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
447 #define CFLGS_OFF_SLAB (0x80000000UL)
448 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
450 #define BATCHREFILL_LIMIT 16
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
455 * OTOH the cpuarrays can contain lots of objects,
456 * which could lock up otherwise freeable slabs.
458 #define REAPTIMEOUT_CPUC (2*HZ)
459 #define REAPTIMEOUT_LIST3 (4*HZ)
462 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
463 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465 #define STATS_INC_GROWN(x) ((x)->grown++)
466 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
467 #define STATS_SET_HIGH(x) \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
472 #define STATS_INC_ERR(x) ((x)->errors++)
473 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
474 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
475 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
476 #define STATS_SET_FREEABLE(x, i) \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
481 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
486 #define STATS_INC_ACTIVE(x) do { } while (0)
487 #define STATS_DEC_ACTIVE(x) do { } while (0)
488 #define STATS_INC_ALLOCED(x) do { } while (0)
489 #define STATS_INC_GROWN(x) do { } while (0)
490 #define STATS_ADD_REAPED(x,y) do { } while (0)
491 #define STATS_SET_HIGH(x) do { } while (0)
492 #define STATS_INC_ERR(x) do { } while (0)
493 #define STATS_INC_NODEALLOCS(x) do { } while (0)
494 #define STATS_INC_NODEFREES(x) do { } while (0)
495 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
496 #define STATS_SET_FREEABLE(x, i) do { } while (0)
497 #define STATS_INC_ALLOCHIT(x) do { } while (0)
498 #define STATS_INC_ALLOCMISS(x) do { } while (0)
499 #define STATS_INC_FREEHIT(x) do { } while (0)
500 #define STATS_INC_FREEMISS(x) do { } while (0)
506 * memory layout of objects:
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
518 static int obj_offset(struct kmem_cache *cachep)
520 return cachep->obj_offset;
523 static int obj_size(struct kmem_cache *cachep)
525 return cachep->obj_size;
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
575 * Do not go above this order unless 0 objects fit into the slab.
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
588 page->lru.next = (struct list_head *)cache;
591 static inline struct kmem_cache *page_get_cache(struct page *page)
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
595 BUG_ON(!PageSlab(page));
596 return (struct kmem_cache *)page->lru.next;
599 static inline void page_set_slab(struct page *page, struct slab *slab)
601 page->lru.prev = (struct list_head *)slab;
604 static inline struct slab *page_get_slab(struct page *page)
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
608 BUG_ON(!PageSlab(page));
609 return (struct slab *)page->lru.prev;
612 static inline struct kmem_cache *virt_to_cache(const void *obj)
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
618 static inline struct slab *virt_to_slab(const void *obj)
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
624 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
627 return slab->s_mem + cache->buffer_size * idx;
630 static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 struct cache_sizes malloc_sizes[] = {
640 #define CACHE(x) { .cs_size = (x) },
641 #include <linux/kmalloc_sizes.h>
645 EXPORT_SYMBOL(malloc_sizes);
647 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
653 static struct cache_names __initdata cache_names[] = {
654 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655 #include <linux/kmalloc_sizes.h>
660 static struct arraycache_init initarray_cache __initdata =
661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
662 static struct arraycache_init initarray_generic =
663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665 /* internal cache of cache description objs */
666 static struct kmem_cache cache_cache = {
668 .limit = BOOT_CPUCACHE_ENTRIES,
670 .buffer_size = sizeof(struct kmem_cache),
671 .name = "kmem_cache",
673 .obj_size = sizeof(struct kmem_cache),
677 #define BAD_ALIEN_MAGIC 0x01020304ul
679 #ifdef CONFIG_LOCKDEP
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
692 static struct lock_class_key on_slab_l3_key;
693 static struct lock_class_key on_slab_alc_key;
695 static inline void init_lock_keys(void)
699 struct cache_sizes *s = malloc_sizes;
701 while (s->cs_size != ULONG_MAX) {
703 struct array_cache **alc;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
721 lockdep_set_class(&alc[r]->lock,
729 static inline void init_lock_keys(void)
734 /* Guard access to the cache-chain. */
735 static DEFINE_MUTEX(cache_chain_mutex);
736 static struct list_head cache_chain;
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
750 * used by boot code to determine if it can use slab based allocator
752 int slab_is_available(void)
754 return g_cpucache_up == FULL;
757 static DEFINE_PER_CPU(struct work_struct, reap_work);
759 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
761 return cachep->array[smp_processor_id()];
764 static inline struct kmem_cache *__find_general_cachep(size_t size,
767 struct cache_sizes *csizep = malloc_sizes;
770 /* This happens if someone tries to call
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
776 while (size > csizep->cs_size)
780 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
781 * has cs_{dma,}cachep==NULL. Thus no special case
782 * for large kmalloc calls required.
784 if (unlikely(gfpflags & GFP_DMA))
785 return csizep->cs_dmacachep;
786 return csizep->cs_cachep;
789 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
791 return __find_general_cachep(size, gfpflags);
794 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
796 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
800 * Calculate the number of objects and left-over bytes for a given buffer size.
802 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
803 size_t align, int flags, size_t *left_over,
808 size_t slab_size = PAGE_SIZE << gfporder;
811 * The slab management structure can be either off the slab or
812 * on it. For the latter case, the memory allocated for a
816 * - One kmem_bufctl_t for each object
817 * - Padding to respect alignment of @align
818 * - @buffer_size bytes for each object
820 * If the slab management structure is off the slab, then the
821 * alignment will already be calculated into the size. Because
822 * the slabs are all pages aligned, the objects will be at the
823 * correct alignment when allocated.
825 if (flags & CFLGS_OFF_SLAB) {
827 nr_objs = slab_size / buffer_size;
829 if (nr_objs > SLAB_LIMIT)
830 nr_objs = SLAB_LIMIT;
833 * Ignore padding for the initial guess. The padding
834 * is at most @align-1 bytes, and @buffer_size is at
835 * least @align. In the worst case, this result will
836 * be one greater than the number of objects that fit
837 * into the memory allocation when taking the padding
840 nr_objs = (slab_size - sizeof(struct slab)) /
841 (buffer_size + sizeof(kmem_bufctl_t));
844 * This calculated number will be either the right
845 * amount, or one greater than what we want.
847 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
851 if (nr_objs > SLAB_LIMIT)
852 nr_objs = SLAB_LIMIT;
854 mgmt_size = slab_mgmt_size(nr_objs, align);
857 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
860 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
862 static void __slab_error(const char *function, struct kmem_cache *cachep,
865 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
866 function, cachep->name, msg);
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
877 static DEFINE_PER_CPU(unsigned long, reap_node);
879 static void init_reap_node(int cpu)
883 node = next_node(cpu_to_node(cpu), node_online_map);
884 if (node == MAX_NUMNODES)
885 node = first_node(node_online_map);
887 __get_cpu_var(reap_node) = node;
890 static void next_reap_node(void)
892 int node = __get_cpu_var(reap_node);
895 * Also drain per cpu pages on remote zones
897 if (node != numa_node_id())
898 drain_node_pages(node);
900 node = next_node(node, node_online_map);
901 if (unlikely(node >= MAX_NUMNODES))
902 node = first_node(node_online_map);
903 __get_cpu_var(reap_node) = node;
907 #define init_reap_node(cpu) do { } while (0)
908 #define next_reap_node(void) do { } while (0)
912 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
913 * via the workqueue/eventd.
914 * Add the CPU number into the expiration time to minimize the possibility of
915 * the CPUs getting into lockstep and contending for the global cache chain
918 static void __devinit start_cpu_timer(int cpu)
920 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
923 * When this gets called from do_initcalls via cpucache_init(),
924 * init_workqueues() has already run, so keventd will be setup
927 if (keventd_up() && reap_work->func == NULL) {
929 INIT_WORK(reap_work, cache_reap, NULL);
930 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
934 static struct array_cache *alloc_arraycache(int node, int entries,
937 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
938 struct array_cache *nc = NULL;
940 nc = kmalloc_node(memsize, GFP_KERNEL, node);
944 nc->batchcount = batchcount;
946 spin_lock_init(&nc->lock);
952 * Transfer objects in one arraycache to another.
953 * Locking must be handled by the caller.
955 * Return the number of entries transferred.
957 static int transfer_objects(struct array_cache *to,
958 struct array_cache *from, unsigned int max)
960 /* Figure out how many entries to transfer */
961 int nr = min(min(from->avail, max), to->limit - to->avail);
966 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
977 #define drain_alien_cache(cachep, alien) do { } while (0)
978 #define reap_alien(cachep, l3) do { } while (0)
980 static inline struct array_cache **alloc_alien_cache(int node, int limit)
982 return (struct array_cache **)BAD_ALIEN_MAGIC;
985 static inline void free_alien_cache(struct array_cache **ac_ptr)
989 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
994 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1000 static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1001 gfp_t flags, int nodeid)
1006 #else /* CONFIG_NUMA */
1008 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
1009 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1011 static struct array_cache **alloc_alien_cache(int node, int limit)
1013 struct array_cache **ac_ptr;
1014 int memsize = sizeof(void *) * MAX_NUMNODES;
1019 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1022 if (i == node || !node_online(i)) {
1026 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1028 for (i--; i <= 0; i--)
1038 static void free_alien_cache(struct array_cache **ac_ptr)
1049 static void __drain_alien_cache(struct kmem_cache *cachep,
1050 struct array_cache *ac, int node)
1052 struct kmem_list3 *rl3 = cachep->nodelists[node];
1055 spin_lock(&rl3->list_lock);
1057 * Stuff objects into the remote nodes shared array first.
1058 * That way we could avoid the overhead of putting the objects
1059 * into the free lists and getting them back later.
1062 transfer_objects(rl3->shared, ac, ac->limit);
1064 free_block(cachep, ac->entry, ac->avail, node);
1066 spin_unlock(&rl3->list_lock);
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1073 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1075 int node = __get_cpu_var(reap_node);
1078 struct array_cache *ac = l3->alien[node];
1080 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1081 __drain_alien_cache(cachep, ac, node);
1082 spin_unlock_irq(&ac->lock);
1087 static void drain_alien_cache(struct kmem_cache *cachep,
1088 struct array_cache **alien)
1091 struct array_cache *ac;
1092 unsigned long flags;
1094 for_each_online_node(i) {
1097 spin_lock_irqsave(&ac->lock, flags);
1098 __drain_alien_cache(cachep, ac, i);
1099 spin_unlock_irqrestore(&ac->lock, flags);
1104 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1106 struct slab *slabp = virt_to_slab(objp);
1107 int nodeid = slabp->nodeid;
1108 struct kmem_list3 *l3;
1109 struct array_cache *alien = NULL;
1112 * Make sure we are not freeing a object from another node to the array
1113 * cache on this cpu.
