4 Copyright (C) 2004 BULL SA.
5 Written by Simon.Derr@bull.net
7 Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
8 Modified by Paul Jackson <pj@sgi.com>
9 Modified by Christoph Lameter <clameter@sgi.com>
10 Modified by Paul Menage <menage@google.com>
16 1.1 What are cpusets ?
17 1.2 Why are cpusets needed ?
18 1.3 How are cpusets implemented ?
19 1.4 What are exclusive cpusets ?
20 1.5 What is memory_pressure ?
21 1.6 What is memory spread ?
22 1.7 What is sched_load_balance ?
23 1.8 How do I use cpusets ?
24 2. Usage Examples and Syntax
26 2.2 Adding/removing cpus
28 2.4 Attaching processes
35 1.1 What are cpusets ?
36 ----------------------
38 Cpusets provide a mechanism for assigning a set of CPUs and Memory
39 Nodes to a set of tasks. In this document "Memory Node" refers to
40 an on-line node that contains memory.
42 Cpusets constrain the CPU and Memory placement of tasks to only
43 the resources within a tasks current cpuset. They form a nested
44 hierarchy visible in a virtual file system. These are the essential
45 hooks, beyond what is already present, required to manage dynamic
46 job placement on large systems.
48 Cpusets use the generic cgroup subsystem described in
49 Documentation/cgroup.txt.
51 Requests by a task, using the sched_setaffinity(2) system call to
52 include CPUs in its CPU affinity mask, and using the mbind(2) and
53 set_mempolicy(2) system calls to include Memory Nodes in its memory
54 policy, are both filtered through that tasks cpuset, filtering out any
55 CPUs or Memory Nodes not in that cpuset. The scheduler will not
56 schedule a task on a CPU that is not allowed in its cpus_allowed
57 vector, and the kernel page allocator will not allocate a page on a
58 node that is not allowed in the requesting tasks mems_allowed vector.
60 User level code may create and destroy cpusets by name in the cgroup
61 virtual file system, manage the attributes and permissions of these
62 cpusets and which CPUs and Memory Nodes are assigned to each cpuset,
63 specify and query to which cpuset a task is assigned, and list the
64 task pids assigned to a cpuset.
67 1.2 Why are cpusets needed ?
68 ----------------------------
70 The management of large computer systems, with many processors (CPUs),
71 complex memory cache hierarchies and multiple Memory Nodes having
72 non-uniform access times (NUMA) presents additional challenges for
73 the efficient scheduling and memory placement of processes.
75 Frequently more modest sized systems can be operated with adequate
76 efficiency just by letting the operating system automatically share
77 the available CPU and Memory resources amongst the requesting tasks.
79 But larger systems, which benefit more from careful processor and
80 memory placement to reduce memory access times and contention,
81 and which typically represent a larger investment for the customer,
82 can benefit from explicitly placing jobs on properly sized subsets of
85 This can be especially valuable on:
87 * Web Servers running multiple instances of the same web application,
88 * Servers running different applications (for instance, a web server
90 * NUMA systems running large HPC applications with demanding
91 performance characteristics.
93 These subsets, or "soft partitions" must be able to be dynamically
94 adjusted, as the job mix changes, without impacting other concurrently
95 executing jobs. The location of the running jobs pages may also be moved
96 when the memory locations are changed.
98 The kernel cpuset patch provides the minimum essential kernel
99 mechanisms required to efficiently implement such subsets. It
100 leverages existing CPU and Memory Placement facilities in the Linux
101 kernel to avoid any additional impact on the critical scheduler or
102 memory allocator code.
105 1.3 How are cpusets implemented ?
106 ---------------------------------
108 Cpusets provide a Linux kernel mechanism to constrain which CPUs and
109 Memory Nodes are used by a process or set of processes.
111 The Linux kernel already has a pair of mechanisms to specify on which
112 CPUs a task may be scheduled (sched_setaffinity) and on which Memory
113 Nodes it may obtain memory (mbind, set_mempolicy).
115 Cpusets extends these two mechanisms as follows:
117 - Cpusets are sets of allowed CPUs and Memory Nodes, known to the
119 - Each task in the system is attached to a cpuset, via a pointer
120 in the task structure to a reference counted cgroup structure.
