2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
76 unsigned int ata_print_id = 1;
77 static struct workqueue_struct *ata_wq;
79 struct workqueue_struct *ata_aux_wq;
81 int atapi_enabled = 1;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
86 module_param(atapi_dmadir, int, 0444);
87 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
90 module_param_named(fua, libata_fua, int, 0444);
91 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
93 static int ata_ignore_hpa = 0;
94 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
97 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98 module_param(ata_probe_timeout, int, 0444);
99 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
101 int libata_noacpi = 1;
102 module_param_named(noacpi, libata_noacpi, int, 0444);
103 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
105 MODULE_AUTHOR("Jeff Garzik");
106 MODULE_DESCRIPTION("Library module for ATA devices");
107 MODULE_LICENSE("GPL");
108 MODULE_VERSION(DRV_VERSION);
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
114 * @pmp: Port multiplier port
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
122 * Inherited from caller.
124 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
145 fis[13] = tf->hob_nsect;
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
163 * Inherited from caller.
166 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
181 tf->hob_nsect = fis[13];
184 static const u8 ata_rw_cmds[] = {
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
211 ATA_CMD_WRITE_FUA_EXT
215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
219 * Examine the device configuration and tf->flags to calculate
220 * the proper read/write commands and protocol to use.
225 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
229 int index, fua, lba48, write;
231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
237 index = dev->multi_count ? 0 : 8;
238 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
241 index = dev->multi_count ? 0 : 8;
243 tf->protocol = ATA_PROT_DMA;
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
268 * Block address read from @tf.
270 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
280 block |= (tf->device & 0xf) << 24;
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
318 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
327 if (!lba_48_ok(block, n_block))
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
336 tf->command = ATA_CMD_FPDMA_READ;
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
355 if (lba_28_ok(block, n_block)) {
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
363 tf->flags |= ATA_TFLAG_LBA48;
365 tf->hob_nsect = (n_block >> 8) & 0xff;
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
371 /* request too large even for LBA48 */
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
377 tf->nsect = n_block & 0xff;
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
383 tf->device |= ATA_LBA;
386 u32 sect, head, cyl, track;
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
404 /* Check whether the converted CHS can fit.
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
436 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
455 static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
468 static const struct ata_xfer_ent {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
489 * Matching XFER_* value, 0 if no match found.
491 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
506 * Return matching xfer_mask for @xfer_mode.
512 * Matching xfer_mask, 0 if no match found.
514 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
516 const struct ata_xfer_ent *ent;
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
528 * Return matching xfer_shift for @xfer_mode.
534 * Matching xfer_shift, -1 if no match found.
536 static int ata_xfer_mode2shift(unsigned int xfer_mode)
538 const struct ata_xfer_ent *ent;
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
550 * Determine string which represents the highest speed
551 * (highest bit in @modemask).
557 * Constant C string representing highest speed listed in
558 * @mode_mask, or the constant C string "<n/a>".
560 static const char *ata_mode_string(unsigned int xfer_mask)
562 static const char * const xfer_mode_str[] = {
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
592 static const char *sata_spd_string(unsigned int spd)
594 static const char * const spd_str[] = {
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
601 return spd_str[spd - 1];
604 void ata_dev_disable(struct ata_device *dev)
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->link->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
616 * ata_devchk - PATA device presence detection
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
633 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
635 struct ata_ioports *ioaddr = &ap->ioaddr;
638 ap->ops->dev_select(ap, device);
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
655 return 0; /* nothing found */
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
674 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
701 * @r_err: Value of error register on completion
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
720 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
722 struct ata_taskfile tf;
726 ap->ops->dev_select(ap, device);
728 memset(&tf, 0, sizeof(tf));
730 ap->ops->tf_read(ap, &tf);
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
741 else if ((device == 0) && (err == 0x81))
746 /* determine if device is ATA or ATAPI */
747 class = ata_dev_classify(&tf);
749 if (class == ATA_DEV_UNKNOWN)
751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
757 * ata_id_string - Convert IDENTIFY DEVICE page into string
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
771 void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
797 * This function is identical to ata_id_string except that it
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
804 void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
811 ata_id_string(id, s, ofs, len - 1);
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
819 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
833 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
853 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
856 struct ata_taskfile tf;
858 ata_tf_init(dev, &tf);
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
869 return ata_tf_to_lba48(&tf);
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
880 static u64 ata_read_native_max_address(struct ata_device *dev)
883 struct ata_taskfile tf;
885 ata_tf_init(dev, &tf);
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
896 return ata_tf_to_lba(&tf);
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
902 * @new_sectors: new max sectors value to set for the device
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
908 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
911 struct ata_taskfile tf;
915 ata_tf_init(dev, &tf);
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
934 return ata_tf_to_lba48(&tf);
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
940 * @new_sectors: new max sectors value to set for the device
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
946 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
949 struct ata_taskfile tf;
953 ata_tf_init(dev, &tf);
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
968 return ata_tf_to_lba(&tf);
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
980 static u64 ata_hpa_resize(struct ata_device *dev)
982 u64 sectors = dev->n_sectors;
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
988 hpa_sectors = ata_read_native_max_address(dev);
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
995 (long long)sectors, (long long)hpa_sectors);
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 hpa_sectors = ata_set_native_max_address(dev,
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1019 static u64 ata_id_n_sectors(const u16 *id)
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1025 return ata_id_u32(id, 60);
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1030 return id[1] * id[3] * id[6];
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
1037 * @unknown: mode to assume if we cannot tell
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1049 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1066 /* SWDMA perhaps ? */
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1081 * This function performs no actual function.
1083 * May be used as the dev_select() entry in ata_port_operations.
1088 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
1100 * ATA channel. Works with both PIO and MMIO.
1102 * May be used as the dev_select() entry in ata_port_operations.
1108 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1113 tmp = ATA_DEVICE_OBS;
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1117 iowrite8(tmp, ap->ioaddr.device_addr);
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1140 void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1143 if (ata_msg_probe(ap))
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1150 ap->ops->dev_select(ap, device);
1153 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
1161 * @id: IDENTIFY DEVICE page to dump
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1170 static inline void ata_dump_id(const u16 *id)
1172 DPRINTK("49==0x%04x "
1182 DPRINTK("80==0x%04x "
1192 DPRINTK("88==0x%04x "
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1205 * FIXME: pre IDE drive timing (do we care ?).
1213 static unsigned int ata_id_xfermask(const u16 *id)
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1243 if (ata_id_is_cfa(id)) {
1245 * Process compact flash extended modes
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1251 pio_mask |= (1 << 5);
1253 pio_mask |= (1 << 6);
1255 mwdma_mask |= (1 << 3);
1257 mwdma_mask |= (1 << 4);
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
1270 * @fn: workqueue function to be scheduled
1271 * @data: data for @fn to use
1272 * @delay: delay time for workqueue function
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1284 * Inherited from caller.
1286 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1287 unsigned long delay)
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1304 * Kernel thread context (may sleep)
1306 void ata_port_flush_task(struct ata_port *ap)
1310 cancel_rearming_delayed_work(&ap->port_task);
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1316 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1318 struct completion *waiting = qc->private_data;
1324 * ata_exec_internal_sg - execute libata internal command
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
1327 * @cdb: CDB for packet command
1328 * @dma_dir: Data tranfer direction of the command
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1339 * None. Should be called with kernel context, might sleep.
1342 * Zero on success, AC_ERR_* mask on failure
1344 unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
1349 struct ata_link *link = dev->link;
1350 struct ata_port *ap = link->ap;
1351 u8 command = tf->command;
1352 struct ata_queued_cmd *qc;
1353 unsigned int tag, preempted_tag;
1354 u32 preempted_sactive, preempted_qc_active;
1355 DECLARE_COMPLETION_ONSTACK(wait);
1356 unsigned long flags;
1357 unsigned int err_mask;
1360 spin_lock_irqsave(ap->lock, flags);
1362 /* no internal command while frozen */
1363 if (ap->pflags & ATA_PFLAG_FROZEN) {
1364 spin_unlock_irqrestore(ap->lock, flags);
1365 return AC_ERR_SYSTEM;
1368 /* initialize internal qc */
1370 /* XXX: Tag 0 is used for drivers with legacy EH as some
1371 * drivers choke if any other tag is given. This breaks
1372 * ata_tag_internal() test for those drivers. Don't use new
1373 * EH stuff without converting to it.
1375 if (ap->ops->error_handler)
1376 tag = ATA_TAG_INTERNAL;
1380 if (test_and_set_bit(tag, &ap->qc_allocated))
1382 qc = __ata_qc_from_tag(ap, tag);
1390 preempted_tag = link->active_tag;
1391 preempted_sactive = link->sactive;
1392 preempted_qc_active = ap->qc_active;
1393 link->active_tag = ATA_TAG_POISON;
1397 /* prepare & issue qc */
1400 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1401 qc->flags |= ATA_QCFLAG_RESULT_TF;
1402 qc->dma_dir = dma_dir;
1403 if (dma_dir != DMA_NONE) {
1404 unsigned int i, buflen = 0;
1406 for (i = 0; i < n_elem; i++)
1407 buflen += sg[i].length;
1409 ata_sg_init(qc, sg, n_elem);
1410 qc->nbytes = buflen;
1413 qc->private_data = &wait;
1414 qc->complete_fn = ata_qc_complete_internal;
1418 spin_unlock_irqrestore(ap->lock, flags);
1420 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1422 ata_port_flush_task(ap);
1425 spin_lock_irqsave(ap->lock, flags);
1427 /* We're racing with irq here. If we lose, the
1428 * following test prevents us from completing the qc
1429 * twice. If we win, the port is frozen and will be
1430 * cleaned up by ->post_internal_cmd().
1432 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1433 qc->err_mask |= AC_ERR_TIMEOUT;
1435 if (ap->ops->error_handler)
1436 ata_port_freeze(ap);
1438 ata_qc_complete(qc);
1440 if (ata_msg_warn(ap))
1441 ata_dev_printk(dev, KERN_WARNING,
1442 "qc timeout (cmd 0x%x)\n", command);
1445 spin_unlock_irqrestore(ap->lock, flags);
1448 /* do post_internal_cmd */
1449 if (ap->ops->post_internal_cmd)
1450 ap->ops->post_internal_cmd(qc);
1452 /* perform minimal error analysis */
1453 if (qc->flags & ATA_QCFLAG_FAILED) {
1454 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1455 qc->err_mask |= AC_ERR_DEV;
1458 qc->err_mask |= AC_ERR_OTHER;
1460 if (qc->err_mask & ~AC_ERR_OTHER)
1461 qc->err_mask &= ~AC_ERR_OTHER;
1465 spin_lock_irqsave(ap->lock, flags);
1467 *tf = qc->result_tf;
1468 err_mask = qc->err_mask;
1471 link->active_tag = preempted_tag;
1472 link->sactive = preempted_sactive;
1473 ap->qc_active = preempted_qc_active;
1475 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1476 * Until those drivers are fixed, we detect the condition
1477 * here, fail the command with AC_ERR_SYSTEM and reenable the
1480 * Note that this doesn't change any behavior as internal
1481 * command failure results in disabling the device in the
1482 * higher layer for LLDDs without new reset/EH callbacks.
1484 * Kill the following code as soon as those drivers are fixed.
1486 if (ap->flags & ATA_FLAG_DISABLED) {
1487 err_mask |= AC_ERR_SYSTEM;
1491 spin_unlock_irqrestore(ap->lock, flags);
1497 * ata_exec_internal - execute libata internal command
1498 * @dev: Device to which the command is sent
1499 * @tf: Taskfile registers for the command and the result
1500 * @cdb: CDB for packet command
1501 * @dma_dir: Data tranfer direction of the command
1502 * @buf: Data buffer of the command
1503 * @buflen: Length of data buffer
1505 * Wrapper around ata_exec_internal_sg() which takes simple
1506 * buffer instead of sg list.
1509 * None. Should be called with kernel context, might sleep.
1512 * Zero on success, AC_ERR_* mask on failure
1514 unsigned ata_exec_internal(struct ata_device *dev,
1515 struct ata_taskfile *tf, const u8 *cdb,
1516 int dma_dir, void *buf, unsigned int buflen)
1518 struct scatterlist *psg = NULL, sg;
1519 unsigned int n_elem = 0;
1521 if (dma_dir != DMA_NONE) {
1523 sg_init_one(&sg, buf, buflen);
1528 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1532 * ata_do_simple_cmd - execute simple internal command
1533 * @dev: Device to which the command is sent
1534 * @cmd: Opcode to execute
1536 * Execute a 'simple' command, that only consists of the opcode
1537 * 'cmd' itself, without filling any other registers
1540 * Kernel thread context (may sleep).
1543 * Zero on success, AC_ERR_* mask on failure
1545 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1547 struct ata_taskfile tf;
1549 ata_tf_init(dev, &tf);
1552 tf.flags |= ATA_TFLAG_DEVICE;
1553 tf.protocol = ATA_PROT_NODATA;
1555 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1559 * ata_pio_need_iordy - check if iordy needed
1562 * Check if the current speed of the device requires IORDY. Used
1563 * by various controllers for chip configuration.
1566 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1568 /* Controller doesn't support IORDY. Probably a pointless check
1569 as the caller should know this */
1570 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1572 /* PIO3 and higher it is mandatory */
1573 if (adev->pio_mode > XFER_PIO_2)
1575 /* We turn it on when possible */
1576 if (ata_id_has_iordy(adev->id))
1582 * ata_pio_mask_no_iordy - Return the non IORDY mask
1585 * Compute the highest mode possible if we are not using iordy. Return
1586 * -1 if no iordy mode is available.
1589 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1591 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1592 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1593 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1594 /* Is the speed faster than the drive allows non IORDY ? */
1596 /* This is cycle times not frequency - watch the logic! */
1597 if (pio > 240) /* PIO2 is 240nS per cycle */
1598 return 3 << ATA_SHIFT_PIO;
1599 return 7 << ATA_SHIFT_PIO;
1602 return 3 << ATA_SHIFT_PIO;
1606 * ata_dev_read_id - Read ID data from the specified device
1607 * @dev: target device
1608 * @p_class: pointer to class of the target device (may be changed)
1609 * @flags: ATA_READID_* flags
1610 * @id: buffer to read IDENTIFY data into
1612 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1613 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1614 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1615 * for pre-ATA4 drives.
1618 * Kernel thread context (may sleep)
1621 * 0 on success, -errno otherwise.
1623 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1624 unsigned int flags, u16 *id)
1626 struct ata_port *ap = dev->link->ap;
1627 unsigned int class = *p_class;
1628 struct ata_taskfile tf;
1629 unsigned int err_mask = 0;
1631 int may_fallback = 1, tried_spinup = 0;
1634 if (ata_msg_ctl(ap))
1635 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1637 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1639 ata_tf_init(dev, &tf);
1643 tf.command = ATA_CMD_ID_ATA;
1646 tf.command = ATA_CMD_ID_ATAPI;
1650 reason = "unsupported class";
1654 tf.protocol = ATA_PROT_PIO;
1656 /* Some devices choke if TF registers contain garbage. Make
1657 * sure those are properly initialized.
1659 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1661 /* Device presence detection is unreliable on some
1662 * controllers. Always poll IDENTIFY if available.
1664 tf.flags |= ATA_TFLAG_POLLING;
1666 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1667 id, sizeof(id[0]) * ATA_ID_WORDS);
1669 if (err_mask & AC_ERR_NODEV_HINT) {
1670 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1671 ap->print_id, dev->devno);
1675 /* Device or controller might have reported the wrong
1676 * device class. Give a shot at the other IDENTIFY if
1677 * the current one is aborted by the device.
1680 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1683 if (class == ATA_DEV_ATA)
1684 class = ATA_DEV_ATAPI;
1686 class = ATA_DEV_ATA;
1691 reason = "I/O error";
1695 /* Falling back doesn't make sense if ID data was read
1696 * successfully at least once.
1700 swap_buf_le16(id, ATA_ID_WORDS);
1704 reason = "device reports invalid type";
1706 if (class == ATA_DEV_ATA) {
1707 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1710 if (ata_id_is_ata(id))
1714 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1717 * Drive powered-up in standby mode, and requires a specific
1718 * SET_FEATURES spin-up subcommand before it will accept
1719 * anything other than the original IDENTIFY command.
1721 ata_tf_init(dev, &tf);
1722 tf.command = ATA_CMD_SET_FEATURES;
1723 tf.feature = SETFEATURES_SPINUP;
1724 tf.protocol = ATA_PROT_NODATA;
1725 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1727 if (err_mask && id[2] != 0x738c) {
1729 reason = "SPINUP failed";
1733 * If the drive initially returned incomplete IDENTIFY info,
1734 * we now must reissue the IDENTIFY command.