1115 if (likely(slabp->nodeid == numa_node_id()))
1118 l3 = cachep->nodelists[numa_node_id()];
1119 STATS_INC_NODEFREES(cachep);
1120 if (l3->alien && l3->alien[nodeid]) {
1121 alien = l3->alien[nodeid];
1122 spin_lock(&alien->lock);
1123 if (unlikely(alien->avail == alien->limit)) {
1124 STATS_INC_ACOVERFLOW(cachep);
1125 __drain_alien_cache(cachep, alien, nodeid);
1127 alien->entry[alien->avail++] = objp;
1128 spin_unlock(&alien->lock);
1130 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1131 free_block(cachep, &objp, 1, nodeid);
1132 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1138 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1139 unsigned long action, void *hcpu)
1141 long cpu = (long)hcpu;
1142 struct kmem_cache *cachep;
1143 struct kmem_list3 *l3 = NULL;
1144 int node = cpu_to_node(cpu);
1145 int memsize = sizeof(struct kmem_list3);
1148 case CPU_UP_PREPARE:
1149 mutex_lock(&cache_chain_mutex);
1151 * We need to do this right in the beginning since
1152 * alloc_arraycache's are going to use this list.
1153 * kmalloc_node allows us to add the slab to the right
1154 * kmem_list3 and not this cpu's kmem_list3
1157 list_for_each_entry(cachep, &cache_chain, next) {
1159 * Set up the size64 kmemlist for cpu before we can
1160 * begin anything. Make sure some other cpu on this
1161 * node has not already allocated this
1163 if (!cachep->nodelists[node]) {
1164 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1167 kmem_list3_init(l3);
1168 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1169 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1172 * The l3s don't come and go as CPUs come and
1173 * go. cache_chain_mutex is sufficient
1176 cachep->nodelists[node] = l3;
1179 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1180 cachep->nodelists[node]->free_limit =
1181 (1 + nr_cpus_node(node)) *
1182 cachep->batchcount + cachep->num;
1183 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1187 * Now we can go ahead with allocating the shared arrays and
1190 list_for_each_entry(cachep, &cache_chain, next) {
1191 struct array_cache *nc;
1192 struct array_cache *shared;
1193 struct array_cache **alien;
1195 nc = alloc_arraycache(node, cachep->limit,
1196 cachep->batchcount);
1199 shared = alloc_arraycache(node,
1200 cachep->shared * cachep->batchcount,
1205 alien = alloc_alien_cache(node, cachep->limit);
1208 cachep->array[cpu] = nc;
1209 l3 = cachep->nodelists[node];
1212 spin_lock_irq(&l3->list_lock);
1215 * We are serialised from CPU_DEAD or
1216 * CPU_UP_CANCELLED by the cpucontrol lock
1218 l3->shared = shared;
1227 spin_unlock_irq(&l3->list_lock);
1229 free_alien_cache(alien);
1231 mutex_unlock(&cache_chain_mutex);
1234 start_cpu_timer(cpu);
1236 #ifdef CONFIG_HOTPLUG_CPU
1239 * Even if all the cpus of a node are down, we don't free the
1240 * kmem_list3 of any cache. This to avoid a race between
1241 * cpu_down, and a kmalloc allocation from another cpu for
1242 * memory from the node of the cpu going down. The list3
1243 * structure is usually allocated from kmem_cache_create() and
1244 * gets destroyed at kmem_cache_destroy().
1247 case CPU_UP_CANCELED:
1248 mutex_lock(&cache_chain_mutex);
1249 list_for_each_entry(cachep, &cache_chain, next) {
1250 struct array_cache *nc;
1251 struct array_cache *shared;
1252 struct array_cache **alien;
1255 mask = node_to_cpumask(node);
1256 /* cpu is dead; no one can alloc from it. */
1257 nc = cachep->array[cpu];
1258 cachep->array[cpu] = NULL;
1259 l3 = cachep->nodelists[node];
1262 goto free_array_cache;
1264 spin_lock_irq(&l3->list_lock);
1266 /* Free limit for this kmem_list3 */
1267 l3->free_limit -= cachep->batchcount;
1269 free_block(cachep, nc->entry, nc->avail, node);
1271 if (!cpus_empty(mask)) {
1272 spin_unlock_irq(&l3->list_lock);
1273 goto free_array_cache;
1276 shared = l3->shared;
1278 free_block(cachep, l3->shared->entry,
1279 l3->shared->avail, node);
1286 spin_unlock_irq(&l3->list_lock);
1290 drain_alien_cache(cachep, alien);
1291 free_alien_cache(alien);
1297 * In the previous loop, all the objects were freed to
1298 * the respective cache's slabs, now we can go ahead and
1299 * shrink each nodelist to its limit.
1301 list_for_each_entry(cachep, &cache_chain, next) {
1302 l3 = cachep->nodelists[node];
1305 drain_freelist(cachep, l3, l3->free_objects);
1307 mutex_unlock(&cache_chain_mutex);
1313 mutex_unlock(&cache_chain_mutex);
1317 static struct notifier_block __cpuinitdata cpucache_notifier = {
1318 &cpuup_callback, NULL, 0
1322 * swap the static kmem_list3 with kmalloced memory
1324 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1327 struct kmem_list3 *ptr;
1329 BUG_ON(cachep->nodelists[nodeid] != list);
1330 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1333 local_irq_disable();
1334 memcpy(ptr, list, sizeof(struct kmem_list3));
1336 * Do not assume that spinlocks can be initialized via memcpy:
1338 spin_lock_init(&ptr->list_lock);
1340 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1341 cachep->nodelists[nodeid] = ptr;
1346 * Initialisation. Called after the page allocator have been initialised and
1347 * before smp_init().
1349 void __init kmem_cache_init(void)
1352 struct cache_sizes *sizes;
1353 struct cache_names *names;
1357 for (i = 0; i < NUM_INIT_LISTS; i++) {
1358 kmem_list3_init(&initkmem_list3[i]);
1359 if (i < MAX_NUMNODES)
1360 cache_cache.nodelists[i] = NULL;
1364 * Fragmentation resistance on low memory - only use bigger
1365 * page orders on machines with more than 32MB of memory.
1367 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1368 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1370 /* Bootstrap is tricky, because several objects are allocated
1371 * from caches that do not exist yet:
1372 * 1) initialize the cache_cache cache: it contains the struct
1373 * kmem_cache structures of all caches, except cache_cache itself:
1374 * cache_cache is statically allocated.
1375 * Initially an __init data area is used for the head array and the
1376 * kmem_list3 structures, it's replaced with a kmalloc allocated
1377 * array at the end of the bootstrap.
1378 * 2) Create the first kmalloc cache.
1379 * The struct kmem_cache for the new cache is allocated normally.
1380 * An __init data area is used for the head array.
1381 * 3) Create the remaining kmalloc caches, with minimally sized
1383 * 4) Replace the __init data head arrays for cache_cache and the first
1384 * kmalloc cache with kmalloc allocated arrays.
1385 * 5) Replace the __init data for kmem_list3 for cache_cache and
1386 * the other cache's with kmalloc allocated memory.
1387 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1390 /* 1) create the cache_cache */
1391 INIT_LIST_HEAD(&cache_chain);
1392 list_add(&cache_cache.next, &cache_chain);
1393 cache_cache.colour_off = cache_line_size();
1394 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1395 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1397 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1400 for (order = 0; order < MAX_ORDER; order++) {
1401 cache_estimate(order, cache_cache.buffer_size,
1402 cache_line_size(), 0, &left_over, &cache_cache.num);
1403 if (cache_cache.num)
1406 BUG_ON(!cache_cache.num);
1407 cache_cache.gfporder = order;
1408 cache_cache.colour = left_over / cache_cache.colour_off;
1409 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1410 sizeof(struct slab), cache_line_size());
1412 /* 2+3) create the kmalloc caches */
1413 sizes = malloc_sizes;
1414 names = cache_names;
1417 * Initialize the caches that provide memory for the array cache and the
1418 * kmem_list3 structures first. Without this, further allocations will
1422 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1423 sizes[INDEX_AC].cs_size,
1424 ARCH_KMALLOC_MINALIGN,
1425 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1428 if (INDEX_AC != INDEX_L3) {
1429 sizes[INDEX_L3].cs_cachep =
1430 kmem_cache_create(names[INDEX_L3].name,
1431 sizes[INDEX_L3].cs_size,
1432 ARCH_KMALLOC_MINALIGN,
1433 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1437 slab_early_init = 0;
1439 while (sizes->cs_size != ULONG_MAX) {
1441 * For performance, all the general caches are L1 aligned.
1442 * This should be particularly beneficial on SMP boxes, as it
1443 * eliminates "false sharing".
1444 * Note for systems short on memory removing the alignment will
1445 * allow tighter packing of the smaller caches.
1447 if (!sizes->cs_cachep) {
1448 sizes->cs_cachep = kmem_cache_create(names->name,
1450 ARCH_KMALLOC_MINALIGN,
1451 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1455 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1457 ARCH_KMALLOC_MINALIGN,
1458 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1464 /* 4) Replace the bootstrap head arrays */
1466 struct array_cache *ptr;
1468 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1470 local_irq_disable();
1471 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1472 memcpy(ptr, cpu_cache_get(&cache_cache),
1473 sizeof(struct arraycache_init));
1475 * Do not assume that spinlocks can be initialized via memcpy:
1477 spin_lock_init(&ptr->lock);
1479 cache_cache.array[smp_processor_id()] = ptr;
1482 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1484 local_irq_disable();
1485 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1486 != &initarray_generic.cache);
1487 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1488 sizeof(struct arraycache_init));
1490 * Do not assume that spinlocks can be initialized via memcpy:
1492 spin_lock_init(&ptr->lock);
1494 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1498 /* 5) Replace the bootstrap kmem_list3's */
1501 /* Replace the static kmem_list3 structures for the boot cpu */
1502 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1505 for_each_online_node(node) {
1506 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1507 &initkmem_list3[SIZE_AC + node], node);
1509 if (INDEX_AC != INDEX_L3) {
1510 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1511 &initkmem_list3[SIZE_L3 + node],
1517 /* 6) resize the head arrays to their final sizes */
1519 struct kmem_cache *cachep;
1520 mutex_lock(&cache_chain_mutex);
1521 list_for_each_entry(cachep, &cache_chain, next)
1522 if (enable_cpucache(cachep))
1524 mutex_unlock(&cache_chain_mutex);
1527 /* Annotate slab for lockdep -- annotate the malloc caches */
1532 g_cpucache_up = FULL;
1535 * Register a cpu startup notifier callback that initializes
1536 * cpu_cache_get for all new cpus
1538 register_cpu_notifier(&cpucache_notifier);
1541 * The reap timers are started later, with a module init call: That part
1542 * of the kernel is not yet operational.