121 - Calls to sched_setaffinity are filtered to just those CPUs
122 allowed in that tasks cpuset.
123 - Calls to mbind and set_mempolicy are filtered to just
124 those Memory Nodes allowed in that tasks cpuset.
125 - The root cpuset contains all the systems CPUs and Memory
127 - For any cpuset, one can define child cpusets containing a subset
128 of the parents CPU and Memory Node resources.
129 - The hierarchy of cpusets can be mounted at /dev/cpuset, for
130 browsing and manipulation from user space.
131 - A cpuset may be marked exclusive, which ensures that no other
132 cpuset (except direct ancestors and descendents) may contain
133 any overlapping CPUs or Memory Nodes.
134 - You can list all the tasks (by pid) attached to any cpuset.
136 The implementation of cpusets requires a few, simple hooks
137 into the rest of the kernel, none in performance critical paths:
139 - in init/main.c, to initialize the root cpuset at system boot.
140 - in fork and exit, to attach and detach a task from its cpuset.
141 - in sched_setaffinity, to mask the requested CPUs by what's
142 allowed in that tasks cpuset.
143 - in sched.c migrate_all_tasks(), to keep migrating tasks within
144 the CPUs allowed by their cpuset, if possible.
145 - in the mbind and set_mempolicy system calls, to mask the requested
146 Memory Nodes by what's allowed in that tasks cpuset.
147 - in page_alloc.c, to restrict memory to allowed nodes.
148 - in vmscan.c, to restrict page recovery to the current cpuset.
150 You should mount the "cgroup" filesystem type in order to enable
151 browsing and modifying the cpusets presently known to the kernel. No
152 new system calls are added for cpusets - all support for querying and
153 modifying cpusets is via this cpuset file system.
155 The /proc/<pid>/status file for each task has two added lines,
156 displaying the tasks cpus_allowed (on which CPUs it may be scheduled)
157 and mems_allowed (on which Memory Nodes it may obtain memory),
158 in the format seen in the following example:
160 Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
161 Mems_allowed: ffffffff,ffffffff
163 Each cpuset is represented by a directory in the cgroup file system
164 containing (on top of the standard cgroup files) the following
165 files describing that cpuset:
167 - cpus: list of CPUs in that cpuset
168 - mems: list of Memory Nodes in that cpuset
169 - memory_migrate flag: if set, move pages to cpusets nodes
170 - cpu_exclusive flag: is cpu placement exclusive?
171 - mem_exclusive flag: is memory placement exclusive?
172 - memory_pressure: measure of how much paging pressure in cpuset
174 In addition, the root cpuset only has the following file:
175 - memory_pressure_enabled flag: compute memory_pressure?
177 New cpusets are created using the mkdir system call or shell
178 command. The properties of a cpuset, such as its flags, allowed
179 CPUs and Memory Nodes, and attached tasks, are modified by writing
180 to the appropriate file in that cpusets directory, as listed above.
182 The named hierarchical structure of nested cpusets allows partitioning
183 a large system into nested, dynamically changeable, "soft-partitions".
185 The attachment of each task, automatically inherited at fork by any
186 children of that task, to a cpuset allows organizing the work load
187 on a system into related sets of tasks such that each set is constrained
188 to using the CPUs and Memory Nodes of a particular cpuset. A task
189 may be re-attached to any other cpuset, if allowed by the permissions
190 on the necessary cpuset file system directories.
192 Such management of a system "in the large" integrates smoothly with
193 the detailed placement done on individual tasks and memory regions
194 using the sched_setaffinity, mbind and set_mempolicy system calls.
196 The following rules apply to each cpuset:
198 - Its CPUs and Memory Nodes must be a subset of its parents.
199 - It can only be marked exclusive if its parent is.
200 - If its cpu or memory is exclusive, they may not overlap any sibling.
202 These rules, and the natural hierarchy of cpusets, enable efficient
203 enforcement of the exclusive guarantee, without having to scan all
204 cpusets every time any of them change to ensure nothing overlaps a
205 exclusive cpuset. Also, the use of a Linux virtual file system (vfs)
206 to represent the cpuset hierarchy provides for a familiar permission
207 and name space for cpusets, with a minimum of additional kernel code.