1736 if (id[2] == 0x37c8)
1740 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1742 * The exact sequence expected by certain pre-ATA4 drives is:
1745 * INITIALIZE DEVICE PARAMETERS
1747 * Some drives were very specific about that exact sequence.
1749 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1750 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1753 reason = "INIT_DEV_PARAMS failed";
1757 /* current CHS translation info (id[53-58]) might be
1758 * changed. reread the identify device info.
1760 flags &= ~ATA_READID_POSTRESET;
1770 if (ata_msg_warn(ap))
1771 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1772 "(%s, err_mask=0x%x)\n", reason, err_mask);
1776 static inline u8 ata_dev_knobble(struct ata_device *dev)
1778 struct ata_port *ap = dev->link->ap;
1779 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1782 static void ata_dev_config_ncq(struct ata_device *dev,
1783 char *desc, size_t desc_sz)
1785 struct ata_port *ap = dev->link->ap;
1786 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1788 if (!ata_id_has_ncq(dev->id)) {
1792 if (dev->horkage & ATA_HORKAGE_NONCQ) {
1793 snprintf(desc, desc_sz, "NCQ (not used)");
1796 if (ap->flags & ATA_FLAG_NCQ) {
1797 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1798 dev->flags |= ATA_DFLAG_NCQ;
1801 if (hdepth >= ddepth)
1802 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1804 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1808 * ata_dev_configure - Configure the specified ATA/ATAPI device
1809 * @dev: Target device to configure
1811 * Configure @dev according to @dev->id. Generic and low-level
1812 * driver specific fixups are also applied.
1815 * Kernel thread context (may sleep)
1818 * 0 on success, -errno otherwise
1820 int ata_dev_configure(struct ata_device *dev)
1822 struct ata_port *ap = dev->link->ap;
1823 struct ata_eh_context *ehc = &dev->link->eh_context;
1824 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1825 const u16 *id = dev->id;
1826 unsigned int xfer_mask;
1827 char revbuf[7]; /* XYZ-99\0 */
1828 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1829 char modelbuf[ATA_ID_PROD_LEN+1];
1832 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1833 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1838 if (ata_msg_probe(ap))
1839 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1842 dev->horkage |= ata_dev_blacklisted(dev);
1844 /* let ACPI work its magic */
1845 rc = ata_acpi_on_devcfg(dev);
1849 /* print device capabilities */
1850 if (ata_msg_probe(ap))
1851 ata_dev_printk(dev, KERN_DEBUG,
1852 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1853 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1855 id[49], id[82], id[83], id[84],
1856 id[85], id[86], id[87], id[88]);
1858 /* initialize to-be-configured parameters */
1859 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1860 dev->max_sectors = 0;
1868 * common ATA, ATAPI feature tests
1871 /* find max transfer mode; for printk only */
1872 xfer_mask = ata_id_xfermask(id);
1874 if (ata_msg_probe(ap))
1877 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1878 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1881 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1884 /* ATA-specific feature tests */
1885 if (dev->class == ATA_DEV_ATA) {
1886 if (ata_id_is_cfa(id)) {
1887 if (id[162] & 1) /* CPRM may make this media unusable */
1888 ata_dev_printk(dev, KERN_WARNING,
1889 "supports DRM functions and may "
1890 "not be fully accessable.\n");
1891 snprintf(revbuf, 7, "CFA");
1894 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1896 dev->n_sectors = ata_id_n_sectors(id);
1898 if (dev->id[59] & 0x100)
1899 dev->multi_count = dev->id[59] & 0xff;
1901 if (ata_id_has_lba(id)) {
1902 const char *lba_desc;
1906 dev->flags |= ATA_DFLAG_LBA;
1907 if (ata_id_has_lba48(id)) {
1908 dev->flags |= ATA_DFLAG_LBA48;
1911 if (dev->n_sectors >= (1UL << 28) &&
1912 ata_id_has_flush_ext(id))
1913 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1916 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1917 ata_id_hpa_enabled(dev->id))
1918 dev->n_sectors = ata_hpa_resize(dev);
1921 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1923 /* print device info to dmesg */
1924 if (ata_msg_drv(ap) && print_info) {
1925 ata_dev_printk(dev, KERN_INFO,
1926 "%s: %s, %s, max %s\n",
1927 revbuf, modelbuf, fwrevbuf,
1928 ata_mode_string(xfer_mask));
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%Lu sectors, multi %u: %s %s\n",
1931 (unsigned long long)dev->n_sectors,
1932 dev->multi_count, lba_desc, ncq_desc);
1937 /* Default translation */
1938 dev->cylinders = id[1];
1940 dev->sectors = id[6];
1942 if (ata_id_current_chs_valid(id)) {
1943 /* Current CHS translation is valid. */
1944 dev->cylinders = id[54];
1945 dev->heads = id[55];
1946 dev->sectors = id[56];
1949 /* print device info to dmesg */
1950 if (ata_msg_drv(ap) && print_info) {
1951 ata_dev_printk(dev, KERN_INFO,
1952 "%s: %s, %s, max %s\n",
1953 revbuf, modelbuf, fwrevbuf,
1954 ata_mode_string(xfer_mask));
1955 ata_dev_printk(dev, KERN_INFO,
1956 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1957 (unsigned long long)dev->n_sectors,
1958 dev->multi_count, dev->cylinders,
1959 dev->heads, dev->sectors);
1966 /* ATAPI-specific feature tests */
1967 else if (dev->class == ATA_DEV_ATAPI) {
1968 char *cdb_intr_string = "";
1970 rc = atapi_cdb_len(id);
1971 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1972 if (ata_msg_warn(ap))
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "unsupported CDB len\n");
1978 dev->cdb_len = (unsigned int) rc;
1980 if (ata_id_cdb_intr(dev->id)) {
1981 dev->flags |= ATA_DFLAG_CDB_INTR;
1982 cdb_intr_string = ", CDB intr";
1985 /* print device info to dmesg */
1986 if (ata_msg_drv(ap) && print_info)
1987 ata_dev_printk(dev, KERN_INFO,
1988 "ATAPI: %s, %s, max %s%s\n",
1990 ata_mode_string(xfer_mask),
1994 /* determine max_sectors */
1995 dev->max_sectors = ATA_MAX_SECTORS;
1996 if (dev->flags & ATA_DFLAG_LBA48)
1997 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1999 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2000 /* Let the user know. We don't want to disallow opens for
2001 rescue purposes, or in case the vendor is just a blithering
2004 ata_dev_printk(dev, KERN_WARNING,
2005 "Drive reports diagnostics failure. This may indicate a drive\n");
2006 ata_dev_printk(dev, KERN_WARNING,
2007 "fault or invalid emulation. Contact drive vendor for information.\n");
2011 /* limit bridge transfers to udma5, 200 sectors */
2012 if (ata_dev_knobble(dev)) {
2013 if (ata_msg_drv(ap) && print_info)
2014 ata_dev_printk(dev, KERN_INFO,
2015 "applying bridge limits\n");
2016 dev->udma_mask &= ATA_UDMA5;
2017 dev->max_sectors = ATA_MAX_SECTORS;
2020 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2021 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2024 if (ap->ops->dev_config)
2025 ap->ops->dev_config(dev);
2027 if (ata_msg_probe(ap))
2028 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2029 __FUNCTION__, ata_chk_status(ap));
2033 if (ata_msg_probe(ap))
2034 ata_dev_printk(dev, KERN_DEBUG,
2035 "%s: EXIT, err\n", __FUNCTION__);
2040 * ata_cable_40wire - return 40 wire cable type
2043 * Helper method for drivers which want to hardwire 40 wire cable
2047 int ata_cable_40wire(struct ata_port *ap)
2049 return ATA_CBL_PATA40;
2053 * ata_cable_80wire - return 80 wire cable type
2056 * Helper method for drivers which want to hardwire 80 wire cable
2060 int ata_cable_80wire(struct ata_port *ap)
2062 return ATA_CBL_PATA80;
2066 * ata_cable_unknown - return unknown PATA cable.
2069 * Helper method for drivers which have no PATA cable detection.
2072 int ata_cable_unknown(struct ata_port *ap)
2074 return ATA_CBL_PATA_UNK;
2078 * ata_cable_sata - return SATA cable type
2081 * Helper method for drivers which have SATA cables
2084 int ata_cable_sata(struct ata_port *ap)
2086 return ATA_CBL_SATA;
2090 * ata_bus_probe - Reset and probe ATA bus
2093 * Master ATA bus probing function. Initiates a hardware-dependent
2094 * bus reset, then attempts to identify any devices found on
2098 * PCI/etc. bus probe sem.
2101 * Zero on success, negative errno otherwise.
2104 int ata_bus_probe(struct ata_port *ap)
2106 unsigned int classes[ATA_MAX_DEVICES];
2107 int tries[ATA_MAX_DEVICES];
2109 struct ata_device *dev;
2113 ata_link_for_each_dev(dev, &ap->link)
2114 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2117 /* reset and determine device classes */
2118 ap->ops->phy_reset(ap);
2120 ata_link_for_each_dev(dev, &ap->link) {
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2125 classes[dev->devno] = ATA_DEV_NONE;
2127 dev->class = ATA_DEV_UNKNOWN;
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2135 ata_link_for_each_dev(dev, &ap->link)
2136 dev->pio_mode = XFER_PIO_0;
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2142 ata_link_for_each_dev(dev, &ap->link) {
2143 if (tries[dev->devno])
2144 dev->class = classes[dev->devno];
2146 if (!ata_dev_enabled(dev))
2149 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2155 /* Now ask for the cable type as PDIAG- should have been released */
2156 if (ap->ops->cable_detect)
2157 ap->cbl = ap->ops->cable_detect(ap);
2159 /* After the identify sequence we can now set up the devices. We do
2160 this in the normal order so that the user doesn't get confused */
2162 ata_link_for_each_dev(dev, &ap->link) {
2163 if (!ata_dev_enabled(dev))
2166 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2167 rc = ata_dev_configure(dev);
2168 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2173 /* configure transfer mode */
2174 rc = ata_set_mode(&ap->link, &dev);
2178 ata_link_for_each_dev(dev, &ap->link)
2179 if (ata_dev_enabled(dev))
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
2184 ap->ops->port_disable(ap);
2188 tries[dev->devno]--;
2192 /* eeek, something went very wrong, give up */
2193 tries[dev->devno] = 0;
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2204 sata_down_spd_limit(&ap->link);
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2209 if (!tries[dev->devno])
2210 ata_dev_disable(dev);
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2222 * LOCKING: host lock, or some other form of
2226 void ata_port_probe(struct ata_port *ap)
2228 ap->flags &= ~ATA_FLAG_DISABLED;
2232 * sata_print_link_status - Print SATA link status
2233 * @link: SATA link to printk link status about
2235 * This function prints link speed and status of a SATA link.
2240 void sata_print_link_status(struct ata_link *link)
2242 u32 sstatus, scontrol, tmp;
2244 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2246 sata_scr_read(link, SCR_CONTROL, &scontrol);
2248 if (ata_link_online(link)) {
2249 tmp = (sstatus >> 4) & 0xf;
2250 ata_link_printk(link, KERN_INFO,
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
2254 ata_link_printk(link, KERN_INFO,
2255 "SATA link down (SStatus %X SControl %X)\n",
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
2269 * PCI/etc. bus probe sem.
2272 void __sata_phy_reset(struct ata_port *ap)
2274 struct ata_link *link = &ap->link;
2275 unsigned long timeout = jiffies + (HZ * 5);
2278 if (ap->flags & ATA_FLAG_SATA_RESET) {
2279 /* issue phy wake/reset */
2280 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
2281 /* Couldn't find anything in SATA I/II specs, but
2282 * AHCI-1.1 10.4.2 says at least 1 ms. */
2285 /* phy wake/clear reset */
2286 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
2288 /* wait for phy to become ready, if necessary */
2291 sata_scr_read(link, SCR_STATUS, &sstatus);
2292 if ((sstatus & 0xf) != 1)
2294 } while (time_before(jiffies, timeout));
2296 /* print link status */
2297 sata_print_link_status(link);
2299 /* TODO: phy layer with polling, timeouts, etc. */
2300 if (!ata_link_offline(link))
2303 ata_port_disable(ap);
2305 if (ap->flags & ATA_FLAG_DISABLED)
2308 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2309 ata_port_disable(ap);
2313 ap->cbl = ATA_CBL_SATA;
2317 * sata_phy_reset - Reset SATA bus.
2318 * @ap: SATA port associated with target SATA PHY.
2320 * This function resets the SATA bus, and then probes
2321 * the bus for devices.
2324 * PCI/etc. bus probe sem.
2327 void sata_phy_reset(struct ata_port *ap)
2329 __sata_phy_reset(ap);
2330 if (ap->flags & ATA_FLAG_DISABLED)
2336 * ata_dev_pair - return other device on cable
2339 * Obtain the other device on the same cable, or if none is
2340 * present NULL is returned
2343 struct ata_device *ata_dev_pair(struct ata_device *adev)
2345 struct ata_link *link = adev->link;
2346 struct ata_device *pair = &link->device[1 - adev->devno];
2347 if (!ata_dev_enabled(pair))
2353 * ata_port_disable - Disable port.
2354 * @ap: Port to be disabled.
2356 * Modify @ap data structure such that the system
2357 * thinks that the entire port is disabled, and should
2358 * never attempt to probe or communicate with devices
2361 * LOCKING: host lock, or some other form of
2365 void ata_port_disable(struct ata_port *ap)
2367 ap->link.device[0].class = ATA_DEV_NONE;
2368 ap->link.device[1].class = ATA_DEV_NONE;
2369 ap->flags |= ATA_FLAG_DISABLED;
2373 * sata_down_spd_limit - adjust SATA spd limit downward
2374 * @link: Link to adjust SATA spd limit for
2376 * Adjust SATA spd limit of @link downward. Note that this
2377 * function only adjusts the limit. The change must be applied
2378 * using sata_set_spd().
2381 * Inherited from caller.
2384 * 0 on success, negative errno on failure
2386 int sata_down_spd_limit(struct ata_link *link)
2388 u32 sstatus, spd, mask;
2391 if (!sata_scr_valid(link))
2394 /* If SCR can be read, use it to determine the current SPD.
2395 * If not, use cached value in link->sata_spd.
2397 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2399 spd = (sstatus >> 4) & 0xf;
2401 spd = link->sata_spd;
2403 mask = link->sata_spd_limit;
2407 /* unconditionally mask off the highest bit */
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2411 /* Mask off all speeds higher than or equal to the current
2412 * one. Force 1.5Gbps if current SPD is not available.
2415 mask &= (1 << (spd - 1)) - 1;
2419 /* were we already at the bottom? */
2423 link->sata_spd_limit = mask;
2425 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2426 sata_spd_string(fls(mask)));
2431 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2435 if (link->sata_spd_limit == UINT_MAX)
2438 limit = fls(link->sata_spd_limit);
2440 spd = (*scontrol >> 4) & 0xf;
2441 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2443 return spd != limit;
2447 * sata_set_spd_needed - is SATA spd configuration needed
2448 * @link: Link in question
2450 * Test whether the spd limit in SControl matches
2451 * @link->sata_spd_limit. This function is used to determine
2452 * whether hardreset is necessary to apply SATA spd
2456 * Inherited from caller.
2459 * 1 if SATA spd configuration is needed, 0 otherwise.
2461 int sata_set_spd_needed(struct ata_link *link)
2465 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2468 return __sata_set_spd_needed(link, &scontrol);
2472 * sata_set_spd - set SATA spd according to spd limit
2473 * @link: Link to set SATA spd for
2475 * Set SATA spd of @link according to sata_spd_limit.
2478 * Inherited from caller.
2481 * 0 if spd doesn't need to be changed, 1 if spd has been
2482 * changed. Negative errno if SCR registers are inaccessible.
2484 int sata_set_spd(struct ata_link *link)
2489 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2492 if (!__sata_set_spd_needed(link, &scontrol))
2495 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2502 * This mode timing computation functionality is ported over from
2503 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2506 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2507 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2508 * for UDMA6, which is currently supported only by Maxtor drives.