1546 static int __init cpucache_init(void)
1551 * Register the timers that return unneeded pages to the page allocator
1553 for_each_online_cpu(cpu)
1554 start_cpu_timer(cpu);
1557 __initcall(cpucache_init);
1560 * Interface to system's page allocator. No need to hold the cache-lock.
1562 * If we requested dmaable memory, we will get it. Even if we
1563 * did not request dmaable memory, we might get it, but that
1564 * would be relatively rare and ignorable.
1566 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1574 * Nommu uses slab's for process anonymous memory allocations, and thus
1575 * requires __GFP_COMP to properly refcount higher order allocations
1577 flags |= __GFP_COMP;
1581 * Under NUMA we want memory on the indicated node. We will handle
1582 * the needed fallback ourselves since we want to serve from our
1583 * per node object lists first for other nodes.
1585 flags |= cachep->gfpflags | GFP_THISNODE;
1587 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1591 nr_pages = (1 << cachep->gfporder);
1592 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1593 add_zone_page_state(page_zone(page),
1594 NR_SLAB_RECLAIMABLE, nr_pages);
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_UNRECLAIMABLE, nr_pages);
1598 for (i = 0; i < nr_pages; i++)
1599 __SetPageSlab(page + i);
1600 return page_address(page);
1604 * Interface to system's page release.
1606 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1608 unsigned long i = (1 << cachep->gfporder);
1609 struct page *page = virt_to_page(addr);
1610 const unsigned long nr_freed = i;
1612 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 sub_zone_page_state(page_zone(page),
1614 NR_SLAB_RECLAIMABLE, nr_freed);
1616 sub_zone_page_state(page_zone(page),
1617 NR_SLAB_UNRECLAIMABLE, nr_freed);
1619 BUG_ON(!PageSlab(page));
1620 __ClearPageSlab(page);
1623 if (current->reclaim_state)
1624 current->reclaim_state->reclaimed_slab += nr_freed;
1625 free_pages((unsigned long)addr, cachep->gfporder);
1628 static void kmem_rcu_free(struct rcu_head *head)
1630 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1631 struct kmem_cache *cachep = slab_rcu->cachep;
1633 kmem_freepages(cachep, slab_rcu->addr);
1634 if (OFF_SLAB(cachep))
1635 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1640 #ifdef CONFIG_DEBUG_PAGEALLOC
1641 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1642 unsigned long caller)
1644 int size = obj_size(cachep);
1646 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1648 if (size < 5 * sizeof(unsigned long))
1651 *addr++ = 0x12345678;
1653 *addr++ = smp_processor_id();
1654 size -= 3 * sizeof(unsigned long);
1656 unsigned long *sptr = &caller;
1657 unsigned long svalue;
1659 while (!kstack_end(sptr)) {
1661 if (kernel_text_address(svalue)) {
1663 size -= sizeof(unsigned long);
1664 if (size <= sizeof(unsigned long))
1670 *addr++ = 0x87654321;
1674 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1676 int size = obj_size(cachep);
1677 addr = &((char *)addr)[obj_offset(cachep)];
1679 memset(addr, val, size);
1680 *(unsigned char *)(addr + size - 1) = POISON_END;
1683 static void dump_line(char *data, int offset, int limit)
1686 unsigned char error = 0;
1689 printk(KERN_ERR "%03x:", offset);
1690 for (i = 0; i < limit; i++) {
1691 if (data[offset + i] != POISON_FREE) {
1692 error = data[offset + i];
1695 printk(" %02x", (unsigned char)data[offset + i]);
1699 if (bad_count == 1) {
1700 error ^= POISON_FREE;
1701 if (!(error & (error - 1))) {
1702 printk(KERN_ERR "Single bit error detected. Probably "
1705 printk(KERN_ERR "Run memtest86+ or a similar memory "
1708 printk(KERN_ERR "Run a memory test tool.\n");
1717 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1722 if (cachep->flags & SLAB_RED_ZONE) {
1723 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1724 *dbg_redzone1(cachep, objp),
1725 *dbg_redzone2(cachep, objp));
1728 if (cachep->flags & SLAB_STORE_USER) {
1729 printk(KERN_ERR "Last user: [<%p>]",
1730 *dbg_userword(cachep, objp));
1731 print_symbol("(%s)",
1732 (unsigned long)*dbg_userword(cachep, objp));
1735 realobj = (char *)objp + obj_offset(cachep);
1736 size = obj_size(cachep);
1737 for (i = 0; i < size && lines; i += 16, lines--) {
1740 if (i + limit > size)
1742 dump_line(realobj, i, limit);
1746 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1752 realobj = (char *)objp + obj_offset(cachep);
1753 size = obj_size(cachep);
1755 for (i = 0; i < size; i++) {
1756 char exp = POISON_FREE;
1759 if (realobj[i] != exp) {
1765 "Slab corruption: start=%p, len=%d\n",
1767 print_objinfo(cachep, objp, 0);
1769 /* Hexdump the affected line */
1772 if (i + limit > size)
1774 dump_line(realobj, i, limit);
1777 /* Limit to 5 lines */
1783 /* Print some data about the neighboring objects, if they
1786 struct slab *slabp = virt_to_slab(objp);
1789 objnr = obj_to_index(cachep, slabp, objp);
1791 objp = index_to_obj(cachep, slabp, objnr - 1);
1792 realobj = (char *)objp + obj_offset(cachep);
1793 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1795 print_objinfo(cachep, objp, 2);
1797 if (objnr + 1 < cachep->num) {
1798 objp = index_to_obj(cachep, slabp, objnr + 1);
1799 realobj = (char *)objp + obj_offset(cachep);
1800 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1802 print_objinfo(cachep, objp, 2);
1810 * slab_destroy_objs - destroy a slab and its objects
1811 * @cachep: cache pointer being destroyed
1812 * @slabp: slab pointer being destroyed
1814 * Call the registered destructor for each object in a slab that is being
1817 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1820 for (i = 0; i < cachep->num; i++) {
1821 void *objp = index_to_obj(cachep, slabp, i);
1823 if (cachep->flags & SLAB_POISON) {
1824 #ifdef CONFIG_DEBUG_PAGEALLOC
1825 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1827 kernel_map_pages(virt_to_page(objp),
1828 cachep->buffer_size / PAGE_SIZE, 1);
1830 check_poison_obj(cachep, objp);
1832 check_poison_obj(cachep, objp);
1835 if (cachep->flags & SLAB_RED_ZONE) {
1836 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1837 slab_error(cachep, "start of a freed object "
1839 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1840 slab_error(cachep, "end of a freed object "
1843 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1844 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1848 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1852 for (i = 0; i < cachep->num; i++) {
1853 void *objp = index_to_obj(cachep, slabp, i);
1854 (cachep->dtor) (objp, cachep, 0);
1861 * slab_destroy - destroy and release all objects in a slab
1862 * @cachep: cache pointer being destroyed
1863 * @slabp: slab pointer being destroyed
1865 * Destroy all the objs in a slab, and release the mem back to the system.
1866 * Before calling the slab must have been unlinked from the cache. The
1867 * cache-lock is not held/needed.
1869 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1871 void *addr = slabp->s_mem - slabp->colouroff;
1873 slab_destroy_objs(cachep, slabp);
1874 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1875 struct slab_rcu *slab_rcu;
1877 slab_rcu = (struct slab_rcu *)slabp;
1878 slab_rcu->cachep = cachep;
1879 slab_rcu->addr = addr;
1880 call_rcu(&slab_rcu->head, kmem_rcu_free);
1882 kmem_freepages(cachep, addr);
1883 if (OFF_SLAB(cachep))
1884 kmem_cache_free(cachep->slabp_cache, slabp);
1889 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1890 * size of kmem_list3.
1892 static void set_up_list3s(struct kmem_cache *cachep, int index)
1896 for_each_online_node(node) {
1897 cachep->nodelists[node] = &initkmem_list3[index + node];
1898 cachep->nodelists[node]->next_reap = jiffies +
1900 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1904 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1907 struct kmem_list3 *l3;
1909 for_each_online_cpu(i)
1910 kfree(cachep->array[i]);
1912 /* NUMA: free the list3 structures */
1913 for_each_online_node(i) {
1914 l3 = cachep->nodelists[i];
1917 free_alien_cache(l3->alien);
1921 kmem_cache_free(&cache_cache, cachep);
1926 * calculate_slab_order - calculate size (page order) of slabs
1927 * @cachep: pointer to the cache that is being created
1928 * @size: size of objects to be created in this cache.
1929 * @align: required alignment for the objects.
1930 * @flags: slab allocation flags
1932 * Also calculates the number of objects per slab.
1934 * This could be made much more intelligent. For now, try to avoid using
1935 * high order pages for slabs. When the gfp() functions are more friendly
1936 * towards high-order requests, this should be changed.
1938 static size_t calculate_slab_order(struct kmem_cache *cachep,
1939 size_t size, size_t align, unsigned long flags)
1941 unsigned long offslab_limit;
1942 size_t left_over = 0;
1945 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1949 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1953 if (flags & CFLGS_OFF_SLAB) {
1955 * Max number of objs-per-slab for caches which
1956 * use off-slab slabs. Needed to avoid a possible
1957 * looping condition in cache_grow().
1959 offslab_limit = size - sizeof(struct slab);
1960 offslab_limit /= sizeof(kmem_bufctl_t);
1962 if (num > offslab_limit)
1966 /* Found something acceptable - save it away */
1968 cachep->gfporder = gfporder;
1969 left_over = remainder;
1972 * A VFS-reclaimable slab tends to have most allocations
1973 * as GFP_NOFS and we really don't want to have to be allocating
1974 * higher-order pages when we are unable to shrink dcache.
1976 if (flags & SLAB_RECLAIM_ACCOUNT)
1980 * Large number of objects is good, but very large slabs are
1981 * currently bad for the gfp()s.