209 The cpus and mems files in the root (top_cpuset) cpuset are
210 read-only. The cpus file automatically tracks the value of
211 cpu_online_map using a CPU hotplug notifier, and the mems file
212 automatically tracks the value of node_states[N_MEMORY]--i.e.,
213 nodes with memory--using the cpuset_track_online_nodes() hook.
216 1.4 What are exclusive cpusets ?
217 --------------------------------
219 If a cpuset is cpu or mem exclusive, no other cpuset, other than
220 a direct ancestor or descendent, may share any of the same CPUs or
223 A cpuset that is mem_exclusive restricts kernel allocations for
224 page, buffer and other data commonly shared by the kernel across
225 multiple users. All cpusets, whether mem_exclusive or not, restrict
226 allocations of memory for user space. This enables configuring a
227 system so that several independent jobs can share common kernel data,
228 such as file system pages, while isolating each jobs user allocation in
229 its own cpuset. To do this, construct a large mem_exclusive cpuset to
230 hold all the jobs, and construct child, non-mem_exclusive cpusets for
231 each individual job. Only a small amount of typical kernel memory,
232 such as requests from interrupt handlers, is allowed to be taken
233 outside even a mem_exclusive cpuset.
236 1.5 What is memory_pressure ?
237 -----------------------------
238 The memory_pressure of a cpuset provides a simple per-cpuset metric
239 of the rate that the tasks in a cpuset are attempting to free up in
240 use memory on the nodes of the cpuset to satisfy additional memory
243 This enables batch managers monitoring jobs running in dedicated
244 cpusets to efficiently detect what level of memory pressure that job
247 This is useful both on tightly managed systems running a wide mix of
248 submitted jobs, which may choose to terminate or re-prioritize jobs that
249 are trying to use more memory than allowed on the nodes assigned them,
250 and with tightly coupled, long running, massively parallel scientific
251 computing jobs that will dramatically fail to meet required performance
252 goals if they start to use more memory than allowed to them.
254 This mechanism provides a very economical way for the batch manager
255 to monitor a cpuset for signs of memory pressure. It's up to the
256 batch manager or other user code to decide what to do about it and
259 ==> Unless this feature is enabled by writing "1" to the special file
260 /dev/cpuset/memory_pressure_enabled, the hook in the rebalance
261 code of __alloc_pages() for this metric reduces to simply noticing
262 that the cpuset_memory_pressure_enabled flag is zero. So only
263 systems that enable this feature will compute the metric.
265 Why a per-cpuset, running average:
267 Because this meter is per-cpuset, rather than per-task or mm,
268 the system load imposed by a batch scheduler monitoring this
269 metric is sharply reduced on large systems, because a scan of
270 the tasklist can be avoided on each set of queries.
272 Because this meter is a running average, instead of an accumulating
273 counter, a batch scheduler can detect memory pressure with a
274 single read, instead of having to read and accumulate results
275 for a period of time.
277 Because this meter is per-cpuset rather than per-task or mm,
278 the batch scheduler can obtain the key information, memory
279 pressure in a cpuset, with a single read, rather than having to
280 query and accumulate results over all the (dynamically changing)
281 set of tasks in the cpuset.
283 A per-cpuset simple digital filter (requires a spinlock and 3 words
284 of data per-cpuset) is kept, and updated by any task attached to that
285 cpuset, if it enters the synchronous (direct) page reclaim code.
287 A per-cpuset file provides an integer number representing the recent
288 (half-life of 10 seconds) rate of direct page reclaims caused by
289 the tasks in the cpuset, in units of reclaims attempted per second,
293 1.6 What is memory spread ?
294 ---------------------------
295 There are two boolean flag files per cpuset that control where the
296 kernel allocates pages for the file system buffers and related in
297 kernel data structures. They are called 'memory_spread_page' and
298 'memory_spread_slab'.
300 If the per-cpuset boolean flag file 'memory_spread_page' is set, then
301 the kernel will spread the file system buffers (page cache) evenly
302 over all the nodes that the faulting task is allowed to use, instead
303 of preferring to put those pages on the node where the task is running.
305 If the per-cpuset boolean flag file 'memory_spread_slab' is set,
306 then the kernel will spread some file system related slab caches,
307 such as for inodes and dentries evenly over all the nodes that the
308 faulting task is allowed to use, instead of preferring to put those
309 pages on the node where the task is running.