2510 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2513 static const struct ata_timing ata_timing[] = {
2515 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2516 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2517 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2518 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2520 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2521 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2522 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2523 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2524 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2526 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2528 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2529 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2530 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2532 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2533 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2534 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2536 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2537 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2538 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2539 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2541 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2542 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2543 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2545 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2550 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2551 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2553 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2555 q->setup = EZ(t->setup * 1000, T);
2556 q->act8b = EZ(t->act8b * 1000, T);
2557 q->rec8b = EZ(t->rec8b * 1000, T);
2558 q->cyc8b = EZ(t->cyc8b * 1000, T);
2559 q->active = EZ(t->active * 1000, T);
2560 q->recover = EZ(t->recover * 1000, T);
2561 q->cycle = EZ(t->cycle * 1000, T);
2562 q->udma = EZ(t->udma * 1000, UT);
2565 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2566 struct ata_timing *m, unsigned int what)
2568 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2569 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2570 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2571 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2572 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2573 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2574 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2575 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2578 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2580 const struct ata_timing *t;
2582 for (t = ata_timing; t->mode != speed; t++)
2583 if (t->mode == 0xFF)
2588 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2589 struct ata_timing *t, int T, int UT)
2591 const struct ata_timing *s;
2592 struct ata_timing p;
2598 if (!(s = ata_timing_find_mode(speed)))
2601 memcpy(t, s, sizeof(*s));
2604 * If the drive is an EIDE drive, it can tell us it needs extended
2605 * PIO/MW_DMA cycle timing.
2608 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2609 memset(&p, 0, sizeof(p));
2610 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2611 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2612 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2613 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2614 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2616 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2620 * Convert the timing to bus clock counts.
2623 ata_timing_quantize(t, t, T, UT);
2626 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2627 * S.M.A.R.T * and some other commands. We have to ensure that the
2628 * DMA cycle timing is slower/equal than the fastest PIO timing.
2631 if (speed > XFER_PIO_6) {
2632 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2633 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2637 * Lengthen active & recovery time so that cycle time is correct.
2640 if (t->act8b + t->rec8b < t->cyc8b) {
2641 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2642 t->rec8b = t->cyc8b - t->act8b;
2645 if (t->active + t->recover < t->cycle) {
2646 t->active += (t->cycle - (t->active + t->recover)) / 2;
2647 t->recover = t->cycle - t->active;
2650 /* In a few cases quantisation may produce enough errors to
2651 leave t->cycle too low for the sum of active and recovery
2652 if so we must correct this */
2653 if (t->active + t->recover > t->cycle)
2654 t->cycle = t->active + t->recover;
2660 * ata_down_xfermask_limit - adjust dev xfer masks downward
2661 * @dev: Device to adjust xfer masks
2662 * @sel: ATA_DNXFER_* selector
2664 * Adjust xfer masks of @dev downward. Note that this function
2665 * does not apply the change. Invoking ata_set_mode() afterwards
2666 * will apply the limit.
2669 * Inherited from caller.
2672 * 0 on success, negative errno on failure
2674 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2677 unsigned int orig_mask, xfer_mask;
2678 unsigned int pio_mask, mwdma_mask, udma_mask;
2681 quiet = !!(sel & ATA_DNXFER_QUIET);
2682 sel &= ~ATA_DNXFER_QUIET;
2684 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2687 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2690 case ATA_DNXFER_PIO:
2691 highbit = fls(pio_mask) - 1;
2692 pio_mask &= ~(1 << highbit);
2695 case ATA_DNXFER_DMA:
2697 highbit = fls(udma_mask) - 1;
2698 udma_mask &= ~(1 << highbit);
2701 } else if (mwdma_mask) {
2702 highbit = fls(mwdma_mask) - 1;
2703 mwdma_mask &= ~(1 << highbit);
2709 case ATA_DNXFER_40C:
2710 udma_mask &= ATA_UDMA_MASK_40C;
2713 case ATA_DNXFER_FORCE_PIO0:
2715 case ATA_DNXFER_FORCE_PIO:
2724 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2726 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2730 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2731 snprintf(buf, sizeof(buf), "%s:%s",
2732 ata_mode_string(xfer_mask),
2733 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2735 snprintf(buf, sizeof(buf), "%s",
2736 ata_mode_string(xfer_mask));
2738 ata_dev_printk(dev, KERN_WARNING,
2739 "limiting speed to %s\n", buf);
2742 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2748 static int ata_dev_set_mode(struct ata_device *dev)
2750 struct ata_eh_context *ehc = &dev->link->eh_context;
2751 unsigned int err_mask;
2754 dev->flags &= ~ATA_DFLAG_PIO;
2755 if (dev->xfer_shift == ATA_SHIFT_PIO)
2756 dev->flags |= ATA_DFLAG_PIO;
2758 err_mask = ata_dev_set_xfermode(dev);
2759 /* Old CFA may refuse this command, which is just fine */
2760 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2761 err_mask &= ~AC_ERR_DEV;
2764 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2765 "(err_mask=0x%x)\n", err_mask);
2769 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2770 rc = ata_dev_revalidate(dev, 0);
2771 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2775 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2776 dev->xfer_shift, (int)dev->xfer_mode);
2778 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2779 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2784 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2785 * @link: link on which timings will be programmed
2786 * @r_failed_dev: out paramter for failed device
2788 * Standard implementation of the function used to tune and set
2789 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2790 * ata_dev_set_mode() fails, pointer to the failing device is
2791 * returned in @r_failed_dev.
2794 * PCI/etc. bus probe sem.
2797 * 0 on success, negative errno otherwise
2800 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2802 struct ata_port *ap = link->ap;
2803 struct ata_device *dev;
2804 int rc = 0, used_dma = 0, found = 0;
2806 /* step 1: calculate xfer_mask */
2807 ata_link_for_each_dev(dev, link) {
2808 unsigned int pio_mask, dma_mask;
2810 if (!ata_dev_enabled(dev))
2813 ata_dev_xfermask(dev);
2815 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2816 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2817 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2818 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2827 /* step 2: always set host PIO timings */
2828 ata_link_for_each_dev(dev, link) {
2829 if (!ata_dev_enabled(dev))
2832 if (!dev->pio_mode) {
2833 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2838 dev->xfer_mode = dev->pio_mode;
2839 dev->xfer_shift = ATA_SHIFT_PIO;
2840 if (ap->ops->set_piomode)
2841 ap->ops->set_piomode(ap, dev);
2844 /* step 3: set host DMA timings */
2845 ata_link_for_each_dev(dev, link) {
2846 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2849 dev->xfer_mode = dev->dma_mode;
2850 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2851 if (ap->ops->set_dmamode)
2852 ap->ops->set_dmamode(ap, dev);
2855 /* step 4: update devices' xfer mode */
2856 ata_link_for_each_dev(dev, link) {
2857 /* don't update suspended devices' xfer mode */
2858 if (!ata_dev_enabled(dev))
2861 rc = ata_dev_set_mode(dev);
2866 /* Record simplex status. If we selected DMA then the other
2867 * host channels are not permitted to do so.
2869 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2870 ap->host->simplex_claimed = ap;
2874 *r_failed_dev = dev;
2879 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2880 * @link: link on which timings will be programmed
2881 * @r_failed_dev: out paramter for failed device
2883 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2884 * ata_set_mode() fails, pointer to the failing device is
2885 * returned in @r_failed_dev.
2888 * PCI/etc. bus probe sem.
2891 * 0 on success, negative errno otherwise
2893 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
2895 struct ata_port *ap = link->ap;
2897 /* has private set_mode? */
2898 if (ap->ops->set_mode)
2899 return ap->ops->set_mode(link, r_failed_dev);
2900 return ata_do_set_mode(link, r_failed_dev);
2904 * ata_tf_to_host - issue ATA taskfile to host controller
2905 * @ap: port to which command is being issued
2906 * @tf: ATA taskfile register set
2908 * Issues ATA taskfile register set to ATA host controller,
2909 * with proper synchronization with interrupt handler and
2913 * spin_lock_irqsave(host lock)
2916 static inline void ata_tf_to_host(struct ata_port *ap,
2917 const struct ata_taskfile *tf)
2919 ap->ops->tf_load(ap, tf);
2920 ap->ops->exec_command(ap, tf);
2924 * ata_busy_sleep - sleep until BSY clears, or timeout
2925 * @ap: port containing status register to be polled
2926 * @tmout_pat: impatience timeout
2927 * @tmout: overall timeout
2929 * Sleep until ATA Status register bit BSY clears,
2930 * or a timeout occurs.
2933 * Kernel thread context (may sleep).
2936 * 0 on success, -errno otherwise.
2938 int ata_busy_sleep(struct ata_port *ap,
2939 unsigned long tmout_pat, unsigned long tmout)
2941 unsigned long timer_start, timeout;
2944 status = ata_busy_wait(ap, ATA_BUSY, 300);
2945 timer_start = jiffies;
2946 timeout = timer_start + tmout_pat;
2947 while (status != 0xff && (status & ATA_BUSY) &&
2948 time_before(jiffies, timeout)) {
2950 status = ata_busy_wait(ap, ATA_BUSY, 3);
2953 if (status != 0xff && (status & ATA_BUSY))
2954 ata_port_printk(ap, KERN_WARNING,
2955 "port is slow to respond, please be patient "
2956 "(Status 0x%x)\n", status);
2958 timeout = timer_start + tmout;
2959 while (status != 0xff && (status & ATA_BUSY) &&
2960 time_before(jiffies, timeout)) {
2962 status = ata_chk_status(ap);
2968 if (status & ATA_BUSY) {
2969 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2970 "(%lu secs, Status 0x%x)\n",
2971 tmout / HZ, status);
2979 * ata_wait_ready - sleep until BSY clears, or timeout
2980 * @ap: port containing status register to be polled
2981 * @deadline: deadline jiffies for the operation
2983 * Sleep until ATA Status register bit BSY clears, or timeout
2987 * Kernel thread context (may sleep).
2990 * 0 on success, -errno otherwise.
2992 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2994 unsigned long start = jiffies;
2998 u8 status = ata_chk_status(ap);
2999 unsigned long now = jiffies;
3001 if (!(status & ATA_BUSY))
3003 if (!ata_link_online(&ap->link) && status == 0xff)
3005 if (time_after(now, deadline))
3008 if (!warned && time_after(now, start + 5 * HZ) &&
3009 (deadline - now > 3 * HZ)) {
3010 ata_port_printk(ap, KERN_WARNING,
3011 "port is slow to respond, please be patient "
3012 "(Status 0x%x)\n", status);
3020 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3021 unsigned long deadline)
3023 struct ata_ioports *ioaddr = &ap->ioaddr;
3024 unsigned int dev0 = devmask & (1 << 0);
3025 unsigned int dev1 = devmask & (1 << 1);
3028 /* if device 0 was found in ata_devchk, wait for its
3032 rc = ata_wait_ready(ap, deadline);
3040 /* if device 1 was found in ata_devchk, wait for register
3041 * access briefly, then wait for BSY to clear.
3046 ap->ops->dev_select(ap, 1);
3048 /* Wait for register access. Some ATAPI devices fail
3049 * to set nsect/lbal after reset, so don't waste too
3050 * much time on it. We're gonna wait for !BSY anyway.
3052 for (i = 0; i < 2; i++) {
3055 nsect = ioread8(ioaddr->nsect_addr);
3056 lbal = ioread8(ioaddr->lbal_addr);
3057 if ((nsect == 1) && (lbal == 1))
3059 msleep(50); /* give drive a breather */
3062 rc = ata_wait_ready(ap, deadline);
3070 /* is all this really necessary? */
3071 ap->ops->dev_select(ap, 0);
3073 ap->ops->dev_select(ap, 1);
3075 ap->ops->dev_select(ap, 0);
3080 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3081 unsigned long deadline)
3083 struct ata_ioports *ioaddr = &ap->ioaddr;
3085 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3087 /* software reset. causes dev0 to be selected */
3088 iowrite8(ap->ctl, ioaddr->ctl_addr);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3091 udelay(20); /* FIXME: flush */
3092 iowrite8(ap->ctl, ioaddr->ctl_addr);
3094 /* spec mandates ">= 2ms" before checking status.
3095 * We wait 150ms, because that was the magic delay used for
3096 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3097 * between when the ATA command register is written, and then
3098 * status is checked. Because waiting for "a while" before
3099 * checking status is fine, post SRST, we perform this magic
3100 * delay here as well.
3102 * Old drivers/ide uses the 2mS rule and then waits for ready
3106 /* Before we perform post reset processing we want to see if
3107 * the bus shows 0xFF because the odd clown forgets the D7
3108 * pulldown resistor.
3110 if (ata_check_status(ap) == 0xFF)
3113 return ata_bus_post_reset(ap, devmask, deadline);
3117 * ata_bus_reset - reset host port and associated ATA channel
3118 * @ap: port to reset
3120 * This is typically the first time we actually start issuing
3121 * commands to the ATA channel. We wait for BSY to clear, then
3122 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3123 * result. Determine what devices, if any, are on the channel
3124 * by looking at the device 0/1 error register. Look at the signature
3125 * stored in each device's taskfile registers, to determine if
3126 * the device is ATA or ATAPI.
3129 * PCI/etc. bus probe sem.
3130 * Obtains host lock.
3133 * Sets ATA_FLAG_DISABLED if bus reset fails.
3136 void ata_bus_reset(struct ata_port *ap)
3138 struct ata_device *device = ap->link.device;
3139 struct ata_ioports *ioaddr = &ap->ioaddr;
3140 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3142 unsigned int dev0, dev1 = 0, devmask = 0;
3145 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3147 /* determine if device 0/1 are present */
3148 if (ap->flags & ATA_FLAG_SATA_RESET)
3151 dev0 = ata_devchk(ap, 0);
3153 dev1 = ata_devchk(ap, 1);
3157 devmask |= (1 << 0);
3159 devmask |= (1 << 1);
3161 /* select device 0 again */
3162 ap->ops->dev_select(ap, 0);
3164 /* issue bus reset */
3165 if (ap->flags & ATA_FLAG_SRST) {
3166 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3167 if (rc && rc != -ENODEV)
3172 * determine by signature whether we have ATA or ATAPI devices
3174 device[0].class = ata_dev_try_classify(ap, 0, &err);
3175 if ((slave_possible) && (err != 0x81))
3176 device[1].class = ata_dev_try_classify(ap, 1, &err);
3178 /* is double-select really necessary? */
3179 if (device[1].class != ATA_DEV_NONE)
3180 ap->ops->dev_select(ap, 1);
3181 if (device[0].class != ATA_DEV_NONE)
3182 ap->ops->dev_select(ap, 0);
3184 /* if no devices were detected, disable this port */
3185 if ((device[0].class == ATA_DEV_NONE) &&
3186 (device[1].class == ATA_DEV_NONE))
3189 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3190 /* set up device control for ATA_FLAG_SATA_RESET */
3191 iowrite8(ap->ctl, ioaddr->ctl_addr);
3198 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3199 ap->ops->port_disable(ap);
3205 * sata_link_debounce - debounce SATA phy status
3206 * @link: ATA link to debounce SATA phy status for
3207 * @params: timing parameters { interval, duratinon, timeout } in msec
3208 * @deadline: deadline jiffies for the operation
3210 * Make sure SStatus of @link reaches stable state, determined by
3211 * holding the same value where DET is not 1 for @duration polled
3212 * every @interval, before @timeout. Timeout constraints the
3213 * beginning of the stable state. Because DET gets stuck at 1 on
3214 * some controllers after hot unplugging, this functions waits
3215 * until timeout then returns 0 if DET is stable at 1.
3217 * @timeout is further limited by @deadline. The sooner of the
3221 * Kernel thread context (may sleep)
3224 * 0 on success, -errno on failure.
3226 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3227 unsigned long deadline)
3229 unsigned long interval_msec = params[0];
3230 unsigned long duration = msecs_to_jiffies(params[1]);
3231 unsigned long last_jiffies, t;
3235 t = jiffies + msecs_to_jiffies(params[2]);
3236 if (time_before(t, deadline))
3239 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3244 last_jiffies = jiffies;
3247 msleep(interval_msec);
3248 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3254 if (cur == 1 && time_before(jiffies, deadline))
3256 if (time_after(jiffies, last_jiffies + duration))
3261 /* unstable, start over */
3263 last_jiffies = jiffies;
3265 /* Check deadline. If debouncing failed, return
3266 * -EPIPE to tell upper layer to lower link speed.
3268 if (time_after(jiffies, deadline))
3274 * sata_link_resume - resume SATA link
3275 * @link: ATA link to resume SATA
3276 * @params: timing parameters { interval, duratinon, timeout } in msec
3277 * @deadline: deadline jiffies for the operation
3279 * Resume SATA phy @link and debounce it.
3282 * Kernel thread context (may sleep)
3285 * 0 on success, -errno on failure.
3287 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3288 unsigned long deadline)
3293 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3296 scontrol = (scontrol & 0x0f0) | 0x300;
3298 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3301 /* Some PHYs react badly if SStatus is pounded immediately
3302 * after resuming. Delay 200ms before debouncing.
3306 return sata_link_debounce(link, params, deadline);
3310 * ata_std_prereset - prepare for reset
3311 * @link: ATA link to be reset
3312 * @deadline: deadline jiffies for the operation
3314 * @link is about to be reset. Initialize it. Failure from
3315 * prereset makes libata abort whole reset sequence and give up
3316 * that port, so prereset should be best-effort. It does its
3317 * best to prepare for reset sequence but if things go wrong, it
3318 * should just whine, not fail.