1983 if (gfporder >= slab_break_gfp_order)
1987 * Acceptable internal fragmentation?
1989 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1995 static int setup_cpu_cache(struct kmem_cache *cachep)
1997 if (g_cpucache_up == FULL)
1998 return enable_cpucache(cachep);
2000 if (g_cpucache_up == NONE) {
2002 * Note: the first kmem_cache_create must create the cache
2003 * that's used by kmalloc(24), otherwise the creation of
2004 * further caches will BUG().
2006 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2009 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2010 * the first cache, then we need to set up all its list3s,
2011 * otherwise the creation of further caches will BUG().
2013 set_up_list3s(cachep, SIZE_AC);
2014 if (INDEX_AC == INDEX_L3)
2015 g_cpucache_up = PARTIAL_L3;
2017 g_cpucache_up = PARTIAL_AC;
2019 cachep->array[smp_processor_id()] =
2020 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2022 if (g_cpucache_up == PARTIAL_AC) {
2023 set_up_list3s(cachep, SIZE_L3);
2024 g_cpucache_up = PARTIAL_L3;
2027 for_each_online_node(node) {
2028 cachep->nodelists[node] =
2029 kmalloc_node(sizeof(struct kmem_list3),
2031 BUG_ON(!cachep->nodelists[node]);
2032 kmem_list3_init(cachep->nodelists[node]);
2036 cachep->nodelists[numa_node_id()]->next_reap =
2037 jiffies + REAPTIMEOUT_LIST3 +
2038 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2040 cpu_cache_get(cachep)->avail = 0;
2041 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2042 cpu_cache_get(cachep)->batchcount = 1;
2043 cpu_cache_get(cachep)->touched = 0;
2044 cachep->batchcount = 1;
2045 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2050 * kmem_cache_create - Create a cache.
2051 * @name: A string which is used in /proc/slabinfo to identify this cache.
2052 * @size: The size of objects to be created in this cache.
2053 * @align: The required alignment for the objects.
2054 * @flags: SLAB flags
2055 * @ctor: A constructor for the objects.
2056 * @dtor: A destructor for the objects.
2058 * Returns a ptr to the cache on success, NULL on failure.
2059 * Cannot be called within a int, but can be interrupted.
2060 * The @ctor is run when new pages are allocated by the cache
2061 * and the @dtor is run before the pages are handed back.
2063 * @name must be valid until the cache is destroyed. This implies that
2064 * the module calling this has to destroy the cache before getting unloaded.
2068 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2069 * to catch references to uninitialised memory.
2071 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2072 * for buffer overruns.
2074 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2075 * cacheline. This can be beneficial if you're counting cycles as closely
2079 kmem_cache_create (const char *name, size_t size, size_t align,
2080 unsigned long flags,
2081 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2082 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2084 size_t left_over, slab_size, ralign;
2085 struct kmem_cache *cachep = NULL, *pc;
2088 * Sanity checks... these are all serious usage bugs.
2090 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2091 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
2092 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2098 * Prevent CPUs from coming and going.
2099 * lock_cpu_hotplug() nests outside cache_chain_mutex
2103 mutex_lock(&cache_chain_mutex);
2105 list_for_each_entry(pc, &cache_chain, next) {
2106 mm_segment_t old_fs = get_fs();
2111 * This happens when the module gets unloaded and doesn't
2112 * destroy its slab cache and no-one else reuses the vmalloc
2113 * area of the module. Print a warning.
2116 res = __get_user(tmp, pc->name);
2119 printk("SLAB: cache with size %d has lost its name\n",
2124 if (!strcmp(pc->name, name)) {
2125 printk("kmem_cache_create: duplicate cache %s\n", name);
2132 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2133 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2134 /* No constructor, but inital state check requested */
2135 printk(KERN_ERR "%s: No con, but init state check "
2136 "requested - %s\n", __FUNCTION__, name);
2137 flags &= ~SLAB_DEBUG_INITIAL;
2141 * Enable redzoning and last user accounting, except for caches with
2142 * large objects, if the increased size would increase the object size
2143 * above the next power of two: caches with object sizes just above a
2144 * power of two have a significant amount of internal fragmentation.
2146 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2147 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2148 if (!(flags & SLAB_DESTROY_BY_RCU))
2149 flags |= SLAB_POISON;
2151 if (flags & SLAB_DESTROY_BY_RCU)
2152 BUG_ON(flags & SLAB_POISON);
2154 if (flags & SLAB_DESTROY_BY_RCU)
2158 * Always checks flags, a caller might be expecting debug support which
2161 BUG_ON(flags & ~CREATE_MASK);
2164 * Check that size is in terms of words. This is needed to avoid
2165 * unaligned accesses for some archs when redzoning is used, and makes
2166 * sure any on-slab bufctl's are also correctly aligned.
2168 if (size & (BYTES_PER_WORD - 1)) {
2169 size += (BYTES_PER_WORD - 1);
2170 size &= ~(BYTES_PER_WORD - 1);
2173 /* calculate the final buffer alignment: */
2175 /* 1) arch recommendation: can be overridden for debug */
2176 if (flags & SLAB_HWCACHE_ALIGN) {
2178 * Default alignment: as specified by the arch code. Except if
2179 * an object is really small, then squeeze multiple objects into
2182 ralign = cache_line_size();
2183 while (size <= ralign / 2)
2186 ralign = BYTES_PER_WORD;
2190 * Redzoning and user store require word alignment. Note this will be
2191 * overridden by architecture or caller mandated alignment if either
2192 * is greater than BYTES_PER_WORD.
2194 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2195 ralign = BYTES_PER_WORD;
2197 /* 2) arch mandated alignment: disables debug if necessary */
2198 if (ralign < ARCH_SLAB_MINALIGN) {
2199 ralign = ARCH_SLAB_MINALIGN;
2200 if (ralign > BYTES_PER_WORD)
2201 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2203 /* 3) caller mandated alignment: disables debug if necessary */
2204 if (ralign < align) {
2206 if (ralign > BYTES_PER_WORD)
2207 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2214 /* Get cache's description obj. */
2215 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2220 cachep->obj_size = size;
2223 * Both debugging options require word-alignment which is calculated
2226 if (flags & SLAB_RED_ZONE) {
2227 /* add space for red zone words */
2228 cachep->obj_offset += BYTES_PER_WORD;
2229 size += 2 * BYTES_PER_WORD;
2231 if (flags & SLAB_STORE_USER) {
2232 /* user store requires one word storage behind the end of
2235 size += BYTES_PER_WORD;
2237 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2238 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2239 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2240 cachep->obj_offset += PAGE_SIZE - size;
2247 * Determine if the slab management is 'on' or 'off' slab.
2248 * (bootstrapping cannot cope with offslab caches so don't do
2251 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2253 * Size is large, assume best to place the slab management obj
2254 * off-slab (should allow better packing of objs).
2256 flags |= CFLGS_OFF_SLAB;
2258 size = ALIGN(size, align);
2260 left_over = calculate_slab_order(cachep, size, align, flags);
2263 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2264 kmem_cache_free(&cache_cache, cachep);
2268 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2269 + sizeof(struct slab), align);
2272 * If the slab has been placed off-slab, and we have enough space then
2273 * move it on-slab. This is at the expense of any extra colouring.
2275 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2276 flags &= ~CFLGS_OFF_SLAB;
2277 left_over -= slab_size;
2280 if (flags & CFLGS_OFF_SLAB) {
2281 /* really off slab. No need for manual alignment */
2283 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2286 cachep->colour_off = cache_line_size();
2287 /* Offset must be a multiple of the alignment. */
2288 if (cachep->colour_off < align)
2289 cachep->colour_off = align;
2290 cachep->colour = left_over / cachep->colour_off;
2291 cachep->slab_size = slab_size;
2292 cachep->flags = flags;
2293 cachep->gfpflags = 0;
2294 if (flags & SLAB_CACHE_DMA)
2295 cachep->gfpflags |= GFP_DMA;
2296 cachep->buffer_size = size;
2298 if (flags & CFLGS_OFF_SLAB) {
2299 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2301 * This is a possibility for one of the malloc_sizes caches.
2302 * But since we go off slab only for object size greater than
2303 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2304 * this should not happen at all.
2305 * But leave a BUG_ON for some lucky dude.
2307 BUG_ON(!cachep->slabp_cache);
2309 cachep->ctor = ctor;
2310 cachep->dtor = dtor;
2311 cachep->name = name;
2313 if (setup_cpu_cache(cachep)) {
2314 __kmem_cache_destroy(cachep);
2319 /* cache setup completed, link it into the list */
2320 list_add(&cachep->next, &cache_chain);
2322 if (!cachep && (flags & SLAB_PANIC))
2323 panic("kmem_cache_create(): failed to create slab `%s'\n",
2325 mutex_unlock(&cache_chain_mutex);
2326 unlock_cpu_hotplug();
2329 EXPORT_SYMBOL(kmem_cache_create);
2332 static void check_irq_off(void)
2334 BUG_ON(!irqs_disabled());
2337 static void check_irq_on(void)
2339 BUG_ON(irqs_disabled());
2342 static void check_spinlock_acquired(struct kmem_cache *cachep)
2346 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2350 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2354 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2359 #define check_irq_off() do { } while(0)
2360 #define check_irq_on() do { } while(0)
2361 #define check_spinlock_acquired(x) do { } while(0)
2362 #define check_spinlock_acquired_node(x, y) do { } while(0)
2365 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2366 struct array_cache *ac,
2367 int force, int node);
2369 static void do_drain(void *arg)
2371 struct kmem_cache *cachep = arg;
2372 struct array_cache *ac;
2373 int node = numa_node_id();
2376 ac = cpu_cache_get(cachep);
2377 spin_lock(&cachep->nodelists[node]->list_lock);
2378 free_block(cachep, ac->entry, ac->avail, node);
2379 spin_unlock(&cachep->nodelists[node]->list_lock);
2383 static void drain_cpu_caches(struct kmem_cache *cachep)
2385 struct kmem_list3 *l3;
2388 on_each_cpu(do_drain, cachep, 1, 1);
2390 for_each_online_node(node) {
2391 l3 = cachep->nodelists[node];
2392 if (l3 && l3->alien)
2393 drain_alien_cache(cachep, l3->alien);
2396 for_each_online_node(node) {
2397 l3 = cachep->nodelists[node];
2399 drain_array(cachep, l3, l3->shared, 1, node);
2404 * Remove slabs from the list of free slabs.
2405 * Specify the number of slabs to drain in tofree.