311 The setting of these flags does not affect anonymous data segment or
312 stack segment pages of a task.
314 By default, both kinds of memory spreading are off, and memory
315 pages are allocated on the node local to where the task is running,
316 except perhaps as modified by the tasks NUMA mempolicy or cpuset
317 configuration, so long as sufficient free memory pages are available.
319 When new cpusets are created, they inherit the memory spread settings
322 Setting memory spreading causes allocations for the affected page
323 or slab caches to ignore the tasks NUMA mempolicy and be spread
324 instead. Tasks using mbind() or set_mempolicy() calls to set NUMA
325 mempolicies will not notice any change in these calls as a result of
326 their containing tasks memory spread settings. If memory spreading
327 is turned off, then the currently specified NUMA mempolicy once again
328 applies to memory page allocations.
330 Both 'memory_spread_page' and 'memory_spread_slab' are boolean flag
331 files. By default they contain "0", meaning that the feature is off
332 for that cpuset. If a "1" is written to that file, then that turns
333 the named feature on.
335 The implementation is simple.
337 Setting the flag 'memory_spread_page' turns on a per-process flag
338 PF_SPREAD_PAGE for each task that is in that cpuset or subsequently
339 joins that cpuset. The page allocation calls for the page cache
340 is modified to perform an inline check for this PF_SPREAD_PAGE task
341 flag, and if set, a call to a new routine cpuset_mem_spread_node()
342 returns the node to prefer for the allocation.
344 Similarly, setting 'memory_spread_cache' turns on the flag
345 PF_SPREAD_SLAB, and appropriately marked slab caches will allocate
346 pages from the node returned by cpuset_mem_spread_node().
348 The cpuset_mem_spread_node() routine is also simple. It uses the
349 value of a per-task rotor cpuset_mem_spread_rotor to select the next
350 node in the current tasks mems_allowed to prefer for the allocation.
352 This memory placement policy is also known (in other contexts) as
353 round-robin or interleave.
355 This policy can provide substantial improvements for jobs that need
356 to place thread local data on the corresponding node, but that need
357 to access large file system data sets that need to be spread across
358 the several nodes in the jobs cpuset in order to fit. Without this
359 policy, especially for jobs that might have one thread reading in the
360 data set, the memory allocation across the nodes in the jobs cpuset
361 can become very uneven.
363 1.7 What is sched_load_balance ?
364 --------------------------------
366 The kernel scheduler (kernel/sched.c) automatically load balances
367 tasks. If one CPU is underutilized, kernel code running on that
368 CPU will look for tasks on other more overloaded CPUs and move those
369 tasks to itself, within the constraints of such placement mechanisms
370 as cpusets and sched_setaffinity.
372 The algorithmic cost of load balancing and its impact on key shared
373 kernel data structures such as the task list increases more than
374 linearly with the number of CPUs being balanced. So the scheduler
375 has support to partition the systems CPUs into a number of sched
376 domains such that it only load balances within each sched domain.
377 Each sched domain covers some subset of the CPUs in the system;
378 no two sched domains overlap; some CPUs might not be in any sched
379 domain and hence won't be load balanced.
381 Put simply, it costs less to balance between two smaller sched domains
382 than one big one, but doing so means that overloads in one of the
383 two domains won't be load balanced to the other one.
385 By default, there is one sched domain covering all CPUs, except those
386 marked isolated using the kernel boot time "isolcpus=" argument.
388 This default load balancing across all CPUs is not well suited for
389 the following two situations:
390 1) On large systems, load balancing across many CPUs is expensive.
391 If the system is managed using cpusets to place independent jobs
392 on separate sets of CPUs, full load balancing is unnecessary.
393 2) Systems supporting realtime on some CPUs need to minimize
394 system overhead on those CPUs, including avoiding task load
395 balancing if that is not needed.
397 When the per-cpuset flag "sched_load_balance" is enabled (the default
398 setting), it requests that all the CPUs in that cpusets allowed 'cpus'
399 be contained in a single sched domain, ensuring that load balancing
400 can move a task (not otherwised pinned, as by sched_setaffinity)
401 from any CPU in that cpuset to any other.