3321 * Kernel thread context (may sleep)
3324 * 0 on success, -errno otherwise.
3326 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3328 struct ata_port *ap = link->ap;
3329 struct ata_eh_context *ehc = &link->eh_context;
3330 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3333 /* handle link resume */
3334 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3335 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3336 ehc->i.action |= ATA_EH_HARDRESET;
3338 /* if we're about to do hardreset, nothing more to do */
3339 if (ehc->i.action & ATA_EH_HARDRESET)
3342 /* if SATA, resume link */
3343 if (ap->flags & ATA_FLAG_SATA) {
3344 rc = sata_link_resume(link, timing, deadline);
3345 /* whine about phy resume failure but proceed */
3346 if (rc && rc != -EOPNOTSUPP)
3347 ata_link_printk(link, KERN_WARNING, "failed to resume "
3348 "link for reset (errno=%d)\n", rc);
3351 /* Wait for !BSY if the controller can wait for the first D2H
3352 * Reg FIS and we don't know that no device is attached.
3354 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3355 rc = ata_wait_ready(ap, deadline);
3356 if (rc && rc != -ENODEV) {
3357 ata_link_printk(link, KERN_WARNING, "device not ready "
3358 "(errno=%d), forcing hardreset\n", rc);
3359 ehc->i.action |= ATA_EH_HARDRESET;
3367 * ata_std_softreset - reset host port via ATA SRST
3368 * @link: ATA link to reset
3369 * @classes: resulting classes of attached devices
3370 * @deadline: deadline jiffies for the operation
3372 * Reset host port using ATA SRST.
3375 * Kernel thread context (may sleep)
3378 * 0 on success, -errno otherwise.
3380 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3381 unsigned long deadline)
3383 struct ata_port *ap = link->ap;
3384 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3385 unsigned int devmask = 0;
3391 if (ata_link_offline(link)) {
3392 classes[0] = ATA_DEV_NONE;
3396 /* determine if device 0/1 are present */
3397 if (ata_devchk(ap, 0))
3398 devmask |= (1 << 0);
3399 if (slave_possible && ata_devchk(ap, 1))
3400 devmask |= (1 << 1);
3402 /* select device 0 again */
3403 ap->ops->dev_select(ap, 0);
3405 /* issue bus reset */
3406 DPRINTK("about to softreset, devmask=%x\n", devmask);
3407 rc = ata_bus_softreset(ap, devmask, deadline);
3408 /* if link is occupied, -ENODEV too is an error */
3409 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3410 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3414 /* determine by signature whether we have ATA or ATAPI devices */
3415 classes[0] = ata_dev_try_classify(ap, 0, &err);
3416 if (slave_possible && err != 0x81)
3417 classes[1] = ata_dev_try_classify(ap, 1, &err);
3420 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3425 * sata_link_hardreset - reset link via SATA phy reset
3426 * @link: link to reset
3427 * @timing: timing parameters { interval, duratinon, timeout } in msec
3428 * @deadline: deadline jiffies for the operation
3430 * SATA phy-reset @link using DET bits of SControl register.
3433 * Kernel thread context (may sleep)
3436 * 0 on success, -errno otherwise.
3438 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3439 unsigned long deadline)
3446 if (sata_set_spd_needed(link)) {
3447 /* SATA spec says nothing about how to reconfigure
3448 * spd. To be on the safe side, turn off phy during
3449 * reconfiguration. This works for at least ICH7 AHCI
3452 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3455 scontrol = (scontrol & 0x0f0) | 0x304;
3457 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3463 /* issue phy wake/reset */
3464 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3467 scontrol = (scontrol & 0x0f0) | 0x301;
3469 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3472 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3473 * 10.4.2 says at least 1 ms.
3477 /* bring link back */
3478 rc = sata_link_resume(link, timing, deadline);
3480 DPRINTK("EXIT, rc=%d\n", rc);
3485 * sata_std_hardreset - reset host port via SATA phy reset
3486 * @link: link to reset
3487 * @class: resulting class of attached device
3488 * @deadline: deadline jiffies for the operation
3490 * SATA phy-reset host port using DET bits of SControl register,
3491 * wait for !BSY and classify the attached device.
3494 * Kernel thread context (may sleep)
3497 * 0 on success, -errno otherwise.
3499 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3500 unsigned long deadline)
3502 struct ata_port *ap = link->ap;
3503 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3509 rc = sata_link_hardreset(link, timing, deadline);
3511 ata_link_printk(link, KERN_ERR,
3512 "COMRESET failed (errno=%d)\n", rc);
3516 /* TODO: phy layer with polling, timeouts, etc. */
3517 if (ata_link_offline(link)) {
3518 *class = ATA_DEV_NONE;
3519 DPRINTK("EXIT, link offline\n");
3523 /* wait a while before checking status, see SRST for more info */
3526 rc = ata_wait_ready(ap, deadline);
3527 /* link occupied, -ENODEV too is an error */
3529 ata_link_printk(link, KERN_ERR,
3530 "COMRESET failed (errno=%d)\n", rc);
3534 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3536 *class = ata_dev_try_classify(ap, 0, NULL);
3538 DPRINTK("EXIT, class=%u\n", *class);
3543 * ata_std_postreset - standard postreset callback
3544 * @link: the target ata_link
3545 * @classes: classes of attached devices
3547 * This function is invoked after a successful reset. Note that
3548 * the device might have been reset more than once using
3549 * different reset methods before postreset is invoked.
3552 * Kernel thread context (may sleep)
3554 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3556 struct ata_port *ap = link->ap;
3561 /* print link status */
3562 sata_print_link_status(link);
3565 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3566 sata_scr_write(link, SCR_ERROR, serror);
3568 /* is double-select really necessary? */
3569 if (classes[0] != ATA_DEV_NONE)
3570 ap->ops->dev_select(ap, 1);
3571 if (classes[1] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 0);
3574 /* bail out if no device is present */
3575 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3576 DPRINTK("EXIT, no device\n");
3580 /* set up device control */
3581 if (ap->ioaddr.ctl_addr)
3582 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3588 * ata_dev_same_device - Determine whether new ID matches configured device
3589 * @dev: device to compare against
3590 * @new_class: class of the new device
3591 * @new_id: IDENTIFY page of the new device
3593 * Compare @new_class and @new_id against @dev and determine
3594 * whether @dev is the device indicated by @new_class and
3601 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3603 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606 const u16 *old_id = dev->id;
3607 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3608 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3610 if (dev->class != new_class) {
3611 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3612 dev->class, new_class);
3616 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3617 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3618 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3619 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3621 if (strcmp(model[0], model[1])) {
3622 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3623 "'%s' != '%s'\n", model[0], model[1]);
3627 if (strcmp(serial[0], serial[1])) {
3628 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3629 "'%s' != '%s'\n", serial[0], serial[1]);
3637 * ata_dev_reread_id - Re-read IDENTIFY data
3638 * @dev: target ATA device
3639 * @readid_flags: read ID flags
3641 * Re-read IDENTIFY page and make sure @dev is still attached to
3645 * Kernel thread context (may sleep)
3648 * 0 on success, negative errno otherwise
3650 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3652 unsigned int class = dev->class;
3653 u16 *id = (void *)dev->link->ap->sector_buf;
3657 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3661 /* is the device still there? */
3662 if (!ata_dev_same_device(dev, class, id))
3665 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3670 * ata_dev_revalidate - Revalidate ATA device
3671 * @dev: device to revalidate
3672 * @readid_flags: read ID flags
3674 * Re-read IDENTIFY page, make sure @dev is still attached to the
3675 * port and reconfigure it according to the new IDENTIFY page.
3678 * Kernel thread context (may sleep)
3681 * 0 on success, negative errno otherwise
3683 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3685 u64 n_sectors = dev->n_sectors;
3688 if (!ata_dev_enabled(dev))
3692 rc = ata_dev_reread_id(dev, readid_flags);
3696 /* configure device according to the new ID */
3697 rc = ata_dev_configure(dev);
3701 /* verify n_sectors hasn't changed */
3702 if (dev->class == ATA_DEV_ATA && n_sectors &&
3703 dev->n_sectors != n_sectors) {
3704 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3706 (unsigned long long)n_sectors,
3707 (unsigned long long)dev->n_sectors);
3709 /* restore original n_sectors */
3710 dev->n_sectors = n_sectors;
3719 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3723 struct ata_blacklist_entry {
3724 const char *model_num;
3725 const char *model_rev;
3726 unsigned long horkage;
3729 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3730 /* Devices with DMA related problems under Linux */
3731 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3732 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3733 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3737 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3738 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3739 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3740 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3743 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3744 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3745 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3746 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3747 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3749 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3750 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3751 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3752 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3753 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3754 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3755 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3756 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3757 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3758 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3759 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3760 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3761 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3762 { "IOMEGA ZIP 250 ATAPI Floppy",
3763 NULL, ATA_HORKAGE_NODMA },
3765 /* Weird ATAPI devices */
3766 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3768 /* Devices we expect to fail diagnostics */
3770 /* Devices where NCQ should be avoided */
3772 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3773 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3774 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3776 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3777 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
3778 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3779 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3780 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3781 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3782 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3783 ATA_HORKAGE_NONCQ },
3784 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3785 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3786 /* Blacklist entries taken from Silicon Image 3124/3132
3787 Windows driver .inf file - also several Linux problem reports */
3788 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3789 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3790 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3791 /* Drives which do spurious command completion */
3792 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3793 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3794 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3795 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3796 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3797 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3798 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
3799 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
3801 /* devices which puke on READ_NATIVE_MAX */
3802 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3803 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3804 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3805 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3811 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
3813 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3814 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3815 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3817 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3818 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3820 while (ad->model_num) {
3821 if (!strcmp(ad->model_num, model_num)) {
3822 if (ad->model_rev == NULL)
3824 if (!strcmp(ad->model_rev, model_rev))
3832 static int ata_dma_blacklisted(const struct ata_device *dev)
3834 /* We don't support polling DMA.
3835 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3836 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3838 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
3839 (dev->flags & ATA_DFLAG_CDB_INTR))
3841 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
3845 * ata_dev_xfermask - Compute supported xfermask of the given device
3846 * @dev: Device to compute xfermask for
3848 * Compute supported xfermask of @dev and store it in
3849 * dev->*_mask. This function is responsible for applying all
3850 * known limits including host controller limits, device
3856 static void ata_dev_xfermask(struct ata_device *dev)
3858 struct ata_link *link = dev->link;
3859 struct ata_port *ap = link->ap;
3860 struct ata_host *host = ap->host;
3861 unsigned long xfer_mask;
3863 /* controller modes available */
3864 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3865 ap->mwdma_mask, ap->udma_mask);
3867 /* drive modes available */
3868 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3869 dev->mwdma_mask, dev->udma_mask);
3870 xfer_mask &= ata_id_xfermask(dev->id);
3873 * CFA Advanced TrueIDE timings are not allowed on a shared
3876 if (ata_dev_pair(dev)) {
3877 /* No PIO5 or PIO6 */
3878 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3879 /* No MWDMA3 or MWDMA 4 */
3880 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3883 if (ata_dma_blacklisted(dev)) {
3884 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3885 ata_dev_printk(dev, KERN_WARNING,
3886 "device is on DMA blacklist, disabling DMA\n");
3889 if ((host->flags & ATA_HOST_SIMPLEX) &&
3890 host->simplex_claimed && host->simplex_claimed != ap) {
3891 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3892 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3893 "other device, disabling DMA\n");
3896 if (ap->flags & ATA_FLAG_NO_IORDY)
3897 xfer_mask &= ata_pio_mask_no_iordy(dev);
3899 if (ap->ops->mode_filter)
3900 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3902 /* Apply cable rule here. Don't apply it early because when
3903 * we handle hot plug the cable type can itself change.
3904 * Check this last so that we know if the transfer rate was
3905 * solely limited by the cable.
3906 * Unknown or 80 wire cables reported host side are checked
3907 * drive side as well. Cases where we know a 40wire cable
3908 * is used safely for 80 are not checked here.
3910 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3911 /* UDMA/44 or higher would be available */
3912 if((ap->cbl == ATA_CBL_PATA40) ||
3913 (ata_drive_40wire(dev->id) &&
3914 (ap->cbl == ATA_CBL_PATA_UNK ||
3915 ap->cbl == ATA_CBL_PATA80))) {
3916 ata_dev_printk(dev, KERN_WARNING,
3917 "limited to UDMA/33 due to 40-wire cable\n");
3918 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3921 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3922 &dev->mwdma_mask, &dev->udma_mask);
3926 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3927 * @dev: Device to which command will be sent
3929 * Issue SET FEATURES - XFER MODE command to device @dev
3933 * PCI/etc. bus probe sem.
3936 * 0 on success, AC_ERR_* mask otherwise.
3939 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3941 struct ata_taskfile tf;
3942 unsigned int err_mask;
3944 /* set up set-features taskfile */
3945 DPRINTK("set features - xfer mode\n");
3947 /* Some controllers and ATAPI devices show flaky interrupt
3948 * behavior after setting xfer mode. Use polling instead.
3950 ata_tf_init(dev, &tf);
3951 tf.command = ATA_CMD_SET_FEATURES;
3952 tf.feature = SETFEATURES_XFER;
3953 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3954 tf.protocol = ATA_PROT_NODATA;
3955 tf.nsect = dev->xfer_mode;
3957 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3959 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3964 * ata_dev_init_params - Issue INIT DEV PARAMS command
3965 * @dev: Device to which command will be sent
3966 * @heads: Number of heads (taskfile parameter)
3967 * @sectors: Number of sectors (taskfile parameter)
3970 * Kernel thread context (may sleep)
3973 * 0 on success, AC_ERR_* mask otherwise.
3975 static unsigned int ata_dev_init_params(struct ata_device *dev,
3976 u16 heads, u16 sectors)
3978 struct ata_taskfile tf;
3979 unsigned int err_mask;
3981 /* Number of sectors per track 1-255. Number of heads 1-16 */
3982 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3983 return AC_ERR_INVALID;
3985 /* set up init dev params taskfile */
3986 DPRINTK("init dev params \n");
3988 ata_tf_init(dev, &tf);
3989 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3990 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3991 tf.protocol = ATA_PROT_NODATA;
3993 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3995 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3996 /* A clean abort indicates an original or just out of spec drive
3997 and we should continue as we issue the setup based on the
3998 drive reported working geometry */
3999 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4002 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4007 * ata_sg_clean - Unmap DMA memory associated with command
4008 * @qc: Command containing DMA memory to be released
4010 * Unmap all mapped DMA memory associated with this command.
4013 * spin_lock_irqsave(host lock)
4015 void ata_sg_clean(struct ata_queued_cmd *qc)
4017 struct ata_port *ap = qc->ap;
4018 struct scatterlist *sg = qc->__sg;
4019 int dir = qc->dma_dir;
4020 void *pad_buf = NULL;
4022 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4023 WARN_ON(sg == NULL);
4025 if (qc->flags & ATA_QCFLAG_SINGLE)
4026 WARN_ON(qc->n_elem > 1);
4028 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4030 /* if we padded the buffer out to 32-bit bound, and data
4031 * xfer direction is from-device, we must copy from the
4032 * pad buffer back into the supplied buffer
4034 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4035 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4037 if (qc->flags & ATA_QCFLAG_SG) {
4039 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4040 /* restore last sg */
4041 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4043 struct scatterlist *psg = &qc->pad_sgent;
4044 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4045 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4046 kunmap_atomic(addr, KM_IRQ0);
4050 dma_unmap_single(ap->dev,
4051 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4054 sg->length += qc->pad_len;
4056 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4057 pad_buf, qc->pad_len);
4060 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4065 * ata_fill_sg - Fill PCI IDE PRD table
4066 * @qc: Metadata associated with taskfile to be transferred
4068 * Fill PCI IDE PRD (scatter-gather) table with segments
4069 * associated with the current disk command.
4072 * spin_lock_irqsave(host lock)
4075 static void ata_fill_sg(struct ata_queued_cmd *qc)
4077 struct ata_port *ap = qc->ap;
4078 struct scatterlist *sg;
4081 WARN_ON(qc->__sg == NULL);
4082 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4085 ata_for_each_sg(sg, qc) {
4089 /* determine if physical DMA addr spans 64K boundary.
4090 * Note h/w doesn't support 64-bit, so we unconditionally
4091 * truncate dma_addr_t to u32.
4093 addr = (u32) sg_dma_address(sg);
4094 sg_len = sg_dma_len(sg);
4097 offset = addr & 0xffff;
4099 if ((offset + sg_len) > 0x10000)
4100 len = 0x10000 - offset;
4102 ap->prd[idx].addr = cpu_to_le32(addr);
4103 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4104 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4113 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4117 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4118 * @qc: Metadata associated with taskfile to be transferred
4120 * Fill PCI IDE PRD (scatter-gather) table with segments
4121 * associated with the current disk command. Perform the fill
4122 * so that we avoid writing any length 64K records for
4123 * controllers that don't follow the spec.