2407 * Returns the actual number of slabs released.
2409 static int drain_freelist(struct kmem_cache *cache,
2410 struct kmem_list3 *l3, int tofree)
2412 struct list_head *p;
2417 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2419 spin_lock_irq(&l3->list_lock);
2420 p = l3->slabs_free.prev;
2421 if (p == &l3->slabs_free) {
2422 spin_unlock_irq(&l3->list_lock);
2426 slabp = list_entry(p, struct slab, list);
2428 BUG_ON(slabp->inuse);
2430 list_del(&slabp->list);
2432 * Safe to drop the lock. The slab is no longer linked
2435 l3->free_objects -= cache->num;
2436 spin_unlock_irq(&l3->list_lock);
2437 slab_destroy(cache, slabp);
2444 static int __cache_shrink(struct kmem_cache *cachep)
2447 struct kmem_list3 *l3;
2449 drain_cpu_caches(cachep);
2452 for_each_online_node(i) {
2453 l3 = cachep->nodelists[i];
2457 drain_freelist(cachep, l3, l3->free_objects);
2459 ret += !list_empty(&l3->slabs_full) ||
2460 !list_empty(&l3->slabs_partial);
2462 return (ret ? 1 : 0);
2466 * kmem_cache_shrink - Shrink a cache.
2467 * @cachep: The cache to shrink.
2469 * Releases as many slabs as possible for a cache.
2470 * To help debugging, a zero exit status indicates all slabs were released.
2472 int kmem_cache_shrink(struct kmem_cache *cachep)
2474 BUG_ON(!cachep || in_interrupt());
2476 return __cache_shrink(cachep);
2478 EXPORT_SYMBOL(kmem_cache_shrink);
2481 * kmem_cache_destroy - delete a cache
2482 * @cachep: the cache to destroy
2484 * Remove a struct kmem_cache object from the slab cache.
2486 * It is expected this function will be called by a module when it is
2487 * unloaded. This will remove the cache completely, and avoid a duplicate
2488 * cache being allocated each time a module is loaded and unloaded, if the
2489 * module doesn't have persistent in-kernel storage across loads and unloads.
2491 * The cache must be empty before calling this function.
2493 * The caller must guarantee that noone will allocate memory from the cache
2494 * during the kmem_cache_destroy().
2496 void kmem_cache_destroy(struct kmem_cache *cachep)
2498 BUG_ON(!cachep || in_interrupt());
2500 /* Don't let CPUs to come and go */
2503 /* Find the cache in the chain of caches. */
2504 mutex_lock(&cache_chain_mutex);
2506 * the chain is never empty, cache_cache is never destroyed
2508 list_del(&cachep->next);
2509 mutex_unlock(&cache_chain_mutex);
2511 if (__cache_shrink(cachep)) {
2512 slab_error(cachep, "Can't free all objects");
2513 mutex_lock(&cache_chain_mutex);
2514 list_add(&cachep->next, &cache_chain);
2515 mutex_unlock(&cache_chain_mutex);
2516 unlock_cpu_hotplug();
2520 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2523 __kmem_cache_destroy(cachep);
2524 unlock_cpu_hotplug();
2526 EXPORT_SYMBOL(kmem_cache_destroy);
2529 * Get the memory for a slab management obj.
2530 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2531 * always come from malloc_sizes caches. The slab descriptor cannot
2532 * come from the same cache which is getting created because,
2533 * when we are searching for an appropriate cache for these
2534 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2535 * If we are creating a malloc_sizes cache here it would not be visible to
2536 * kmem_find_general_cachep till the initialization is complete.
2537 * Hence we cannot have slabp_cache same as the original cache.
2539 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2540 int colour_off, gfp_t local_flags,
2545 if (OFF_SLAB(cachep)) {
2546 /* Slab management obj is off-slab. */
2547 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2548 local_flags, nodeid);
2552 slabp = objp + colour_off;
2553 colour_off += cachep->slab_size;
2556 slabp->colouroff = colour_off;
2557 slabp->s_mem = objp + colour_off;
2558 slabp->nodeid = nodeid;
2562 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2564 return (kmem_bufctl_t *) (slabp + 1);
2567 static void cache_init_objs(struct kmem_cache *cachep,
2568 struct slab *slabp, unsigned long ctor_flags)
2572 for (i = 0; i < cachep->num; i++) {
2573 void *objp = index_to_obj(cachep, slabp, i);
2575 /* need to poison the objs? */
2576 if (cachep->flags & SLAB_POISON)
2577 poison_obj(cachep, objp, POISON_FREE);
2578 if (cachep->flags & SLAB_STORE_USER)
2579 *dbg_userword(cachep, objp) = NULL;
2581 if (cachep->flags & SLAB_RED_ZONE) {
2582 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2583 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2586 * Constructors are not allowed to allocate memory from the same
2587 * cache which they are a constructor for. Otherwise, deadlock.
2588 * They must also be threaded.
2590 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2591 cachep->ctor(objp + obj_offset(cachep), cachep,
2594 if (cachep->flags & SLAB_RED_ZONE) {
2595 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2596 slab_error(cachep, "constructor overwrote the"
2597 " end of an object");
2598 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2599 slab_error(cachep, "constructor overwrote the"
2600 " start of an object");
2602 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2603 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2604 kernel_map_pages(virt_to_page(objp),
2605 cachep->buffer_size / PAGE_SIZE, 0);
2608 cachep->ctor(objp, cachep, ctor_flags);
2610 slab_bufctl(slabp)[i] = i + 1;
2612 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2616 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2618 if (flags & SLAB_DMA)
2619 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2621 BUG_ON(cachep->gfpflags & GFP_DMA);
2624 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2627 void *objp = index_to_obj(cachep, slabp, slabp->free);
2631 next = slab_bufctl(slabp)[slabp->free];
2633 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2634 WARN_ON(slabp->nodeid != nodeid);
2641 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2642 void *objp, int nodeid)
2644 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2647 /* Verify that the slab belongs to the intended node */
2648 WARN_ON(slabp->nodeid != nodeid);
2650 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2651 printk(KERN_ERR "slab: double free detected in cache "
2652 "'%s', objp %p\n", cachep->name, objp);
2656 slab_bufctl(slabp)[objnr] = slabp->free;
2657 slabp->free = objnr;
2662 * Map pages beginning at addr to the given cache and slab. This is required
2663 * for the slab allocator to be able to lookup the cache and slab of a
2664 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2666 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2672 page = virt_to_page(addr);
2675 if (likely(!PageCompound(page)))
2676 nr_pages <<= cache->gfporder;
2679 page_set_cache(page, cache);
2680 page_set_slab(page, slab);
2682 } while (--nr_pages);
2686 * Grow (by 1) the number of slabs within a cache. This is called by
2687 * kmem_cache_alloc() when there are no active objs left in a cache.
2689 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2695 unsigned long ctor_flags;
2696 struct kmem_list3 *l3;
2699 * Be lazy and only check for valid flags here, keeping it out of the
2700 * critical path in kmem_cache_alloc().
2702 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2703 if (flags & SLAB_NO_GROW)
2706 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2707 local_flags = (flags & SLAB_LEVEL_MASK);
2708 if (!(local_flags & __GFP_WAIT))
2710 * Not allowed to sleep. Need to tell a constructor about
2711 * this - it might need to know...
2713 ctor_flags |= SLAB_CTOR_ATOMIC;
2715 /* Take the l3 list lock to change the colour_next on this node */
2717 l3 = cachep->nodelists[nodeid];
2718 spin_lock(&l3->list_lock);
2720 /* Get colour for the slab, and cal the next value. */
2721 offset = l3->colour_next;
2723 if (l3->colour_next >= cachep->colour)
2724 l3->colour_next = 0;
2725 spin_unlock(&l3->list_lock);
2727 offset *= cachep->colour_off;
2729 if (local_flags & __GFP_WAIT)
2733 * The test for missing atomic flag is performed here, rather than
2734 * the more obvious place, simply to reduce the critical path length
2735 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2736 * will eventually be caught here (where it matters).
2738 kmem_flagcheck(cachep, flags);
2741 * Get mem for the objs. Attempt to allocate a physical page from
2744 objp = kmem_getpages(cachep, flags, nodeid);
2748 /* Get slab management. */
2749 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2753 slabp->nodeid = nodeid;
2754 slab_map_pages(cachep, slabp, objp);
2756 cache_init_objs(cachep, slabp, ctor_flags);
2758 if (local_flags & __GFP_WAIT)
2759 local_irq_disable();
2761 spin_lock(&l3->list_lock);
2763 /* Make slab active. */
2764 list_add_tail(&slabp->list, &(l3->slabs_free));
2765 STATS_INC_GROWN(cachep);
2766 l3->free_objects += cachep->num;
2767 spin_unlock(&l3->list_lock);
2770 kmem_freepages(cachep, objp);
2772 if (local_flags & __GFP_WAIT)
2773 local_irq_disable();
2780 * Perform extra freeing checks:
2781 * - detect bad pointers.
2782 * - POISON/RED_ZONE checking
2783 * - destructor calls, for caches with POISON+dtor
2785 static void kfree_debugcheck(const void *objp)
2789 if (!virt_addr_valid(objp)) {
2790 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2791 (unsigned long)objp);
2794 page = virt_to_page(objp);
2795 if (!PageSlab(page)) {
2796 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2797 (unsigned long)objp);
2802 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2804 unsigned long redzone1, redzone2;
2806 redzone1 = *dbg_redzone1(cache, obj);
2807 redzone2 = *dbg_redzone2(cache, obj);
2812 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2815 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2816 slab_error(cache, "double free detected");
2818 slab_error(cache, "memory outside object was overwritten");
2820 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2821 obj, redzone1, redzone2);
2824 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2831 objp -= obj_offset(cachep);
2832 kfree_debugcheck(objp);
2833 page = virt_to_page(objp);
2835 slabp = page_get_slab(page);
2837 if (cachep->flags & SLAB_RED_ZONE) {
2838 verify_redzone_free(cachep, objp);
2839 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2840 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2842 if (cachep->flags & SLAB_STORE_USER)
2843 *dbg_userword(cachep, objp) = caller;
2845 objnr = obj_to_index(cachep, slabp, objp);
2847 BUG_ON(objnr >= cachep->num);
2848 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2850 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2852 * Need to call the slab's constructor so the caller can
2853 * perform a verify of its state (debugging). Called without
2854 * the cache-lock held.