403 When the per-cpuset flag "sched_load_balance" is disabled, then the
404 scheduler will avoid load balancing across the CPUs in that cpuset,
405 --except-- in so far as is necessary because some overlapping cpuset
406 has "sched_load_balance" enabled.
408 So, for example, if the top cpuset has the flag "sched_load_balance"
409 enabled, then the scheduler will have one sched domain covering all
410 CPUs, and the setting of the "sched_load_balance" flag in any other
411 cpusets won't matter, as we're already fully load balancing.
413 Therefore in the above two situations, the top cpuset flag
414 "sched_load_balance" should be disabled, and only some of the smaller,
415 child cpusets have this flag enabled.
417 When doing this, you don't usually want to leave any unpinned tasks in
418 the top cpuset that might use non-trivial amounts of CPU, as such tasks
419 may be artificially constrained to some subset of CPUs, depending on
420 the particulars of this flag setting in descendent cpusets. Even if
421 such a task could use spare CPU cycles in some other CPUs, the kernel
422 scheduler might not consider the possibility of load balancing that
423 task to that underused CPU.
425 Of course, tasks pinned to a particular CPU can be left in a cpuset
426 that disables "sched_load_balance" as those tasks aren't going anywhere
429 There is an impedance mismatch here, between cpusets and sched domains.
430 Cpusets are hierarchical and nest. Sched domains are flat; they don't
431 overlap and each CPU is in at most one sched domain.
433 It is necessary for sched domains to be flat because load balancing
434 across partially overlapping sets of CPUs would risk unstable dynamics
435 that would be beyond our understanding. So if each of two partially
436 overlapping cpusets enables the flag 'sched_load_balance', then we
437 form a single sched domain that is a superset of both. We won't move
438 a task to a CPU outside it cpuset, but the scheduler load balancing
439 code might waste some compute cycles considering that possibility.
441 This mismatch is why there is not a simple one-to-one relation
442 between which cpusets have the flag "sched_load_balance" enabled,
443 and the sched domain configuration. If a cpuset enables the flag, it
444 will get balancing across all its CPUs, but if it disables the flag,
445 it will only be assured of no load balancing if no other overlapping
446 cpuset enables the flag.
448 If two cpusets have partially overlapping 'cpus' allowed, and only
449 one of them has this flag enabled, then the other may find its
450 tasks only partially load balanced, just on the overlapping CPUs.
451 This is just the general case of the top_cpuset example given a few
452 paragraphs above. In the general case, as in the top cpuset case,
453 don't leave tasks that might use non-trivial amounts of CPU in
454 such partially load balanced cpusets, as they may be artificially
455 constrained to some subset of the CPUs allowed to them, for lack of
456 load balancing to the other CPUs.
458 1.7.1 sched_load_balance implementation details.
459 ------------------------------------------------
461 The per-cpuset flag 'sched_load_balance' defaults to enabled (contrary
462 to most cpuset flags.) When enabled for a cpuset, the kernel will
463 ensure that it can load balance across all the CPUs in that cpuset
464 (makes sure that all the CPUs in the cpus_allowed of that cpuset are
465 in the same sched domain.)
467 If two overlapping cpusets both have 'sched_load_balance' enabled,
468 then they will be (must be) both in the same sched domain.
470 If, as is the default, the top cpuset has 'sched_load_balance' enabled,
471 then by the above that means there is a single sched domain covering
472 the whole system, regardless of any other cpuset settings.
474 The kernel commits to user space that it will avoid load balancing
475 where it can. It will pick as fine a granularity partition of sched
476 domains as it can while still providing load balancing for any set
477 of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
479 The internal kernel cpuset to scheduler interface passes from the
480 cpuset code to the scheduler code a partition of the load balanced
481 CPUs in the system. This partition is a set of subsets (represented
482 as an array of cpumask_t) of CPUs, pairwise disjoint, that cover all
483 the CPUs that must be load balanced.
485 Whenever the 'sched_load_balance' flag changes, or CPUs come or go
486 from a cpuset with this flag enabled, or a cpuset with this flag
487 enabled is removed, the cpuset code builds a new such partition and
488 passes it to the scheduler sched domain setup code, to have the sched
489 domains rebuilt as necessary.
491 This partition exactly defines what sched domains the scheduler should
492 setup - one sched domain for each element (cpumask_t) in the partition.