4126 * spin_lock_irqsave(host lock)
4129 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4131 struct ata_port *ap = qc->ap;
4132 struct scatterlist *sg;
4135 WARN_ON(qc->__sg == NULL);
4136 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4139 ata_for_each_sg(sg, qc) {
4141 u32 sg_len, len, blen;
4143 /* determine if physical DMA addr spans 64K boundary.
4144 * Note h/w doesn't support 64-bit, so we unconditionally
4145 * truncate dma_addr_t to u32.
4147 addr = (u32) sg_dma_address(sg);
4148 sg_len = sg_dma_len(sg);
4151 offset = addr & 0xffff;
4153 if ((offset + sg_len) > 0x10000)
4154 len = 0x10000 - offset;
4156 blen = len & 0xffff;
4157 ap->prd[idx].addr = cpu_to_le32(addr);
4159 /* Some PATA chipsets like the CS5530 can't
4160 cope with 0x0000 meaning 64K as the spec says */
4161 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4163 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4165 ap->prd[idx].flags_len = cpu_to_le32(blen);
4166 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4175 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4179 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4180 * @qc: Metadata associated with taskfile to check
4182 * Allow low-level driver to filter ATA PACKET commands, returning
4183 * a status indicating whether or not it is OK to use DMA for the
4184 * supplied PACKET command.
4187 * spin_lock_irqsave(host lock)
4189 * RETURNS: 0 when ATAPI DMA can be used
4192 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4194 struct ata_port *ap = qc->ap;
4196 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4197 * few ATAPI devices choke on such DMA requests.
4199 if (unlikely(qc->nbytes & 15))
4202 if (ap->ops->check_atapi_dma)
4203 return ap->ops->check_atapi_dma(qc);
4209 * ata_qc_prep - Prepare taskfile for submission
4210 * @qc: Metadata associated with taskfile to be prepared
4212 * Prepare ATA taskfile for submission.
4215 * spin_lock_irqsave(host lock)
4217 void ata_qc_prep(struct ata_queued_cmd *qc)
4219 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4226 * ata_dumb_qc_prep - Prepare taskfile for submission
4227 * @qc: Metadata associated with taskfile to be prepared
4229 * Prepare ATA taskfile for submission.
4232 * spin_lock_irqsave(host lock)
4234 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4236 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4239 ata_fill_sg_dumb(qc);
4242 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4245 * ata_sg_init_one - Associate command with memory buffer
4246 * @qc: Command to be associated
4247 * @buf: Memory buffer
4248 * @buflen: Length of memory buffer, in bytes.
4250 * Initialize the data-related elements of queued_cmd @qc
4251 * to point to a single memory buffer, @buf of byte length @buflen.
4254 * spin_lock_irqsave(host lock)
4257 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4259 qc->flags |= ATA_QCFLAG_SINGLE;
4261 qc->__sg = &qc->sgent;
4263 qc->orig_n_elem = 1;
4265 qc->nbytes = buflen;
4267 sg_init_one(&qc->sgent, buf, buflen);
4271 * ata_sg_init - Associate command with scatter-gather table.
4272 * @qc: Command to be associated
4273 * @sg: Scatter-gather table.
4274 * @n_elem: Number of elements in s/g table.
4276 * Initialize the data-related elements of queued_cmd @qc
4277 * to point to a scatter-gather table @sg, containing @n_elem
4281 * spin_lock_irqsave(host lock)
4284 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4285 unsigned int n_elem)
4287 qc->flags |= ATA_QCFLAG_SG;
4289 qc->n_elem = n_elem;
4290 qc->orig_n_elem = n_elem;
4294 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4295 * @qc: Command with memory buffer to be mapped.
4297 * DMA-map the memory buffer associated with queued_cmd @qc.
4300 * spin_lock_irqsave(host lock)
4303 * Zero on success, negative on error.
4306 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4308 struct ata_port *ap = qc->ap;
4309 int dir = qc->dma_dir;
4310 struct scatterlist *sg = qc->__sg;
4311 dma_addr_t dma_address;
4314 /* we must lengthen transfers to end on a 32-bit boundary */
4315 qc->pad_len = sg->length & 3;
4317 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4318 struct scatterlist *psg = &qc->pad_sgent;
4320 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4322 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4324 if (qc->tf.flags & ATA_TFLAG_WRITE)
4325 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4328 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4329 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4331 sg->length -= qc->pad_len;
4332 if (sg->length == 0)
4335 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4336 sg->length, qc->pad_len);
4344 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4346 if (dma_mapping_error(dma_address)) {
4348 sg->length += qc->pad_len;
4352 sg_dma_address(sg) = dma_address;
4353 sg_dma_len(sg) = sg->length;
4356 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4357 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4363 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4364 * @qc: Command with scatter-gather table to be mapped.
4366 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4369 * spin_lock_irqsave(host lock)
4372 * Zero on success, negative on error.
4376 static int ata_sg_setup(struct ata_queued_cmd *qc)
4378 struct ata_port *ap = qc->ap;
4379 struct scatterlist *sg = qc->__sg;
4380 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4381 int n_elem, pre_n_elem, dir, trim_sg = 0;
4383 VPRINTK("ENTER, ata%u\n", ap->print_id);
4384 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4386 /* we must lengthen transfers to end on a 32-bit boundary */
4387 qc->pad_len = lsg->length & 3;
4389 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4390 struct scatterlist *psg = &qc->pad_sgent;
4391 unsigned int offset;
4393 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4395 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4398 * psg->page/offset are used to copy to-be-written
4399 * data in this function or read data in ata_sg_clean.
4401 offset = lsg->offset + lsg->length - qc->pad_len;
4402 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4403 psg->offset = offset_in_page(offset);
4405 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4406 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4407 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4408 kunmap_atomic(addr, KM_IRQ0);
4411 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4412 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4414 lsg->length -= qc->pad_len;
4415 if (lsg->length == 0)
4418 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4419 qc->n_elem - 1, lsg->length, qc->pad_len);
4422 pre_n_elem = qc->n_elem;
4423 if (trim_sg && pre_n_elem)
4432 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4434 /* restore last sg */
4435 lsg->length += qc->pad_len;
4439 DPRINTK("%d sg elements mapped\n", n_elem);
4442 qc->n_elem = n_elem;
4448 * swap_buf_le16 - swap halves of 16-bit words in place
4449 * @buf: Buffer to swap
4450 * @buf_words: Number of 16-bit words in buffer.
4452 * Swap halves of 16-bit words if needed to convert from
4453 * little-endian byte order to native cpu byte order, or
4457 * Inherited from caller.
4459 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4464 for (i = 0; i < buf_words; i++)
4465 buf[i] = le16_to_cpu(buf[i]);
4466 #endif /* __BIG_ENDIAN */
4470 * ata_data_xfer - Transfer data by PIO
4471 * @adev: device to target
4473 * @buflen: buffer length
4474 * @write_data: read/write
4476 * Transfer data from/to the device data register by PIO.
4479 * Inherited from caller.
4481 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4482 unsigned int buflen, int write_data)
4484 struct ata_port *ap = adev->link->ap;
4485 unsigned int words = buflen >> 1;
4487 /* Transfer multiple of 2 bytes */
4489 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4491 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4493 /* Transfer trailing 1 byte, if any. */
4494 if (unlikely(buflen & 0x01)) {
4495 u16 align_buf[1] = { 0 };
4496 unsigned char *trailing_buf = buf + buflen - 1;
4499 memcpy(align_buf, trailing_buf, 1);
4500 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4502 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4503 memcpy(trailing_buf, align_buf, 1);
4509 * ata_data_xfer_noirq - Transfer data by PIO
4510 * @adev: device to target
4512 * @buflen: buffer length
4513 * @write_data: read/write
4515 * Transfer data from/to the device data register by PIO. Do the
4516 * transfer with interrupts disabled.
4519 * Inherited from caller.
4521 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4522 unsigned int buflen, int write_data)
4524 unsigned long flags;
4525 local_irq_save(flags);
4526 ata_data_xfer(adev, buf, buflen, write_data);
4527 local_irq_restore(flags);
4532 * ata_pio_sector - Transfer a sector of data.
4533 * @qc: Command on going
4535 * Transfer qc->sect_size bytes of data from/to the ATA device.
4538 * Inherited from caller.
4541 static void ata_pio_sector(struct ata_queued_cmd *qc)
4543 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4544 struct scatterlist *sg = qc->__sg;
4545 struct ata_port *ap = qc->ap;
4547 unsigned int offset;
4550 if (qc->curbytes == qc->nbytes - qc->sect_size)
4551 ap->hsm_task_state = HSM_ST_LAST;
4553 page = sg[qc->cursg].page;
4554 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4556 /* get the current page and offset */
4557 page = nth_page(page, (offset >> PAGE_SHIFT));
4558 offset %= PAGE_SIZE;
4560 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4562 if (PageHighMem(page)) {
4563 unsigned long flags;
4565 /* FIXME: use a bounce buffer */
4566 local_irq_save(flags);
4567 buf = kmap_atomic(page, KM_IRQ0);
4569 /* do the actual data transfer */
4570 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4572 kunmap_atomic(buf, KM_IRQ0);
4573 local_irq_restore(flags);
4575 buf = page_address(page);
4576 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4579 qc->curbytes += qc->sect_size;
4580 qc->cursg_ofs += qc->sect_size;
4582 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4589 * ata_pio_sectors - Transfer one or many sectors.
4590 * @qc: Command on going
4592 * Transfer one or many sectors of data from/to the
4593 * ATA device for the DRQ request.
4596 * Inherited from caller.
4599 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4601 if (is_multi_taskfile(&qc->tf)) {
4602 /* READ/WRITE MULTIPLE */
4605 WARN_ON(qc->dev->multi_count == 0);
4607 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4608 qc->dev->multi_count);
4616 * atapi_send_cdb - Write CDB bytes to hardware
4617 * @ap: Port to which ATAPI device is attached.
4618 * @qc: Taskfile currently active
4620 * When device has indicated its readiness to accept
4621 * a CDB, this function is called. Send the CDB.
4627 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4630 DPRINTK("send cdb\n");
4631 WARN_ON(qc->dev->cdb_len < 12);
4633 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4634 ata_altstatus(ap); /* flush */
4636 switch (qc->tf.protocol) {
4637 case ATA_PROT_ATAPI:
4638 ap->hsm_task_state = HSM_ST;
4640 case ATA_PROT_ATAPI_NODATA:
4641 ap->hsm_task_state = HSM_ST_LAST;
4643 case ATA_PROT_ATAPI_DMA:
4644 ap->hsm_task_state = HSM_ST_LAST;
4645 /* initiate bmdma */
4646 ap->ops->bmdma_start(qc);
4652 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4653 * @qc: Command on going
4654 * @bytes: number of bytes
4656 * Transfer Transfer data from/to the ATAPI device.
4659 * Inherited from caller.
4663 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4665 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4666 struct scatterlist *sg = qc->__sg;
4667 struct ata_port *ap = qc->ap;
4670 unsigned int offset, count;
4672 if (qc->curbytes + bytes >= qc->nbytes)
4673 ap->hsm_task_state = HSM_ST_LAST;
4676 if (unlikely(qc->cursg >= qc->n_elem)) {
4678 * The end of qc->sg is reached and the device expects
4679 * more data to transfer. In order not to overrun qc->sg
4680 * and fulfill length specified in the byte count register,
4681 * - for read case, discard trailing data from the device
4682 * - for write case, padding zero data to the device
4684 u16 pad_buf[1] = { 0 };
4685 unsigned int words = bytes >> 1;
4688 if (words) /* warning if bytes > 1 */
4689 ata_dev_printk(qc->dev, KERN_WARNING,
4690 "%u bytes trailing data\n", bytes);
4692 for (i = 0; i < words; i++)
4693 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4695 ap->hsm_task_state = HSM_ST_LAST;
4699 sg = &qc->__sg[qc->cursg];
4702 offset = sg->offset + qc->cursg_ofs;
4704 /* get the current page and offset */
4705 page = nth_page(page, (offset >> PAGE_SHIFT));
4706 offset %= PAGE_SIZE;
4708 /* don't overrun current sg */
4709 count = min(sg->length - qc->cursg_ofs, bytes);
4711 /* don't cross page boundaries */
4712 count = min(count, (unsigned int)PAGE_SIZE - offset);
4714 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4716 if (PageHighMem(page)) {
4717 unsigned long flags;
4719 /* FIXME: use bounce buffer */
4720 local_irq_save(flags);
4721 buf = kmap_atomic(page, KM_IRQ0);
4723 /* do the actual data transfer */
4724 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4726 kunmap_atomic(buf, KM_IRQ0);
4727 local_irq_restore(flags);
4729 buf = page_address(page);
4730 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4734 qc->curbytes += count;
4735 qc->cursg_ofs += count;
4737 if (qc->cursg_ofs == sg->length) {
4747 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4748 * @qc: Command on going
4750 * Transfer Transfer data from/to the ATAPI device.
4753 * Inherited from caller.
4756 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4758 struct ata_port *ap = qc->ap;
4759 struct ata_device *dev = qc->dev;
4760 unsigned int ireason, bc_lo, bc_hi, bytes;
4761 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4763 /* Abuse qc->result_tf for temp storage of intermediate TF
4764 * here to save some kernel stack usage.
4765 * For normal completion, qc->result_tf is not relevant. For
4766 * error, qc->result_tf is later overwritten by ata_qc_complete().
4767 * So, the correctness of qc->result_tf is not affected.
4769 ap->ops->tf_read(ap, &qc->result_tf);
4770 ireason = qc->result_tf.nsect;
4771 bc_lo = qc->result_tf.lbam;
4772 bc_hi = qc->result_tf.lbah;
4773 bytes = (bc_hi << 8) | bc_lo;
4775 /* shall be cleared to zero, indicating xfer of data */
4776 if (ireason & (1 << 0))
4779 /* make sure transfer direction matches expected */
4780 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4781 if (do_write != i_write)
4784 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4786 __atapi_pio_bytes(qc, bytes);
4791 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4792 qc->err_mask |= AC_ERR_HSM;
4793 ap->hsm_task_state = HSM_ST_ERR;
4797 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4798 * @ap: the target ata_port
4802 * 1 if ok in workqueue, 0 otherwise.
4805 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4807 if (qc->tf.flags & ATA_TFLAG_POLLING)
4810 if (ap->hsm_task_state == HSM_ST_FIRST) {
4811 if (qc->tf.protocol == ATA_PROT_PIO &&
4812 (qc->tf.flags & ATA_TFLAG_WRITE))
4815 if (is_atapi_taskfile(&qc->tf) &&
4816 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4824 * ata_hsm_qc_complete - finish a qc running on standard HSM
4825 * @qc: Command to complete
4826 * @in_wq: 1 if called from workqueue, 0 otherwise
4828 * Finish @qc which is running on standard HSM.
4831 * If @in_wq is zero, spin_lock_irqsave(host lock).
4832 * Otherwise, none on entry and grabs host lock.
4834 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4836 struct ata_port *ap = qc->ap;
4837 unsigned long flags;
4839 if (ap->ops->error_handler) {
4841 spin_lock_irqsave(ap->lock, flags);
4843 /* EH might have kicked in while host lock is
4846 qc = ata_qc_from_tag(ap, qc->tag);
4848 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4849 ap->ops->irq_on(ap);
4850 ata_qc_complete(qc);
4852 ata_port_freeze(ap);
4855 spin_unlock_irqrestore(ap->lock, flags);
4857 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4858 ata_qc_complete(qc);
4860 ata_port_freeze(ap);
4864 spin_lock_irqsave(ap->lock, flags);
4865 ap->ops->irq_on(ap);
4866 ata_qc_complete(qc);
4867 spin_unlock_irqrestore(ap->lock, flags);
4869 ata_qc_complete(qc);
4874 * ata_hsm_move - move the HSM to the next state.
4875 * @ap: the target ata_port
4877 * @status: current device status
4878 * @in_wq: 1 if called from workqueue, 0 otherwise
4881 * 1 when poll next status needed, 0 otherwise.
4883 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4884 u8 status, int in_wq)
4886 unsigned long flags = 0;
4889 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4891 /* Make sure ata_qc_issue_prot() does not throw things
4892 * like DMA polling into the workqueue. Notice that
4893 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4895 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4898 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4899 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4901 switch (ap->hsm_task_state) {
4903 /* Send first data block or PACKET CDB */
4905 /* If polling, we will stay in the work queue after
4906 * sending the data. Otherwise, interrupt handler
4907 * takes over after sending the data.