2856 cachep->ctor(objp + obj_offset(cachep),
2857 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2859 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2860 /* we want to cache poison the object,
2861 * call the destruction callback
2863 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2865 #ifdef CONFIG_DEBUG_SLAB_LEAK
2866 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2868 if (cachep->flags & SLAB_POISON) {
2869 #ifdef CONFIG_DEBUG_PAGEALLOC
2870 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2871 store_stackinfo(cachep, objp, (unsigned long)caller);
2872 kernel_map_pages(virt_to_page(objp),
2873 cachep->buffer_size / PAGE_SIZE, 0);
2875 poison_obj(cachep, objp, POISON_FREE);
2878 poison_obj(cachep, objp, POISON_FREE);
2884 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2889 /* Check slab's freelist to see if this obj is there. */
2890 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2892 if (entries > cachep->num || i >= cachep->num)
2895 if (entries != cachep->num - slabp->inuse) {
2897 printk(KERN_ERR "slab: Internal list corruption detected in "
2898 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2899 cachep->name, cachep->num, slabp, slabp->inuse);
2901 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2904 printk("\n%03x:", i);
2905 printk(" %02x", ((unsigned char *)slabp)[i]);
2912 #define kfree_debugcheck(x) do { } while(0)
2913 #define cache_free_debugcheck(x,objp,z) (objp)
2914 #define check_slabp(x,y) do { } while(0)
2917 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2920 struct kmem_list3 *l3;
2921 struct array_cache *ac;
2924 ac = cpu_cache_get(cachep);
2926 batchcount = ac->batchcount;
2927 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2929 * If there was little recent activity on this cache, then
2930 * perform only a partial refill. Otherwise we could generate
2933 batchcount = BATCHREFILL_LIMIT;
2935 l3 = cachep->nodelists[numa_node_id()];
2937 BUG_ON(ac->avail > 0 || !l3);
2938 spin_lock(&l3->list_lock);
2940 /* See if we can refill from the shared array */
2941 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2944 while (batchcount > 0) {
2945 struct list_head *entry;
2947 /* Get slab alloc is to come from. */
2948 entry = l3->slabs_partial.next;
2949 if (entry == &l3->slabs_partial) {
2950 l3->free_touched = 1;
2951 entry = l3->slabs_free.next;
2952 if (entry == &l3->slabs_free)
2956 slabp = list_entry(entry, struct slab, list);
2957 check_slabp(cachep, slabp);
2958 check_spinlock_acquired(cachep);
2959 while (slabp->inuse < cachep->num && batchcount--) {
2960 STATS_INC_ALLOCED(cachep);
2961 STATS_INC_ACTIVE(cachep);
2962 STATS_SET_HIGH(cachep);
2964 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2967 check_slabp(cachep, slabp);
2969 /* move slabp to correct slabp list: */
2970 list_del(&slabp->list);
2971 if (slabp->free == BUFCTL_END)
2972 list_add(&slabp->list, &l3->slabs_full);
2974 list_add(&slabp->list, &l3->slabs_partial);
2978 l3->free_objects -= ac->avail;
2980 spin_unlock(&l3->list_lock);
2982 if (unlikely(!ac->avail)) {
2984 x = cache_grow(cachep, flags, numa_node_id());
2986 /* cache_grow can reenable interrupts, then ac could change. */
2987 ac = cpu_cache_get(cachep);
2988 if (!x && ac->avail == 0) /* no objects in sight? abort */
2991 if (!ac->avail) /* objects refilled by interrupt? */
2995 return ac->entry[--ac->avail];
2998 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3001 might_sleep_if(flags & __GFP_WAIT);
3003 kmem_flagcheck(cachep, flags);
3008 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3009 gfp_t flags, void *objp, void *caller)
3013 if (cachep->flags & SLAB_POISON) {
3014 #ifdef CONFIG_DEBUG_PAGEALLOC
3015 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3016 kernel_map_pages(virt_to_page(objp),
3017 cachep->buffer_size / PAGE_SIZE, 1);
3019 check_poison_obj(cachep, objp);
3021 check_poison_obj(cachep, objp);
3023 poison_obj(cachep, objp, POISON_INUSE);
3025 if (cachep->flags & SLAB_STORE_USER)
3026 *dbg_userword(cachep, objp) = caller;
3028 if (cachep->flags & SLAB_RED_ZONE) {
3029 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3030 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3031 slab_error(cachep, "double free, or memory outside"
3032 " object was overwritten");
3034 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3035 objp, *dbg_redzone1(cachep, objp),
3036 *dbg_redzone2(cachep, objp));
3038 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3039 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3041 #ifdef CONFIG_DEBUG_SLAB_LEAK
3046 slabp = page_get_slab(virt_to_page(objp));
3047 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3048 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3051 objp += obj_offset(cachep);
3052 if (cachep->ctor && cachep->flags & SLAB_POISON) {
3053 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
3055 if (!(flags & __GFP_WAIT))
3056 ctor_flags |= SLAB_CTOR_ATOMIC;
3058 cachep->ctor(objp, cachep, ctor_flags);
3063 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3066 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3069 struct array_cache *ac;
3072 ac = cpu_cache_get(cachep);
3073 if (likely(ac->avail)) {
3074 STATS_INC_ALLOCHIT(cachep);
3076 objp = ac->entry[--ac->avail];
3078 STATS_INC_ALLOCMISS(cachep);
3079 objp = cache_alloc_refill(cachep, flags);
3084 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3085 gfp_t flags, void *caller)
3087 unsigned long save_flags;
3090 cache_alloc_debugcheck_before(cachep, flags);
3092 local_irq_save(save_flags);
3094 if (unlikely(NUMA_BUILD &&
3095 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3096 objp = alternate_node_alloc(cachep, flags);
3099 objp = ____cache_alloc(cachep, flags);
3101 * We may just have run out of memory on the local node.
3102 * __cache_alloc_node() knows how to locate memory on other nodes
3104 if (NUMA_BUILD && !objp)
3105 objp = __cache_alloc_node(cachep, flags, numa_node_id());
3106 local_irq_restore(save_flags);
3107 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3115 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3117 * If we are in_interrupt, then process context, including cpusets and
3118 * mempolicy, may not apply and should not be used for allocation policy.
3120 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3122 int nid_alloc, nid_here;
3124 if (in_interrupt() || (flags & __GFP_THISNODE))
3126 nid_alloc = nid_here = numa_node_id();
3127 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3128 nid_alloc = cpuset_mem_spread_node();
3129 else if (current->mempolicy)
3130 nid_alloc = slab_node(current->mempolicy);
3131 if (nid_alloc != nid_here)
3132 return __cache_alloc_node(cachep, flags, nid_alloc);
3137 * Fallback function if there was no memory available and no objects on a
3138 * certain node and we are allowed to fall back. We mimick the behavior of
3139 * the page allocator. We fall back according to a zonelist determined by
3140 * the policy layer while obeying cpuset constraints.
3142 void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3144 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3145 ->node_zonelists[gfp_zone(flags)];
3149 for (z = zonelist->zones; *z && !obj; z++)
3150 if (zone_idx(*z) <= ZONE_NORMAL &&
3151 cpuset_zone_allowed(*z, flags))
3152 obj = __cache_alloc_node(cache,
3153 flags | __GFP_THISNODE,
3159 * A interface to enable slab creation on nodeid
3161 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3164 struct list_head *entry;
3166 struct kmem_list3 *l3;
3170 l3 = cachep->nodelists[nodeid];
3175 spin_lock(&l3->list_lock);
3176 entry = l3->slabs_partial.next;
3177 if (entry == &l3->slabs_partial) {
3178 l3->free_touched = 1;
3179 entry = l3->slabs_free.next;
3180 if (entry == &l3->slabs_free)
3184 slabp = list_entry(entry, struct slab, list);
3185 check_spinlock_acquired_node(cachep, nodeid);
3186 check_slabp(cachep, slabp);
3188 STATS_INC_NODEALLOCS(cachep);
3189 STATS_INC_ACTIVE(cachep);
3190 STATS_SET_HIGH(cachep);
3192 BUG_ON(slabp->inuse == cachep->num);
3194 obj = slab_get_obj(cachep, slabp, nodeid);
3195 check_slabp(cachep, slabp);
3197 /* move slabp to correct slabp list: */
3198 list_del(&slabp->list);
3200 if (slabp->free == BUFCTL_END)
3201 list_add(&slabp->list, &l3->slabs_full);
3203 list_add(&slabp->list, &l3->slabs_partial);
3205 spin_unlock(&l3->list_lock);
3209 spin_unlock(&l3->list_lock);
3210 x = cache_grow(cachep, flags, nodeid);
3214 if (!(flags & __GFP_THISNODE))
3215 /* Unable to grow the cache. Fall back to other nodes. */
3216 return fallback_alloc(cachep, flags);
3226 * Caller needs to acquire correct kmem_list's list_lock
3228 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3232 struct kmem_list3 *l3;
3234 for (i = 0; i < nr_objects; i++) {
3235 void *objp = objpp[i];
3238 slabp = virt_to_slab(objp);
3239 l3 = cachep->nodelists[node];
3240 list_del(&slabp->list);
3241 check_spinlock_acquired_node(cachep, node);
3242 check_slabp(cachep, slabp);
3243 slab_put_obj(cachep, slabp, objp, node);
3244 STATS_DEC_ACTIVE(cachep);
3246 check_slabp(cachep, slabp);
3248 /* fixup slab chains */
3249 if (slabp->inuse == 0) {
3250 if (l3->free_objects > l3->free_limit) {
3251 l3->free_objects -= cachep->num;
3252 /* No need to drop any previously held
3253 * lock here, even if we have a off-slab slab
3254 * descriptor it is guaranteed to come from
3255 * a different cache, refer to comments before
3258 slab_destroy(cachep, slabp);
3260 list_add(&slabp->list, &l3->slabs_free);
3263 /* Unconditionally move a slab to the end of the
3264 * partial list on free - maximum time for the
3265 * other objects to be freed, too.