494 The scheduler remembers the currently active sched domain partitions.
495 When the scheduler routine partition_sched_domains() is invoked from
496 the cpuset code to update these sched domains, it compares the new
497 partition requested with the current, and updates its sched domains,
498 removing the old and adding the new, for each change.
500 1.8 How do I use cpusets ?
501 --------------------------
503 In order to minimize the impact of cpusets on critical kernel
504 code, such as the scheduler, and due to the fact that the kernel
505 does not support one task updating the memory placement of another
506 task directly, the impact on a task of changing its cpuset CPU
507 or Memory Node placement, or of changing to which cpuset a task
508 is attached, is subtle.
510 If a cpuset has its Memory Nodes modified, then for each task attached
511 to that cpuset, the next time that the kernel attempts to allocate
512 a page of memory for that task, the kernel will notice the change
513 in the tasks cpuset, and update its per-task memory placement to
514 remain within the new cpusets memory placement. If the task was using
515 mempolicy MPOL_BIND, and the nodes to which it was bound overlap with
516 its new cpuset, then the task will continue to use whatever subset
517 of MPOL_BIND nodes are still allowed in the new cpuset. If the task
518 was using MPOL_BIND and now none of its MPOL_BIND nodes are allowed
519 in the new cpuset, then the task will be essentially treated as if it
520 was MPOL_BIND bound to the new cpuset (even though its numa placement,
521 as queried by get_mempolicy(), doesn't change). If a task is moved
522 from one cpuset to another, then the kernel will adjust the tasks
523 memory placement, as above, the next time that the kernel attempts
524 to allocate a page of memory for that task.
526 If a cpuset has its CPUs modified, then each task using that
527 cpuset does _not_ change its behavior automatically. In order to
528 minimize the impact on the critical scheduling code in the kernel,
529 tasks will continue to use their prior CPU placement until they
530 are rebound to their cpuset, by rewriting their pid to the 'tasks'
531 file of their cpuset. If a task had been bound to some subset of its
532 cpuset using the sched_setaffinity() call, and if any of that subset
533 is still allowed in its new cpuset settings, then the task will be
534 restricted to the intersection of the CPUs it was allowed on before,
535 and its new cpuset CPU placement. If, on the other hand, there is
536 no overlap between a tasks prior placement and its new cpuset CPU
537 placement, then the task will be allowed to run on any CPU allowed
538 in its new cpuset. If a task is moved from one cpuset to another,
539 its CPU placement is updated in the same way as if the tasks pid is
540 rewritten to the 'tasks' file of its current cpuset.
542 In summary, the memory placement of a task whose cpuset is changed is
543 updated by the kernel, on the next allocation of a page for that task,
544 but the processor placement is not updated, until that tasks pid is
545 rewritten to the 'tasks' file of its cpuset. This is done to avoid
546 impacting the scheduler code in the kernel with a check for changes
547 in a tasks processor placement.
549 Normally, once a page is allocated (given a physical page
550 of main memory) then that page stays on whatever node it
551 was allocated, so long as it remains allocated, even if the
552 cpusets memory placement policy 'mems' subsequently changes.
553 If the cpuset flag file 'memory_migrate' is set true, then when
554 tasks are attached to that cpuset, any pages that task had
555 allocated to it on nodes in its previous cpuset are migrated
556 to the tasks new cpuset. The relative placement of the page within
557 the cpuset is preserved during these migration operations if possible.
558 For example if the page was on the second valid node of the prior cpuset
559 then the page will be placed on the second valid node of the new cpuset.
561 Also if 'memory_migrate' is set true, then if that cpusets
562 'mems' file is modified, pages allocated to tasks in that
563 cpuset, that were on nodes in the previous setting of 'mems',
564 will be moved to nodes in the new setting of 'mems.'
565 Pages that were not in the tasks prior cpuset, or in the cpusets
566 prior 'mems' setting, will not be moved.
568 There is an exception to the above. If hotplug functionality is used
569 to remove all the CPUs that are currently assigned to a cpuset,
570 then the kernel will automatically update the cpus_allowed of all
571 tasks attached to CPUs in that cpuset to allow all CPUs. When memory
572 hotplug functionality for removing Memory Nodes is available, a
573 similar exception is expected to apply there as well. In general,
574 the kernel prefers to violate cpuset placement, over starving a task
575 that has had all its allowed CPUs or Memory Nodes taken offline. User
576 code should reconfigure cpusets to only refer to online CPUs and Memory
577 Nodes when using hotplug to add or remove such resources.
579 There is a second exception to the above. GFP_ATOMIC requests are
580 kernel internal allocations that must be satisfied, immediately.