4909 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4911 /* check device status */
4912 if (unlikely((status & ATA_DRQ) == 0)) {
4913 /* handle BSY=0, DRQ=0 as error */
4914 if (likely(status & (ATA_ERR | ATA_DF)))
4915 /* device stops HSM for abort/error */
4916 qc->err_mask |= AC_ERR_DEV;
4918 /* HSM violation. Let EH handle this */
4919 qc->err_mask |= AC_ERR_HSM;
4921 ap->hsm_task_state = HSM_ST_ERR;
4925 /* Device should not ask for data transfer (DRQ=1)
4926 * when it finds something wrong.
4927 * We ignore DRQ here and stop the HSM by
4928 * changing hsm_task_state to HSM_ST_ERR and
4929 * let the EH abort the command or reset the device.
4931 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4932 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4933 "error, dev_stat 0x%X\n", status);
4934 qc->err_mask |= AC_ERR_HSM;
4935 ap->hsm_task_state = HSM_ST_ERR;
4939 /* Send the CDB (atapi) or the first data block (ata pio out).
4940 * During the state transition, interrupt handler shouldn't
4941 * be invoked before the data transfer is complete and
4942 * hsm_task_state is changed. Hence, the following locking.
4945 spin_lock_irqsave(ap->lock, flags);
4947 if (qc->tf.protocol == ATA_PROT_PIO) {
4948 /* PIO data out protocol.
4949 * send first data block.
4952 /* ata_pio_sectors() might change the state
4953 * to HSM_ST_LAST. so, the state is changed here
4954 * before ata_pio_sectors().
4956 ap->hsm_task_state = HSM_ST;
4957 ata_pio_sectors(qc);
4958 ata_altstatus(ap); /* flush */
4961 atapi_send_cdb(ap, qc);
4964 spin_unlock_irqrestore(ap->lock, flags);
4966 /* if polling, ata_pio_task() handles the rest.
4967 * otherwise, interrupt handler takes over from here.
4972 /* complete command or read/write the data register */
4973 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4974 /* ATAPI PIO protocol */
4975 if ((status & ATA_DRQ) == 0) {
4976 /* No more data to transfer or device error.
4977 * Device error will be tagged in HSM_ST_LAST.
4979 ap->hsm_task_state = HSM_ST_LAST;
4983 /* Device should not ask for data transfer (DRQ=1)
4984 * when it finds something wrong.
4985 * We ignore DRQ here and stop the HSM by
4986 * changing hsm_task_state to HSM_ST_ERR and
4987 * let the EH abort the command or reset the device.
4989 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4990 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4991 "device error, dev_stat 0x%X\n",
4993 qc->err_mask |= AC_ERR_HSM;
4994 ap->hsm_task_state = HSM_ST_ERR;
4998 atapi_pio_bytes(qc);
5000 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5001 /* bad ireason reported by device */
5005 /* ATA PIO protocol */
5006 if (unlikely((status & ATA_DRQ) == 0)) {
5007 /* handle BSY=0, DRQ=0 as error */
5008 if (likely(status & (ATA_ERR | ATA_DF)))
5009 /* device stops HSM for abort/error */
5010 qc->err_mask |= AC_ERR_DEV;
5012 /* HSM violation. Let EH handle this.
5013 * Phantom devices also trigger this
5014 * condition. Mark hint.
5016 qc->err_mask |= AC_ERR_HSM |
5019 ap->hsm_task_state = HSM_ST_ERR;
5023 /* For PIO reads, some devices may ask for
5024 * data transfer (DRQ=1) alone with ERR=1.
5025 * We respect DRQ here and transfer one
5026 * block of junk data before changing the
5027 * hsm_task_state to HSM_ST_ERR.
5029 * For PIO writes, ERR=1 DRQ=1 doesn't make
5030 * sense since the data block has been
5031 * transferred to the device.
5033 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5034 /* data might be corrputed */
5035 qc->err_mask |= AC_ERR_DEV;
5037 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5038 ata_pio_sectors(qc);
5040 status = ata_wait_idle(ap);
5043 if (status & (ATA_BUSY | ATA_DRQ))
5044 qc->err_mask |= AC_ERR_HSM;
5046 /* ata_pio_sectors() might change the
5047 * state to HSM_ST_LAST. so, the state
5048 * is changed after ata_pio_sectors().
5050 ap->hsm_task_state = HSM_ST_ERR;
5054 ata_pio_sectors(qc);
5056 if (ap->hsm_task_state == HSM_ST_LAST &&
5057 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5060 status = ata_wait_idle(ap);
5065 ata_altstatus(ap); /* flush */
5070 if (unlikely(!ata_ok(status))) {
5071 qc->err_mask |= __ac_err_mask(status);
5072 ap->hsm_task_state = HSM_ST_ERR;
5076 /* no more data to transfer */
5077 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5078 ap->print_id, qc->dev->devno, status);
5080 WARN_ON(qc->err_mask);
5082 ap->hsm_task_state = HSM_ST_IDLE;
5084 /* complete taskfile transaction */
5085 ata_hsm_qc_complete(qc, in_wq);
5091 /* make sure qc->err_mask is available to
5092 * know what's wrong and recover
5094 WARN_ON(qc->err_mask == 0);
5096 ap->hsm_task_state = HSM_ST_IDLE;
5098 /* complete taskfile transaction */
5099 ata_hsm_qc_complete(qc, in_wq);
5111 static void ata_pio_task(struct work_struct *work)
5113 struct ata_port *ap =
5114 container_of(work, struct ata_port, port_task.work);
5115 struct ata_queued_cmd *qc = ap->port_task_data;
5120 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5123 * This is purely heuristic. This is a fast path.
5124 * Sometimes when we enter, BSY will be cleared in
5125 * a chk-status or two. If not, the drive is probably seeking
5126 * or something. Snooze for a couple msecs, then
5127 * chk-status again. If still busy, queue delayed work.
5129 status = ata_busy_wait(ap, ATA_BUSY, 5);
5130 if (status & ATA_BUSY) {
5132 status = ata_busy_wait(ap, ATA_BUSY, 10);
5133 if (status & ATA_BUSY) {
5134 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5140 poll_next = ata_hsm_move(ap, qc, status, 1);
5142 /* another command or interrupt handler
5143 * may be running at this point.
5150 * ata_qc_new - Request an available ATA command, for queueing
5151 * @ap: Port associated with device @dev
5152 * @dev: Device from whom we request an available command structure
5158 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5160 struct ata_queued_cmd *qc = NULL;
5163 /* no command while frozen */
5164 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5167 /* the last tag is reserved for internal command. */
5168 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5169 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5170 qc = __ata_qc_from_tag(ap, i);
5181 * ata_qc_new_init - Request an available ATA command, and initialize it
5182 * @dev: Device from whom we request an available command structure
5188 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5190 struct ata_port *ap = dev->link->ap;
5191 struct ata_queued_cmd *qc;
5193 qc = ata_qc_new(ap);
5206 * ata_qc_free - free unused ata_queued_cmd
5207 * @qc: Command to complete
5209 * Designed to free unused ata_queued_cmd object
5210 * in case something prevents using it.
5213 * spin_lock_irqsave(host lock)
5215 void ata_qc_free(struct ata_queued_cmd *qc)
5217 struct ata_port *ap = qc->ap;
5220 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5224 if (likely(ata_tag_valid(tag))) {
5225 qc->tag = ATA_TAG_POISON;
5226 clear_bit(tag, &ap->qc_allocated);
5230 void __ata_qc_complete(struct ata_queued_cmd *qc)
5232 struct ata_port *ap = qc->ap;
5233 struct ata_link *link = qc->dev->link;
5235 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5236 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5238 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5241 /* command should be marked inactive atomically with qc completion */
5242 if (qc->tf.protocol == ATA_PROT_NCQ)
5243 link->sactive &= ~(1 << qc->tag);
5245 link->active_tag = ATA_TAG_POISON;
5247 /* atapi: mark qc as inactive to prevent the interrupt handler
5248 * from completing the command twice later, before the error handler
5249 * is called. (when rc != 0 and atapi request sense is needed)
5251 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5252 ap->qc_active &= ~(1 << qc->tag);
5254 /* call completion callback */
5255 qc->complete_fn(qc);
5258 static void fill_result_tf(struct ata_queued_cmd *qc)
5260 struct ata_port *ap = qc->ap;
5262 qc->result_tf.flags = qc->tf.flags;
5263 ap->ops->tf_read(ap, &qc->result_tf);
5267 * ata_qc_complete - Complete an active ATA command
5268 * @qc: Command to complete
5269 * @err_mask: ATA Status register contents
5271 * Indicate to the mid and upper layers that an ATA
5272 * command has completed, with either an ok or not-ok status.
5275 * spin_lock_irqsave(host lock)
5277 void ata_qc_complete(struct ata_queued_cmd *qc)
5279 struct ata_port *ap = qc->ap;
5281 /* XXX: New EH and old EH use different mechanisms to
5282 * synchronize EH with regular execution path.
5284 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5285 * Normal execution path is responsible for not accessing a
5286 * failed qc. libata core enforces the rule by returning NULL
5287 * from ata_qc_from_tag() for failed qcs.
5289 * Old EH depends on ata_qc_complete() nullifying completion
5290 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5291 * not synchronize with interrupt handler. Only PIO task is
5294 if (ap->ops->error_handler) {
5295 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5297 if (unlikely(qc->err_mask))
5298 qc->flags |= ATA_QCFLAG_FAILED;
5300 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5301 if (!ata_tag_internal(qc->tag)) {
5302 /* always fill result TF for failed qc */
5304 ata_qc_schedule_eh(qc);
5309 /* read result TF if requested */
5310 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5313 __ata_qc_complete(qc);
5315 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5318 /* read result TF if failed or requested */
5319 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5322 __ata_qc_complete(qc);
5327 * ata_qc_complete_multiple - Complete multiple qcs successfully
5328 * @ap: port in question
5329 * @qc_active: new qc_active mask
5330 * @finish_qc: LLDD callback invoked before completing a qc
5332 * Complete in-flight commands. This functions is meant to be
5333 * called from low-level driver's interrupt routine to complete
5334 * requests normally. ap->qc_active and @qc_active is compared
5335 * and commands are completed accordingly.
5338 * spin_lock_irqsave(host lock)
5341 * Number of completed commands on success, -errno otherwise.
5343 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5344 void (*finish_qc)(struct ata_queued_cmd *))
5350 done_mask = ap->qc_active ^ qc_active;
5352 if (unlikely(done_mask & qc_active)) {
5353 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5354 "(%08x->%08x)\n", ap->qc_active, qc_active);
5358 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5359 struct ata_queued_cmd *qc;
5361 if (!(done_mask & (1 << i)))
5364 if ((qc = ata_qc_from_tag(ap, i))) {
5367 ata_qc_complete(qc);
5375 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5377 struct ata_port *ap = qc->ap;
5379 switch (qc->tf.protocol) {
5382 case ATA_PROT_ATAPI_DMA:
5385 case ATA_PROT_ATAPI:
5387 if (ap->flags & ATA_FLAG_PIO_DMA)
5400 * ata_qc_issue - issue taskfile to device
5401 * @qc: command to issue to device
5403 * Prepare an ATA command to submission to device.
5404 * This includes mapping the data into a DMA-able
5405 * area, filling in the S/G table, and finally
5406 * writing the taskfile to hardware, starting the command.
5409 * spin_lock_irqsave(host lock)
5411 void ata_qc_issue(struct ata_queued_cmd *qc)
5413 struct ata_port *ap = qc->ap;
5414 struct ata_link *link = qc->dev->link;
5416 /* Make sure only one non-NCQ command is outstanding. The
5417 * check is skipped for old EH because it reuses active qc to
5418 * request ATAPI sense.
5420 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5422 if (qc->tf.protocol == ATA_PROT_NCQ) {
5423 WARN_ON(link->sactive & (1 << qc->tag));
5424 link->sactive |= 1 << qc->tag;
5426 WARN_ON(link->sactive);
5427 link->active_tag = qc->tag;
5430 qc->flags |= ATA_QCFLAG_ACTIVE;
5431 ap->qc_active |= 1 << qc->tag;
5433 if (ata_should_dma_map(qc)) {
5434 if (qc->flags & ATA_QCFLAG_SG) {
5435 if (ata_sg_setup(qc))
5437 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5438 if (ata_sg_setup_one(qc))
5442 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5445 ap->ops->qc_prep(qc);
5447 qc->err_mask |= ap->ops->qc_issue(qc);
5448 if (unlikely(qc->err_mask))
5453 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5454 qc->err_mask |= AC_ERR_SYSTEM;
5456 ata_qc_complete(qc);
5460 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5461 * @qc: command to issue to device
5463 * Using various libata functions and hooks, this function
5464 * starts an ATA command. ATA commands are grouped into
5465 * classes called "protocols", and issuing each type of protocol
5466 * is slightly different.
5468 * May be used as the qc_issue() entry in ata_port_operations.
5471 * spin_lock_irqsave(host lock)
5474 * Zero on success, AC_ERR_* mask on failure
5477 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5479 struct ata_port *ap = qc->ap;
5481 /* Use polling pio if the LLD doesn't handle
5482 * interrupt driven pio and atapi CDB interrupt.
5484 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5485 switch (qc->tf.protocol) {
5487 case ATA_PROT_NODATA:
5488 case ATA_PROT_ATAPI:
5489 case ATA_PROT_ATAPI_NODATA:
5490 qc->tf.flags |= ATA_TFLAG_POLLING;
5492 case ATA_PROT_ATAPI_DMA:
5493 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5494 /* see ata_dma_blacklisted() */
5502 /* select the device */
5503 ata_dev_select(ap, qc->dev->devno, 1, 0);
5505 /* start the command */
5506 switch (qc->tf.protocol) {
5507 case ATA_PROT_NODATA:
5508 if (qc->tf.flags & ATA_TFLAG_POLLING)
5509 ata_qc_set_polling(qc);
5511 ata_tf_to_host(ap, &qc->tf);
5512 ap->hsm_task_state = HSM_ST_LAST;
5514 if (qc->tf.flags & ATA_TFLAG_POLLING)
5515 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5520 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5522 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5523 ap->ops->bmdma_setup(qc); /* set up bmdma */
5524 ap->ops->bmdma_start(qc); /* initiate bmdma */
5525 ap->hsm_task_state = HSM_ST_LAST;
5529 if (qc->tf.flags & ATA_TFLAG_POLLING)
5530 ata_qc_set_polling(qc);
5532 ata_tf_to_host(ap, &qc->tf);
5534 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5535 /* PIO data out protocol */
5536 ap->hsm_task_state = HSM_ST_FIRST;
5537 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5539 /* always send first data block using
5540 * the ata_pio_task() codepath.
5543 /* PIO data in protocol */
5544 ap->hsm_task_state = HSM_ST;
5546 if (qc->tf.flags & ATA_TFLAG_POLLING)
5547 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5549 /* if polling, ata_pio_task() handles the rest.
5550 * otherwise, interrupt handler takes over from here.
5556 case ATA_PROT_ATAPI:
5557 case ATA_PROT_ATAPI_NODATA:
5558 if (qc->tf.flags & ATA_TFLAG_POLLING)
5559 ata_qc_set_polling(qc);
5561 ata_tf_to_host(ap, &qc->tf);
5563 ap->hsm_task_state = HSM_ST_FIRST;
5565 /* send cdb by polling if no cdb interrupt */
5566 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5567 (qc->tf.flags & ATA_TFLAG_POLLING))
5568 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5571 case ATA_PROT_ATAPI_DMA:
5572 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5574 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5575 ap->ops->bmdma_setup(qc); /* set up bmdma */
5576 ap->hsm_task_state = HSM_ST_FIRST;
5578 /* send cdb by polling if no cdb interrupt */
5579 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5580 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5585 return AC_ERR_SYSTEM;
5592 * ata_host_intr - Handle host interrupt for given (port, task)
5593 * @ap: Port on which interrupt arrived (possibly...)
5594 * @qc: Taskfile currently active in engine
5596 * Handle host interrupt for given queued command. Currently,
5597 * only DMA interrupts are handled. All other commands are
5598 * handled via polling with interrupts disabled (nIEN bit).
5601 * spin_lock_irqsave(host lock)
5604 * One if interrupt was handled, zero if not (shared irq).
5607 inline unsigned int ata_host_intr (struct ata_port *ap,
5608 struct ata_queued_cmd *qc)
5610 struct ata_eh_info *ehi = &ap->link.eh_info;
5611 u8 status, host_stat = 0;
5613 VPRINTK("ata%u: protocol %d task_state %d\n",
5614 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5616 /* Check whether we are expecting interrupt in this state */
5617 switch (ap->hsm_task_state) {
5619 /* Some pre-ATAPI-4 devices assert INTRQ
5620 * at this state when ready to receive CDB.