3267 list_add_tail(&slabp->list, &l3->slabs_partial);
3272 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3275 struct kmem_list3 *l3;
3276 int node = numa_node_id();
3278 batchcount = ac->batchcount;
3280 BUG_ON(!batchcount || batchcount > ac->avail);
3283 l3 = cachep->nodelists[node];
3284 spin_lock(&l3->list_lock);
3286 struct array_cache *shared_array = l3->shared;
3287 int max = shared_array->limit - shared_array->avail;
3289 if (batchcount > max)
3291 memcpy(&(shared_array->entry[shared_array->avail]),
3292 ac->entry, sizeof(void *) * batchcount);
3293 shared_array->avail += batchcount;
3298 free_block(cachep, ac->entry, batchcount, node);
3303 struct list_head *p;
3305 p = l3->slabs_free.next;
3306 while (p != &(l3->slabs_free)) {
3309 slabp = list_entry(p, struct slab, list);
3310 BUG_ON(slabp->inuse);
3315 STATS_SET_FREEABLE(cachep, i);
3318 spin_unlock(&l3->list_lock);
3319 ac->avail -= batchcount;
3320 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3324 * Release an obj back to its cache. If the obj has a constructed state, it must
3325 * be in this state _before_ it is released. Called with disabled ints.
3327 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3329 struct array_cache *ac = cpu_cache_get(cachep);
3332 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3334 if (cache_free_alien(cachep, objp))
3337 if (likely(ac->avail < ac->limit)) {
3338 STATS_INC_FREEHIT(cachep);
3339 ac->entry[ac->avail++] = objp;
3342 STATS_INC_FREEMISS(cachep);
3343 cache_flusharray(cachep, ac);
3344 ac->entry[ac->avail++] = objp;
3349 * kmem_cache_alloc - Allocate an object
3350 * @cachep: The cache to allocate from.
3351 * @flags: See kmalloc().
3353 * Allocate an object from this cache. The flags are only relevant
3354 * if the cache has no available objects.
3356 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3358 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3360 EXPORT_SYMBOL(kmem_cache_alloc);
3363 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3364 * @cache: The cache to allocate from.
3365 * @flags: See kmalloc().
3367 * Allocate an object from this cache and set the allocated memory to zero.
3368 * The flags are only relevant if the cache has no available objects.
3370 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3372 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3374 memset(ret, 0, obj_size(cache));
3377 EXPORT_SYMBOL(kmem_cache_zalloc);
3380 * kmem_ptr_validate - check if an untrusted pointer might
3382 * @cachep: the cache we're checking against
3383 * @ptr: pointer to validate
3385 * This verifies that the untrusted pointer looks sane:
3386 * it is _not_ a guarantee that the pointer is actually
3387 * part of the slab cache in question, but it at least
3388 * validates that the pointer can be dereferenced and
3389 * looks half-way sane.
3391 * Currently only used for dentry validation.
3393 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3395 unsigned long addr = (unsigned long)ptr;
3396 unsigned long min_addr = PAGE_OFFSET;
3397 unsigned long align_mask = BYTES_PER_WORD - 1;
3398 unsigned long size = cachep->buffer_size;
3401 if (unlikely(addr < min_addr))
3403 if (unlikely(addr > (unsigned long)high_memory - size))
3405 if (unlikely(addr & align_mask))
3407 if (unlikely(!kern_addr_valid(addr)))
3409 if (unlikely(!kern_addr_valid(addr + size - 1)))
3411 page = virt_to_page(ptr);
3412 if (unlikely(!PageSlab(page)))
3414 if (unlikely(page_get_cache(page) != cachep))
3423 * kmem_cache_alloc_node - Allocate an object on the specified node
3424 * @cachep: The cache to allocate from.
3425 * @flags: See kmalloc().
3426 * @nodeid: node number of the target node.
3428 * Identical to kmem_cache_alloc, except that this function is slow
3429 * and can sleep. And it will allocate memory on the given node, which
3430 * can improve the performance for cpu bound structures.
3431 * New and improved: it will now make sure that the object gets
3432 * put on the correct node list so that there is no false sharing.
3434 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3436 unsigned long save_flags;
3439 cache_alloc_debugcheck_before(cachep, flags);
3440 local_irq_save(save_flags);
3442 if (nodeid == -1 || nodeid == numa_node_id() ||
3443 !cachep->nodelists[nodeid])
3444 ptr = ____cache_alloc(cachep, flags);
3446 ptr = __cache_alloc_node(cachep, flags, nodeid);
3447 local_irq_restore(save_flags);
3449 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3450 __builtin_return_address(0));
3454 EXPORT_SYMBOL(kmem_cache_alloc_node);
3456 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3458 struct kmem_cache *cachep;
3460 cachep = kmem_find_general_cachep(size, flags);
3461 if (unlikely(cachep == NULL))
3463 return kmem_cache_alloc_node(cachep, flags, node);
3465 EXPORT_SYMBOL(__kmalloc_node);
3469 * __do_kmalloc - allocate memory
3470 * @size: how many bytes of memory are required.
3471 * @flags: the type of memory to allocate (see kmalloc).
3472 * @caller: function caller for debug tracking of the caller
3474 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3477 struct kmem_cache *cachep;
3479 /* If you want to save a few bytes .text space: replace
3481 * Then kmalloc uses the uninlined functions instead of the inline
3484 cachep = __find_general_cachep(size, flags);
3485 if (unlikely(cachep == NULL))
3487 return __cache_alloc(cachep, flags, caller);
3491 #ifdef CONFIG_DEBUG_SLAB
3492 void *__kmalloc(size_t size, gfp_t flags)
3494 return __do_kmalloc(size, flags, __builtin_return_address(0));
3496 EXPORT_SYMBOL(__kmalloc);
3498 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3500 return __do_kmalloc(size, flags, caller);
3502 EXPORT_SYMBOL(__kmalloc_track_caller);
3505 void *__kmalloc(size_t size, gfp_t flags)
3507 return __do_kmalloc(size, flags, NULL);
3509 EXPORT_SYMBOL(__kmalloc);
3513 * kmem_cache_free - Deallocate an object
3514 * @cachep: The cache the allocation was from.
3515 * @objp: The previously allocated object.
3517 * Free an object which was previously allocated from this
3520 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3522 unsigned long flags;
3524 BUG_ON(virt_to_cache(objp) != cachep);
3526 local_irq_save(flags);
3527 __cache_free(cachep, objp);
3528 local_irq_restore(flags);
3530 EXPORT_SYMBOL(kmem_cache_free);
3533 * kfree - free previously allocated memory
3534 * @objp: pointer returned by kmalloc.
3536 * If @objp is NULL, no operation is performed.
3538 * Don't free memory not originally allocated by kmalloc()
3539 * or you will run into trouble.
3541 void kfree(const void *objp)
3543 struct kmem_cache *c;
3544 unsigned long flags;
3546 if (unlikely(!objp))
3548 local_irq_save(flags);
3549 kfree_debugcheck(objp);
3550 c = virt_to_cache(objp);
3551 debug_check_no_locks_freed(objp, obj_size(c));
3552 __cache_free(c, (void *)objp);
3553 local_irq_restore(flags);
3555 EXPORT_SYMBOL(kfree);
3557 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3559 return obj_size(cachep);
3561 EXPORT_SYMBOL(kmem_cache_size);
3563 const char *kmem_cache_name(struct kmem_cache *cachep)
3565 return cachep->name;
3567 EXPORT_SYMBOL_GPL(kmem_cache_name);
3570 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3572 static int alloc_kmemlist(struct kmem_cache *cachep)
3575 struct kmem_list3 *l3;
3576 struct array_cache *new_shared;
3577 struct array_cache **new_alien;
3579 for_each_online_node(node) {
3581 new_alien = alloc_alien_cache(node, cachep->limit);
3585 new_shared = alloc_arraycache(node,
3586 cachep->shared*cachep->batchcount,
3589 free_alien_cache(new_alien);
3593 l3 = cachep->nodelists[node];
3595 struct array_cache *shared = l3->shared;
3597 spin_lock_irq(&l3->list_lock);
3600 free_block(cachep, shared->entry,
3601 shared->avail, node);
3603 l3->shared = new_shared;
3605 l3->alien = new_alien;
3608 l3->free_limit = (1 + nr_cpus_node(node)) *
3609 cachep->batchcount + cachep->num;
3610 spin_unlock_irq(&l3->list_lock);
3612 free_alien_cache(new_alien);
3615 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3617 free_alien_cache(new_alien);
3622 kmem_list3_init(l3);
3623 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3624 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3625 l3->shared = new_shared;
3626 l3->alien = new_alien;
3627 l3->free_limit = (1 + nr_cpus_node(node)) *
3628 cachep->batchcount + cachep->num;
3629 cachep->nodelists[node] = l3;
3634 if (!cachep->next.next) {
3635 /* Cache is not active yet. Roll back what we did */
3638 if (cachep->nodelists[node]) {
3639 l3 = cachep->nodelists[node];
3642 free_alien_cache(l3->alien);
3644 cachep->nodelists[node] = NULL;
3652 struct ccupdate_struct {
3653 struct kmem_cache *cachep;
3654 struct array_cache *new[NR_CPUS];
3657 static void do_ccupdate_local(void *info)
3659 struct ccupdate_struct *new = info;
3660 struct array_cache *old;
3663 old = cpu_cache_get(new->cachep);
3665 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3666 new->new[smp_processor_id()] = old;
3669 /* Always called with the cache_chain_mutex held */
3670 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3671 int batchcount, int shared)
3673 struct ccupdate_struct *new;
3676 new = kzalloc(sizeof(*new), GFP_KERNEL);
3680 for_each_online_cpu(i) {
3681 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3684 for (i--; i >= 0; i--)
3690 new->cachep = cachep;
3692 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3695 cachep->batchcount = batchcount;
3696 cachep->limit = limit;
3697 cachep->shared = shared;
3699 for_each_online_cpu(i) {
3700 struct array_cache *ccold = new->new[i];
3703 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3704 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3705 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3709 return alloc_kmemlist(cachep);
3712 /* Called with cache_chain_mutex held always */
3713 static int enable_cpucache(struct kmem_cache *cachep)
3719 * The head array serves three purposes:
3720 * - create a LIFO ordering, i.e. return objects that are cache-warm
3721 * - reduce the number of spinlock operations.
3722 * - reduce the number of linked list operations on the slab and
3723 * bufctl chains: array operations are cheaper.
3724 * The numbers are guessed, we should auto-tune as described by
3727 if (cachep->buffer_size > 131072)
3729 else if (cachep->buffer_size > PAGE_SIZE)
3731 else if (cachep->buffer_size > 1024)
3733 else if (cachep->buffer_size > 256)
3739 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3740 * allocation behaviour: Most allocs on one cpu, most free operations
3741 * on another cpu. For these cases, an efficient object passing between
3742 * cpus is necessary. This is provided by a shared array. The array
3743 * replaces Bonwick's magazine layer.
3744 * On uniprocessor, it's functionally equivalent (but less efficient)
3745 * to a larger limit. Thus disabled by default.