5623 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5624 * The flag was turned on only for atapi devices.
5625 * No need to check is_atapi_taskfile(&qc->tf) again.
5627 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5631 if (qc->tf.protocol == ATA_PROT_DMA ||
5632 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5633 /* check status of DMA engine */
5634 host_stat = ap->ops->bmdma_status(ap);
5635 VPRINTK("ata%u: host_stat 0x%X\n",
5636 ap->print_id, host_stat);
5638 /* if it's not our irq... */
5639 if (!(host_stat & ATA_DMA_INTR))
5642 /* before we do anything else, clear DMA-Start bit */
5643 ap->ops->bmdma_stop(qc);
5645 if (unlikely(host_stat & ATA_DMA_ERR)) {
5646 /* error when transfering data to/from memory */
5647 qc->err_mask |= AC_ERR_HOST_BUS;
5648 ap->hsm_task_state = HSM_ST_ERR;
5658 /* check altstatus */
5659 status = ata_altstatus(ap);
5660 if (status & ATA_BUSY)
5663 /* check main status, clearing INTRQ */
5664 status = ata_chk_status(ap);
5665 if (unlikely(status & ATA_BUSY))
5668 /* ack bmdma irq events */
5669 ap->ops->irq_clear(ap);
5671 ata_hsm_move(ap, qc, status, 0);
5673 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5674 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5675 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5677 return 1; /* irq handled */
5680 ap->stats.idle_irq++;
5683 if ((ap->stats.idle_irq % 1000) == 0) {
5684 ap->ops->irq_ack(ap, 0); /* debug trap */
5685 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5689 return 0; /* irq not handled */
5693 * ata_interrupt - Default ATA host interrupt handler
5694 * @irq: irq line (unused)
5695 * @dev_instance: pointer to our ata_host information structure
5697 * Default interrupt handler for PCI IDE devices. Calls
5698 * ata_host_intr() for each port that is not disabled.
5701 * Obtains host lock during operation.
5704 * IRQ_NONE or IRQ_HANDLED.
5707 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5709 struct ata_host *host = dev_instance;
5711 unsigned int handled = 0;
5712 unsigned long flags;
5714 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5715 spin_lock_irqsave(&host->lock, flags);
5717 for (i = 0; i < host->n_ports; i++) {
5718 struct ata_port *ap;
5720 ap = host->ports[i];
5722 !(ap->flags & ATA_FLAG_DISABLED)) {
5723 struct ata_queued_cmd *qc;
5725 qc = ata_qc_from_tag(ap, ap->link.active_tag);
5726 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5727 (qc->flags & ATA_QCFLAG_ACTIVE))
5728 handled |= ata_host_intr(ap, qc);
5732 spin_unlock_irqrestore(&host->lock, flags);
5734 return IRQ_RETVAL(handled);
5738 * sata_scr_valid - test whether SCRs are accessible
5739 * @link: ATA link to test SCR accessibility for
5741 * Test whether SCRs are accessible for @link.
5747 * 1 if SCRs are accessible, 0 otherwise.
5749 int sata_scr_valid(struct ata_link *link)
5751 struct ata_port *ap = link->ap;
5753 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5757 * sata_scr_read - read SCR register of the specified port
5758 * @link: ATA link to read SCR for
5760 * @val: Place to store read value
5762 * Read SCR register @reg of @link into *@val. This function is
5763 * guaranteed to succeed if the cable type of the port is SATA
5764 * and the port implements ->scr_read.
5770 * 0 on success, negative errno on failure.
5772 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5774 struct ata_port *ap = link->ap;
5776 if (sata_scr_valid(link))
5777 return ap->ops->scr_read(ap, reg, val);
5782 * sata_scr_write - write SCR register of the specified port
5783 * @link: ATA link to write SCR for
5784 * @reg: SCR to write
5785 * @val: value to write
5787 * Write @val to SCR register @reg of @link. This function is
5788 * guaranteed to succeed if the cable type of the port is SATA
5789 * and the port implements ->scr_read.
5795 * 0 on success, negative errno on failure.
5797 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5799 struct ata_port *ap = link->ap;
5801 if (sata_scr_valid(link))
5802 return ap->ops->scr_write(ap, reg, val);
5807 * sata_scr_write_flush - write SCR register of the specified port and flush
5808 * @link: ATA link to write SCR for
5809 * @reg: SCR to write
5810 * @val: value to write
5812 * This function is identical to sata_scr_write() except that this
5813 * function performs flush after writing to the register.
5819 * 0 on success, negative errno on failure.
5821 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5823 struct ata_port *ap = link->ap;
5826 if (sata_scr_valid(link)) {
5827 rc = ap->ops->scr_write(ap, reg, val);
5829 rc = ap->ops->scr_read(ap, reg, &val);
5836 * ata_link_online - test whether the given link is online
5837 * @link: ATA link to test
5839 * Test whether @link is online. Note that this function returns
5840 * 0 if online status of @link cannot be obtained, so
5841 * ata_link_online(link) != !ata_link_offline(link).
5847 * 1 if the port online status is available and online.
5849 int ata_link_online(struct ata_link *link)
5853 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5854 (sstatus & 0xf) == 0x3)
5860 * ata_link_offline - test whether the given link is offline
5861 * @link: ATA link to test
5863 * Test whether @link is offline. Note that this function
5864 * returns 0 if offline status of @link cannot be obtained, so
5865 * ata_link_online(link) != !ata_link_offline(link).
5871 * 1 if the port offline status is available and offline.
5873 int ata_link_offline(struct ata_link *link)
5877 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5878 (sstatus & 0xf) != 0x3)
5883 int ata_flush_cache(struct ata_device *dev)
5885 unsigned int err_mask;
5888 if (!ata_try_flush_cache(dev))
5891 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5892 cmd = ATA_CMD_FLUSH_EXT;
5894 cmd = ATA_CMD_FLUSH;
5896 err_mask = ata_do_simple_cmd(dev, cmd);
5898 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5906 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5907 unsigned int action, unsigned int ehi_flags,
5910 unsigned long flags;
5913 for (i = 0; i < host->n_ports; i++) {
5914 struct ata_port *ap = host->ports[i];
5915 struct ata_link *link;
5917 /* Previous resume operation might still be in
5918 * progress. Wait for PM_PENDING to clear.
5920 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5921 ata_port_wait_eh(ap);
5922 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5925 /* request PM ops to EH */
5926 spin_lock_irqsave(ap->lock, flags);
5931 ap->pm_result = &rc;
5934 ap->pflags |= ATA_PFLAG_PM_PENDING;
5935 __ata_port_for_each_link(link, ap) {
5936 link->eh_info.action |= action;
5937 link->eh_info.flags |= ehi_flags;
5940 ata_port_schedule_eh(ap);
5942 spin_unlock_irqrestore(ap->lock, flags);
5944 /* wait and check result */
5946 ata_port_wait_eh(ap);
5947 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5957 * ata_host_suspend - suspend host
5958 * @host: host to suspend
5961 * Suspend @host. Actual operation is performed by EH. This
5962 * function requests EH to perform PM operations and waits for EH
5966 * Kernel thread context (may sleep).
5969 * 0 on success, -errno on failure.
5971 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5975 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5977 host->dev->power.power_state = mesg;
5982 * ata_host_resume - resume host
5983 * @host: host to resume
5985 * Resume @host. Actual operation is performed by EH. This
5986 * function requests EH to perform PM operations and returns.
5987 * Note that all resume operations are performed parallely.
5990 * Kernel thread context (may sleep).
5992 void ata_host_resume(struct ata_host *host)
5994 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5995 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5996 host->dev->power.power_state = PMSG_ON;
6001 * ata_port_start - Set port up for dma.
6002 * @ap: Port to initialize
6004 * Called just after data structures for each port are
6005 * initialized. Allocates space for PRD table.
6007 * May be used as the port_start() entry in ata_port_operations.
6010 * Inherited from caller.
6012 int ata_port_start(struct ata_port *ap)
6014 struct device *dev = ap->dev;
6017 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6022 rc = ata_pad_alloc(ap, dev);
6026 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6027 (unsigned long long)ap->prd_dma);
6032 * ata_dev_init - Initialize an ata_device structure
6033 * @dev: Device structure to initialize
6035 * Initialize @dev in preparation for probing.
6038 * Inherited from caller.
6040 void ata_dev_init(struct ata_device *dev)
6042 struct ata_link *link = dev->link;
6043 struct ata_port *ap = link->ap;
6044 unsigned long flags;
6046 /* SATA spd limit is bound to the first device */
6047 link->sata_spd_limit = link->hw_sata_spd_limit;
6050 /* High bits of dev->flags are used to record warm plug
6051 * requests which occur asynchronously. Synchronize using
6054 spin_lock_irqsave(ap->lock, flags);
6055 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6057 spin_unlock_irqrestore(ap->lock, flags);
6059 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6060 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6061 dev->pio_mask = UINT_MAX;
6062 dev->mwdma_mask = UINT_MAX;
6063 dev->udma_mask = UINT_MAX;
6067 * ata_link_init - Initialize an ata_link structure
6068 * @ap: ATA port link is attached to
6069 * @link: Link structure to initialize
6070 * @pmp: Port multiplier port number
6075 * Kernel thread context (may sleep)
6077 static void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6081 /* clear everything except for devices */
6082 memset(link, 0, offsetof(struct ata_link, device[0]));
6086 link->active_tag = ATA_TAG_POISON;
6087 link->hw_sata_spd_limit = UINT_MAX;
6089 /* can't use iterator, ap isn't initialized yet */
6090 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6091 struct ata_device *dev = &link->device[i];
6094 dev->devno = dev - link->device;
6100 * sata_link_init_spd - Initialize link->sata_spd_limit
6101 * @link: Link to configure sata_spd_limit for
6103 * Initialize @link->[hw_]sata_spd_limit to the currently
6107 * Kernel thread context (may sleep).
6110 * 0 on success, -errno on failure.
6112 static int sata_link_init_spd(struct ata_link *link)
6117 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6121 spd = (scontrol >> 4) & 0xf;
6123 link->hw_sata_spd_limit &= (1 << spd) - 1;
6125 link->sata_spd_limit = link->hw_sata_spd_limit;
6131 * ata_port_alloc - allocate and initialize basic ATA port resources
6132 * @host: ATA host this allocated port belongs to
6134 * Allocate and initialize basic ATA port resources.
6137 * Allocate ATA port on success, NULL on failure.
6140 * Inherited from calling layer (may sleep).
6142 struct ata_port *ata_port_alloc(struct ata_host *host)
6144 struct ata_port *ap;
6148 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6152 ap->pflags |= ATA_PFLAG_INITIALIZING;
6153 ap->lock = &host->lock;
6154 ap->flags = ATA_FLAG_DISABLED;
6156 ap->ctl = ATA_DEVCTL_OBS;
6158 ap->dev = host->dev;
6159 ap->last_ctl = 0xFF;
6161 #if defined(ATA_VERBOSE_DEBUG)
6162 /* turn on all debugging levels */
6163 ap->msg_enable = 0x00FF;
6164 #elif defined(ATA_DEBUG)
6165 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6167 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6170 INIT_DELAYED_WORK(&ap->port_task, NULL);
6171 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6172 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6173 INIT_LIST_HEAD(&ap->eh_done_q);
6174 init_waitqueue_head(&ap->eh_wait_q);
6175 init_timer_deferrable(&ap->fastdrain_timer);
6176 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6177 ap->fastdrain_timer.data = (unsigned long)ap;
6179 ap->cbl = ATA_CBL_NONE;
6181 ata_link_init(ap, &ap->link, 0);
6184 ap->stats.unhandled_irq = 1;
6185 ap->stats.idle_irq = 1;
6190 static void ata_host_release(struct device *gendev, void *res)
6192 struct ata_host *host = dev_get_drvdata(gendev);
6195 for (i = 0; i < host->n_ports; i++) {
6196 struct ata_port *ap = host->ports[i];
6201 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6202 ap->ops->port_stop(ap);
6205 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6206 host->ops->host_stop(host);
6208 for (i = 0; i < host->n_ports; i++) {
6209 struct ata_port *ap = host->ports[i];
6215 scsi_host_put(ap->scsi_host);
6218 host->ports[i] = NULL;
6221 dev_set_drvdata(gendev, NULL);
6225 * ata_host_alloc - allocate and init basic ATA host resources
6226 * @dev: generic device this host is associated with
6227 * @max_ports: maximum number of ATA ports associated with this host
6229 * Allocate and initialize basic ATA host resources. LLD calls
6230 * this function to allocate a host, initializes it fully and
6231 * attaches it using ata_host_register().
6233 * @max_ports ports are allocated and host->n_ports is
6234 * initialized to @max_ports. The caller is allowed to decrease
6235 * host->n_ports before calling ata_host_register(). The unused
6236 * ports will be automatically freed on registration.
6239 * Allocate ATA host on success, NULL on failure.
6242 * Inherited from calling layer (may sleep).
6244 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6246 struct ata_host *host;
6252 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6255 /* alloc a container for our list of ATA ports (buses) */
6256 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6257 /* alloc a container for our list of ATA ports (buses) */
6258 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6262 devres_add(dev, host);
6263 dev_set_drvdata(dev, host);
6265 spin_lock_init(&host->lock);
6267 host->n_ports = max_ports;
6269 /* allocate ports bound to this host */
6270 for (i = 0; i < max_ports; i++) {
6271 struct ata_port *ap;
6273 ap = ata_port_alloc(host);
6278 host->ports[i] = ap;
6281 devres_remove_group(dev, NULL);
6285 devres_release_group(dev, NULL);
6290 * ata_host_alloc_pinfo - alloc host and init with port_info array
6291 * @dev: generic device this host is associated with
6292 * @ppi: array of ATA port_info to initialize host with
6293 * @n_ports: number of ATA ports attached to this host
6295 * Allocate ATA host and initialize with info from @ppi. If NULL
6296 * terminated, @ppi may contain fewer entries than @n_ports. The
6297 * last entry will be used for the remaining ports.
6300 * Allocate ATA host on success, NULL on failure.
6303 * Inherited from calling layer (may sleep).
6305 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6306 const struct ata_port_info * const * ppi,
6309 const struct ata_port_info *pi;
6310 struct ata_host *host;
6313 host = ata_host_alloc(dev, n_ports);
6317 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6318 struct ata_port *ap = host->ports[i];
6323 ap->pio_mask = pi->pio_mask;
6324 ap->mwdma_mask = pi->mwdma_mask;
6325 ap->udma_mask = pi->udma_mask;
6326 ap->flags |= pi->flags;
6327 ap->link.flags |= pi->link_flags;
6328 ap->ops = pi->port_ops;
6330 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6331 host->ops = pi->port_ops;
6332 if (!host->private_data && pi->private_data)
6333 host->private_data = pi->private_data;
6340 * ata_host_start - start and freeze ports of an ATA host
6341 * @host: ATA host to start ports for
6343 * Start and then freeze ports of @host. Started status is
6344 * recorded in host->flags, so this function can be called
6345 * multiple times. Ports are guaranteed to get started only
6346 * once. If host->ops isn't initialized yet, its set to the
6347 * first non-dummy port ops.
6350 * Inherited from calling layer (may sleep).
6353 * 0 if all ports are started successfully, -errno otherwise.
6355 int ata_host_start(struct ata_host *host)
6359 if (host->flags & ATA_HOST_STARTED)
6362 for (i = 0; i < host->n_ports; i++) {
6363 struct ata_port *ap = host->ports[i];
6365 if (!host->ops && !ata_port_is_dummy(ap))
6366 host->ops = ap->ops;
6368 if (ap->ops->port_start) {
6369 rc = ap->ops->port_start(ap);
6371 ata_port_printk(ap, KERN_ERR, "failed to "
6372 "start port (errno=%d)\n", rc);
6377 ata_eh_freeze_port(ap);
6380 host->flags |= ATA_HOST_STARTED;
6385 struct ata_port *ap = host->ports[i];
6387 if (ap->ops->port_stop)
6388 ap->ops->port_stop(ap);
6394 * ata_sas_host_init - Initialize a host struct
6395 * @host: host to initialize
6396 * @dev: device host is attached to
6397 * @flags: host flags
6401 * PCI/etc. bus probe sem.
6404 /* KILLME - the only user left is ipr */
6405 void ata_host_init(struct ata_host *host, struct device *dev,
6406 unsigned long flags, const struct ata_port_operations *ops)
6408 spin_lock_init(&host->lock);
6410 host->flags = flags;
6415 * ata_host_register - register initialized ATA host
6416 * @host: ATA host to register
6417 * @sht: template for SCSI host
6419 * Register initialized ATA host. @host is allocated using
6420 * ata_host_alloc() and fully initialized by LLD. This function
6421 * starts ports, registers @host with ATA and SCSI layers and
6422 * probe registered devices.