3749 if (cachep->buffer_size <= PAGE_SIZE)
3755 * With debugging enabled, large batchcount lead to excessively long
3756 * periods with disabled local interrupts. Limit the batchcount
3761 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3763 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3764 cachep->name, -err);
3769 * Drain an array if it contains any elements taking the l3 lock only if
3770 * necessary. Note that the l3 listlock also protects the array_cache
3771 * if drain_array() is used on the shared array.
3773 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3774 struct array_cache *ac, int force, int node)
3778 if (!ac || !ac->avail)
3780 if (ac->touched && !force) {
3783 spin_lock_irq(&l3->list_lock);
3785 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3786 if (tofree > ac->avail)
3787 tofree = (ac->avail + 1) / 2;
3788 free_block(cachep, ac->entry, tofree, node);
3789 ac->avail -= tofree;
3790 memmove(ac->entry, &(ac->entry[tofree]),
3791 sizeof(void *) * ac->avail);
3793 spin_unlock_irq(&l3->list_lock);
3798 * cache_reap - Reclaim memory from caches.
3799 * @unused: unused parameter
3801 * Called from workqueue/eventd every few seconds.
3803 * - clear the per-cpu caches for this CPU.
3804 * - return freeable pages to the main free memory pool.
3806 * If we cannot acquire the cache chain mutex then just give up - we'll try
3807 * again on the next iteration.
3809 static void cache_reap(void *unused)
3811 struct kmem_cache *searchp;
3812 struct kmem_list3 *l3;
3813 int node = numa_node_id();
3815 if (!mutex_trylock(&cache_chain_mutex)) {
3816 /* Give up. Setup the next iteration. */
3817 schedule_delayed_work(&__get_cpu_var(reap_work),
3822 list_for_each_entry(searchp, &cache_chain, next) {
3826 * We only take the l3 lock if absolutely necessary and we
3827 * have established with reasonable certainty that
3828 * we can do some work if the lock was obtained.
3830 l3 = searchp->nodelists[node];
3832 reap_alien(searchp, l3);
3834 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3837 * These are racy checks but it does not matter
3838 * if we skip one check or scan twice.
3840 if (time_after(l3->next_reap, jiffies))
3843 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3845 drain_array(searchp, l3, l3->shared, 0, node);
3847 if (l3->free_touched)
3848 l3->free_touched = 0;
3852 freed = drain_freelist(searchp, l3, (l3->free_limit +
3853 5 * searchp->num - 1) / (5 * searchp->num));
3854 STATS_ADD_REAPED(searchp, freed);
3860 mutex_unlock(&cache_chain_mutex);
3862 refresh_cpu_vm_stats(smp_processor_id());
3863 /* Set up the next iteration */
3864 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3867 #ifdef CONFIG_PROC_FS
3869 static void print_slabinfo_header(struct seq_file *m)
3872 * Output format version, so at least we can change it
3873 * without _too_ many complaints.
3876 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3878 seq_puts(m, "slabinfo - version: 2.1\n");
3880 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3881 "<objperslab> <pagesperslab>");
3882 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3883 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3885 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3886 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3887 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3892 static void *s_start(struct seq_file *m, loff_t *pos)
3895 struct list_head *p;
3897 mutex_lock(&cache_chain_mutex);
3899 print_slabinfo_header(m);
3900 p = cache_chain.next;
3903 if (p == &cache_chain)
3906 return list_entry(p, struct kmem_cache, next);
3909 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3911 struct kmem_cache *cachep = p;
3913 return cachep->next.next == &cache_chain ?
3914 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3917 static void s_stop(struct seq_file *m, void *p)
3919 mutex_unlock(&cache_chain_mutex);
3922 static int s_show(struct seq_file *m, void *p)
3924 struct kmem_cache *cachep = p;
3926 unsigned long active_objs;
3927 unsigned long num_objs;
3928 unsigned long active_slabs = 0;
3929 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3933 struct kmem_list3 *l3;
3937 for_each_online_node(node) {
3938 l3 = cachep->nodelists[node];
3943 spin_lock_irq(&l3->list_lock);
3945 list_for_each_entry(slabp, &l3->slabs_full, list) {
3946 if (slabp->inuse != cachep->num && !error)
3947 error = "slabs_full accounting error";
3948 active_objs += cachep->num;
3951 list_for_each_entry(slabp, &l3->slabs_partial, list) {
3952 if (slabp->inuse == cachep->num && !error)
3953 error = "slabs_partial inuse accounting error";
3954 if (!slabp->inuse && !error)
3955 error = "slabs_partial/inuse accounting error";
3956 active_objs += slabp->inuse;
3959 list_for_each_entry(slabp, &l3->slabs_free, list) {
3960 if (slabp->inuse && !error)
3961 error = "slabs_free/inuse accounting error";
3964 free_objects += l3->free_objects;
3966 shared_avail += l3->shared->avail;
3968 spin_unlock_irq(&l3->list_lock);
3970 num_slabs += active_slabs;
3971 num_objs = num_slabs * cachep->num;
3972 if (num_objs - active_objs != free_objects && !error)
3973 error = "free_objects accounting error";
3975 name = cachep->name;
3977 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3979 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3980 name, active_objs, num_objs, cachep->buffer_size,
3981 cachep->num, (1 << cachep->gfporder));
3982 seq_printf(m, " : tunables %4u %4u %4u",
3983 cachep->limit, cachep->batchcount, cachep->shared);
3984 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3985 active_slabs, num_slabs, shared_avail);
3988 unsigned long high = cachep->high_mark;
3989 unsigned long allocs = cachep->num_allocations;
3990 unsigned long grown = cachep->grown;
3991 unsigned long reaped = cachep->reaped;
3992 unsigned long errors = cachep->errors;
3993 unsigned long max_freeable = cachep->max_freeable;
3994 unsigned long node_allocs = cachep->node_allocs;
3995 unsigned long node_frees = cachep->node_frees;
3996 unsigned long overflows = cachep->node_overflow;
3998 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3999 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4000 reaped, errors, max_freeable, node_allocs,
4001 node_frees, overflows);
4005 unsigned long allochit = atomic_read(&cachep->allochit);
4006 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4007 unsigned long freehit = atomic_read(&cachep->freehit);
4008 unsigned long freemiss = atomic_read(&cachep->freemiss);
4010 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4011 allochit, allocmiss, freehit, freemiss);
4019 * slabinfo_op - iterator that generates /proc/slabinfo
4028 * num-pages-per-slab
4029 * + further values on SMP and with statistics enabled
4032 struct seq_operations slabinfo_op = {
4039 #define MAX_SLABINFO_WRITE 128
4041 * slabinfo_write - Tuning for the slab allocator
4043 * @buffer: user buffer
4044 * @count: data length
4047 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4048 size_t count, loff_t *ppos)
4050 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4051 int limit, batchcount, shared, res;
4052 struct kmem_cache *cachep;
4054 if (count > MAX_SLABINFO_WRITE)
4056 if (copy_from_user(&kbuf, buffer, count))
4058 kbuf[MAX_SLABINFO_WRITE] = '\0';
4060 tmp = strchr(kbuf, ' ');
4065 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4068 /* Find the cache in the chain of caches. */
4069 mutex_lock(&cache_chain_mutex);
4071 list_for_each_entry(cachep, &cache_chain, next) {
4072 if (!strcmp(cachep->name, kbuf)) {
4073 if (limit < 1 || batchcount < 1 ||
4074 batchcount > limit || shared < 0) {
4077 res = do_tune_cpucache(cachep, limit,
4078 batchcount, shared);
4083 mutex_unlock(&cache_chain_mutex);
4089 #ifdef CONFIG_DEBUG_SLAB_LEAK
4091 static void *leaks_start(struct seq_file *m, loff_t *pos)
4094 struct list_head *p;
4096 mutex_lock(&cache_chain_mutex);
4097 p = cache_chain.next;
4100 if (p == &cache_chain)
4103 return list_entry(p, struct kmem_cache, next);
4106 static inline int add_caller(unsigned long *n, unsigned long v)
4116 unsigned long *q = p + 2 * i;
4130 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4136 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4142 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4143 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4145 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4150 static void show_symbol(struct seq_file *m, unsigned long address)
4152 #ifdef CONFIG_KALLSYMS
4155 unsigned long offset, size;
4156 char namebuf[KSYM_NAME_LEN+1];
4158 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4161 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4163 seq_printf(m, " [%s]", modname);
4167 seq_printf(m, "%p", (void *)address);
4170 static int leaks_show(struct seq_file *m, void *p)
4172 struct kmem_cache *cachep = p;
4174 struct kmem_list3 *l3;
4176 unsigned long *n = m->private;
4180 if (!(cachep->flags & SLAB_STORE_USER))
4182 if (!(cachep->flags & SLAB_RED_ZONE))
4185 /* OK, we can do it */
4189 for_each_online_node(node) {
4190 l3 = cachep->nodelists[node];
4195 spin_lock_irq(&l3->list_lock);
4197 list_for_each_entry(slabp, &l3->slabs_full, list)
4198 handle_slab(n, cachep, slabp);
4199 list_for_each_entry(slabp, &l3->slabs_partial, list)
4200 handle_slab(n, cachep, slabp);
4201 spin_unlock_irq(&l3->list_lock);
4203 name = cachep->name;
4205 /* Increase the buffer size */
4206 mutex_unlock(&cache_chain_mutex);
4207 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4209 /* Too bad, we are really out */
4211 mutex_lock(&cache_chain_mutex);
4214 *(unsigned long *)m->private = n[0] * 2;
4216 mutex_lock(&cache_chain_mutex);
4217 /* Now make sure this entry will be retried */
4221 for (i = 0; i < n[1]; i++) {
4222 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4223 show_symbol(m, n[2*i+2]);
4230 struct seq_operations slabstats_op = {
4231 .start = leaks_start,
4240 * ksize - get the actual amount of memory allocated for a given object
4241 * @objp: Pointer to the object
4243 * kmalloc may internally round up allocations and return more memory
4244 * than requested. ksize() can be used to determine the actual amount of
4245 * memory allocated. The caller may use this additional memory, even though
4246 * a smaller amount of memory was initially specified with the kmalloc call.
4247 * The caller must guarantee that objp points to a valid object previously
4248 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4249 * must not be freed during the duration of the call.
4251 unsigned int ksize(const void *objp)
4253 if (unlikely(objp == NULL))
4256 return obj_size(virt_to_cache(objp));