6425 * Inherited from calling layer (may sleep).
6428 * 0 on success, -errno otherwise.
6430 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6434 /* host must have been started */
6435 if (!(host->flags & ATA_HOST_STARTED)) {
6436 dev_printk(KERN_ERR, host->dev,
6437 "BUG: trying to register unstarted host\n");
6442 /* Blow away unused ports. This happens when LLD can't
6443 * determine the exact number of ports to allocate at
6446 for (i = host->n_ports; host->ports[i]; i++)
6447 kfree(host->ports[i]);
6449 /* give ports names and add SCSI hosts */
6450 for (i = 0; i < host->n_ports; i++)
6451 host->ports[i]->print_id = ata_print_id++;
6453 rc = ata_scsi_add_hosts(host, sht);
6457 /* associate with ACPI nodes */
6458 ata_acpi_associate(host);
6460 /* set cable, sata_spd_limit and report */
6461 for (i = 0; i < host->n_ports; i++) {
6462 struct ata_port *ap = host->ports[i];
6464 unsigned long xfer_mask;
6466 /* set SATA cable type if still unset */
6467 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6468 ap->cbl = ATA_CBL_SATA;
6470 /* init sata_spd_limit to the current value */
6471 sata_link_init_spd(&ap->link);
6473 /* report the secondary IRQ for second channel legacy */
6474 irq_line = host->irq;
6475 if (i == 1 && host->irq2)
6476 irq_line = host->irq2;
6478 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6481 /* print per-port info to dmesg */
6482 if (!ata_port_is_dummy(ap))
6483 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6484 "ctl 0x%p bmdma 0x%p irq %d\n",
6485 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6486 ata_mode_string(xfer_mask),
6487 ap->ioaddr.cmd_addr,
6488 ap->ioaddr.ctl_addr,
6489 ap->ioaddr.bmdma_addr,
6492 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6495 /* perform each probe synchronously */
6496 DPRINTK("probe begin\n");
6497 for (i = 0; i < host->n_ports; i++) {
6498 struct ata_port *ap = host->ports[i];
6502 if (ap->ops->error_handler) {
6503 struct ata_eh_info *ehi = &ap->link.eh_info;
6504 unsigned long flags;
6508 /* kick EH for boot probing */
6509 spin_lock_irqsave(ap->lock, flags);
6512 (1 << ata_link_max_devices(&ap->link)) - 1;
6513 ehi->action |= ATA_EH_SOFTRESET;
6514 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6516 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6517 ap->pflags |= ATA_PFLAG_LOADING;
6518 ata_port_schedule_eh(ap);
6520 spin_unlock_irqrestore(ap->lock, flags);
6522 /* wait for EH to finish */
6523 ata_port_wait_eh(ap);
6525 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6526 rc = ata_bus_probe(ap);
6527 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6530 /* FIXME: do something useful here?
6531 * Current libata behavior will
6532 * tear down everything when
6533 * the module is removed
6534 * or the h/w is unplugged.
6540 /* probes are done, now scan each port's disk(s) */
6541 DPRINTK("host probe begin\n");
6542 for (i = 0; i < host->n_ports; i++) {
6543 struct ata_port *ap = host->ports[i];
6545 ata_scsi_scan_host(ap, 1);
6552 * ata_host_activate - start host, request IRQ and register it
6553 * @host: target ATA host
6554 * @irq: IRQ to request
6555 * @irq_handler: irq_handler used when requesting IRQ
6556 * @irq_flags: irq_flags used when requesting IRQ
6557 * @sht: scsi_host_template to use when registering the host
6559 * After allocating an ATA host and initializing it, most libata
6560 * LLDs perform three steps to activate the host - start host,
6561 * request IRQ and register it. This helper takes necessasry
6562 * arguments and performs the three steps in one go.
6565 * Inherited from calling layer (may sleep).
6568 * 0 on success, -errno otherwise.
6570 int ata_host_activate(struct ata_host *host, int irq,
6571 irq_handler_t irq_handler, unsigned long irq_flags,
6572 struct scsi_host_template *sht)
6576 rc = ata_host_start(host);
6580 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6581 dev_driver_string(host->dev), host);
6585 /* Used to print device info at probe */
6588 rc = ata_host_register(host, sht);
6589 /* if failed, just free the IRQ and leave ports alone */
6591 devm_free_irq(host->dev, irq, host);
6597 * ata_port_detach - Detach ATA port in prepration of device removal
6598 * @ap: ATA port to be detached
6600 * Detach all ATA devices and the associated SCSI devices of @ap;
6601 * then, remove the associated SCSI host. @ap is guaranteed to
6602 * be quiescent on return from this function.
6605 * Kernel thread context (may sleep).
6607 void ata_port_detach(struct ata_port *ap)
6609 unsigned long flags;
6610 struct ata_link *link;
6611 struct ata_device *dev;
6613 if (!ap->ops->error_handler)
6616 /* tell EH we're leaving & flush EH */
6617 spin_lock_irqsave(ap->lock, flags);
6618 ap->pflags |= ATA_PFLAG_UNLOADING;
6619 spin_unlock_irqrestore(ap->lock, flags);
6621 ata_port_wait_eh(ap);
6623 /* EH is now guaranteed to see UNLOADING, so no new device
6624 * will be attached. Disable all existing devices.
6626 spin_lock_irqsave(ap->lock, flags);
6628 ata_port_for_each_link(link, ap) {
6629 ata_link_for_each_dev(dev, link)
6630 ata_dev_disable(dev);
6633 spin_unlock_irqrestore(ap->lock, flags);
6635 /* Final freeze & EH. All in-flight commands are aborted. EH
6636 * will be skipped and retrials will be terminated with bad
6639 spin_lock_irqsave(ap->lock, flags);
6640 ata_port_freeze(ap); /* won't be thawed */
6641 spin_unlock_irqrestore(ap->lock, flags);
6643 ata_port_wait_eh(ap);
6644 cancel_rearming_delayed_work(&ap->hotplug_task);
6647 /* remove the associated SCSI host */
6648 scsi_remove_host(ap->scsi_host);
6652 * ata_host_detach - Detach all ports of an ATA host
6653 * @host: Host to detach
6655 * Detach all ports of @host.
6658 * Kernel thread context (may sleep).
6660 void ata_host_detach(struct ata_host *host)
6664 for (i = 0; i < host->n_ports; i++)
6665 ata_port_detach(host->ports[i]);
6669 * ata_std_ports - initialize ioaddr with standard port offsets.
6670 * @ioaddr: IO address structure to be initialized
6672 * Utility function which initializes data_addr, error_addr,
6673 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6674 * device_addr, status_addr, and command_addr to standard offsets
6675 * relative to cmd_addr.
6677 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6680 void ata_std_ports(struct ata_ioports *ioaddr)
6682 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6683 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6684 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6685 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6686 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6687 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6688 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6689 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6690 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6691 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6698 * ata_pci_remove_one - PCI layer callback for device removal
6699 * @pdev: PCI device that was removed
6701 * PCI layer indicates to libata via this hook that hot-unplug or
6702 * module unload event has occurred. Detach all ports. Resource
6703 * release is handled via devres.
6706 * Inherited from PCI layer (may sleep).
6708 void ata_pci_remove_one(struct pci_dev *pdev)
6710 struct device *dev = pci_dev_to_dev(pdev);
6711 struct ata_host *host = dev_get_drvdata(dev);
6713 ata_host_detach(host);
6716 /* move to PCI subsystem */
6717 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6719 unsigned long tmp = 0;
6721 switch (bits->width) {
6724 pci_read_config_byte(pdev, bits->reg, &tmp8);
6730 pci_read_config_word(pdev, bits->reg, &tmp16);
6736 pci_read_config_dword(pdev, bits->reg, &tmp32);
6747 return (tmp == bits->val) ? 1 : 0;
6751 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6753 pci_save_state(pdev);
6754 pci_disable_device(pdev);
6756 if (mesg.event == PM_EVENT_SUSPEND)
6757 pci_set_power_state(pdev, PCI_D3hot);
6760 int ata_pci_device_do_resume(struct pci_dev *pdev)
6764 pci_set_power_state(pdev, PCI_D0);
6765 pci_restore_state(pdev);
6767 rc = pcim_enable_device(pdev);
6769 dev_printk(KERN_ERR, &pdev->dev,
6770 "failed to enable device after resume (%d)\n", rc);
6774 pci_set_master(pdev);
6778 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6780 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6783 rc = ata_host_suspend(host, mesg);
6787 ata_pci_device_do_suspend(pdev, mesg);
6792 int ata_pci_device_resume(struct pci_dev *pdev)
6794 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6797 rc = ata_pci_device_do_resume(pdev);
6799 ata_host_resume(host);
6802 #endif /* CONFIG_PM */
6804 #endif /* CONFIG_PCI */
6807 static int __init ata_init(void)
6809 ata_probe_timeout *= HZ;
6810 ata_wq = create_workqueue("ata");
6814 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6816 destroy_workqueue(ata_wq);
6820 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6824 static void __exit ata_exit(void)
6826 destroy_workqueue(ata_wq);
6827 destroy_workqueue(ata_aux_wq);
6830 subsys_initcall(ata_init);
6831 module_exit(ata_exit);
6833 static unsigned long ratelimit_time;
6834 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6836 int ata_ratelimit(void)
6839 unsigned long flags;
6841 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6843 if (time_after(jiffies, ratelimit_time)) {
6845 ratelimit_time = jiffies + (HZ/5);
6849 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6855 * ata_wait_register - wait until register value changes
6856 * @reg: IO-mapped register
6857 * @mask: Mask to apply to read register value
6858 * @val: Wait condition
6859 * @interval_msec: polling interval in milliseconds
6860 * @timeout_msec: timeout in milliseconds
6862 * Waiting for some bits of register to change is a common
6863 * operation for ATA controllers. This function reads 32bit LE
6864 * IO-mapped register @reg and tests for the following condition.
6866 * (*@reg & mask) != val
6868 * If the condition is met, it returns; otherwise, the process is
6869 * repeated after @interval_msec until timeout.
6872 * Kernel thread context (may sleep)
6875 * The final register value.
6877 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6878 unsigned long interval_msec,
6879 unsigned long timeout_msec)
6881 unsigned long timeout;
6884 tmp = ioread32(reg);
6886 /* Calculate timeout _after_ the first read to make sure
6887 * preceding writes reach the controller before starting to
6888 * eat away the timeout.
6890 timeout = jiffies + (timeout_msec * HZ) / 1000;
6892 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6893 msleep(interval_msec);
6894 tmp = ioread32(reg);
6903 static void ata_dummy_noret(struct ata_port *ap) { }
6904 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6905 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6907 static u8 ata_dummy_check_status(struct ata_port *ap)
6912 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6914 return AC_ERR_SYSTEM;
6917 const struct ata_port_operations ata_dummy_port_ops = {
6918 .port_disable = ata_port_disable,
6919 .check_status = ata_dummy_check_status,
6920 .check_altstatus = ata_dummy_check_status,
6921 .dev_select = ata_noop_dev_select,
6922 .qc_prep = ata_noop_qc_prep,
6923 .qc_issue = ata_dummy_qc_issue,
6924 .freeze = ata_dummy_noret,
6925 .thaw = ata_dummy_noret,
6926 .error_handler = ata_dummy_noret,
6927 .post_internal_cmd = ata_dummy_qc_noret,
6928 .irq_clear = ata_dummy_noret,
6929 .port_start = ata_dummy_ret0,
6930 .port_stop = ata_dummy_noret,
6933 const struct ata_port_info ata_dummy_port_info = {
6934 .port_ops = &ata_dummy_port_ops,
6938 * libata is essentially a library of internal helper functions for
6939 * low-level ATA host controller drivers. As such, the API/ABI is
6940 * likely to change as new drivers are added and updated.
6941 * Do not depend on ABI/API stability.
6944 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6945 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6946 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6947 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6948 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6949 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6950 EXPORT_SYMBOL_GPL(ata_std_ports);
6951 EXPORT_SYMBOL_GPL(ata_host_init);
6952 EXPORT_SYMBOL_GPL(ata_host_alloc);
6953 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6954 EXPORT_SYMBOL_GPL(ata_host_start);
6955 EXPORT_SYMBOL_GPL(ata_host_register);
6956 EXPORT_SYMBOL_GPL(ata_host_activate);
6957 EXPORT_SYMBOL_GPL(ata_host_detach);
6958 EXPORT_SYMBOL_GPL(ata_sg_init);
6959 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6960 EXPORT_SYMBOL_GPL(ata_hsm_move);
6961 EXPORT_SYMBOL_GPL(ata_qc_complete);
6962 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6963 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6964 EXPORT_SYMBOL_GPL(ata_tf_load);
6965 EXPORT_SYMBOL_GPL(ata_tf_read);
6966 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6967 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6968 EXPORT_SYMBOL_GPL(sata_print_link_status);
6969 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6970 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6971 EXPORT_SYMBOL_GPL(ata_check_status);
6972 EXPORT_SYMBOL_GPL(ata_altstatus);
6973 EXPORT_SYMBOL_GPL(ata_exec_command);
6974 EXPORT_SYMBOL_GPL(ata_port_start);
6975 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6976 EXPORT_SYMBOL_GPL(ata_interrupt);
6977 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6978 EXPORT_SYMBOL_GPL(ata_data_xfer);
6979 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6980 EXPORT_SYMBOL_GPL(ata_qc_prep);
6981 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6982 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6983 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6984 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6985 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6986 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6987 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6988 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6989 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6990 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6991 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6992 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6993 EXPORT_SYMBOL_GPL(ata_port_probe);
6994 EXPORT_SYMBOL_GPL(ata_dev_disable);
6995 EXPORT_SYMBOL_GPL(sata_set_spd);
6996 EXPORT_SYMBOL_GPL(sata_link_debounce);
6997 EXPORT_SYMBOL_GPL(sata_link_resume);
6998 EXPORT_SYMBOL_GPL(sata_phy_reset);
6999 EXPORT_SYMBOL_GPL(__sata_phy_reset);
7000 EXPORT_SYMBOL_GPL(ata_bus_reset);
7001 EXPORT_SYMBOL_GPL(ata_std_prereset);
7002 EXPORT_SYMBOL_GPL(ata_std_softreset);
7003 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7004 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7005 EXPORT_SYMBOL_GPL(ata_std_postreset);
7006 EXPORT_SYMBOL_GPL(ata_dev_classify);
7007 EXPORT_SYMBOL_GPL(ata_dev_pair);
7008 EXPORT_SYMBOL_GPL(ata_port_disable);
7009 EXPORT_SYMBOL_GPL(ata_ratelimit);
7010 EXPORT_SYMBOL_GPL(ata_wait_register);
7011 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7012 EXPORT_SYMBOL_GPL(ata_wait_ready);
7013 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7014 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7015 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7016 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7017 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7018 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7019 EXPORT_SYMBOL_GPL(ata_host_intr);
7020 EXPORT_SYMBOL_GPL(sata_scr_valid);
7021 EXPORT_SYMBOL_GPL(sata_scr_read);
7022 EXPORT_SYMBOL_GPL(sata_scr_write);
7023 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7024 EXPORT_SYMBOL_GPL(ata_link_online);
7025 EXPORT_SYMBOL_GPL(ata_link_offline);
7027 EXPORT_SYMBOL_GPL(ata_host_suspend);
7028 EXPORT_SYMBOL_GPL(ata_host_resume);
7029 #endif /* CONFIG_PM */
7030 EXPORT_SYMBOL_GPL(ata_id_string);
7031 EXPORT_SYMBOL_GPL(ata_id_c_string);
7032 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7033 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7035 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7036 EXPORT_SYMBOL_GPL(ata_timing_compute);
7037 EXPORT_SYMBOL_GPL(ata_timing_merge);
7040 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7041 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7042 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7043 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7044 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7045 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7047 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7048 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7049 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7050 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7051 #endif /* CONFIG_PM */
7052 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7053 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7054 #endif /* CONFIG_PCI */
7056 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7057 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7058 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7059 EXPORT_SYMBOL_GPL(ata_eng_timeout);
7060 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7061 EXPORT_SYMBOL_GPL(ata_link_abort);
7062 EXPORT_SYMBOL_GPL(ata_port_abort);
7063 EXPORT_SYMBOL_GPL(ata_port_freeze);
7064 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7065 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7066 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7067 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7068 EXPORT_SYMBOL_GPL(ata_do_eh);
7069 EXPORT_SYMBOL_GPL(ata_irq_on);
7070 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7071 EXPORT_SYMBOL_GPL(ata_irq_ack);
7072 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
7073 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7075 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7076 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7077 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7078 EXPORT_SYMBOL_GPL(ata_cable_sata);