581 The kernel may drop some request, in rare cases even panic, if a
582 GFP_ATOMIC alloc fails. If the request cannot be satisfied within
583 the current tasks cpuset, then we relax the cpuset, and look for
584 memory anywhere we can find it. It's better to violate the cpuset
585 than stress the kernel.
587 To start a new job that is to be contained within a cpuset, the steps are:
590 2) mount -t cgroup -ocpuset cpuset /dev/cpuset
591 3) Create the new cpuset by doing mkdir's and write's (or echo's) in
592 the /dev/cpuset virtual file system.
593 4) Start a task that will be the "founding father" of the new job.
594 5) Attach that task to the new cpuset by writing its pid to the
595 /dev/cpuset tasks file for that cpuset.
596 6) fork, exec or clone the job tasks from this founding father task.
598 For example, the following sequence of commands will setup a cpuset
599 named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
600 and then start a subshell 'sh' in that cpuset:
602 mount -t cgroup -ocpuset cpuset /dev/cpuset
610 # The subshell 'sh' is now running in cpuset Charlie
611 # The next line should display '/Charlie'
612 cat /proc/self/cpuset
614 In the future, a C library interface to cpusets will likely be
615 available. For now, the only way to query or modify cpusets is
616 via the cpuset file system, using the various cd, mkdir, echo, cat,
617 rmdir commands from the shell, or their equivalent from C.
619 The sched_setaffinity calls can also be done at the shell prompt using
620 SGI's runon or Robert Love's taskset. The mbind and set_mempolicy
621 calls can be done at the shell prompt using the numactl command
622 (part of Andi Kleen's numa package).
624 2. Usage Examples and Syntax
625 ============================
630 Creating, modifying, using the cpusets can be done through the cpuset
634 # mount -t cgroup -o cpuset cpuset /dev/cpuset
636 Then under /dev/cpuset you can find a tree that corresponds to the
637 tree of the cpusets in the system. For instance, /dev/cpuset
638 is the cpuset that holds the whole system.
640 If you want to create a new cpuset under /dev/cpuset:
644 Now you want to do something with this cpuset.
647 In this directory you can find several files:
649 cpus cpu_exclusive mems mem_exclusive tasks
651 Reading them will give you information about the state of this cpuset:
652 the CPUs and Memory Nodes it can use, the processes that are using
653 it, its properties. By writing to these files you can manipulate
657 # /bin/echo 1 > cpu_exclusive
660 # /bin/echo 0-7 > cpus
663 # /bin/echo 0-7 > mems
665 Now attach your shell to this cpuset:
666 # /bin/echo $$ > tasks
668 You can also create cpusets inside your cpuset by using mkdir in this
672 To remove a cpuset, just use rmdir:
674 This will fail if the cpuset is in use (has cpusets inside, or has
677 Note that for legacy reasons, the "cpuset" filesystem exists as a
678 wrapper around the cgroup filesystem.
682 mount -t cpuset X /dev/cpuset
686 mount -t cgroup -ocpuset X /dev/cpuset
687 echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent
689 2.2 Adding/removing cpus
690 ------------------------
692 This is the syntax to use when writing in the cpus or mems files
693 in cpuset directories:
695 # /bin/echo 1-4 > cpus -> set cpus list to cpus 1,2,3,4
696 # /bin/echo 1,2,3,4 > cpus -> set cpus list to cpus 1,2,3,4
701 The syntax is very simple:
703 # /bin/echo 1 > cpu_exclusive -> set flag 'cpu_exclusive'
704 # /bin/echo 0 > cpu_exclusive -> unset flag 'cpu_exclusive'
706 2.4 Attaching processes
707 -----------------------
709 # /bin/echo PID > tasks
711 Note that it is PID, not PIDs. You can only attach ONE task at a time.
712 If you have several tasks to attach, you have to do it one after another:
714 # /bin/echo PID1 > tasks
715 # /bin/echo PID2 > tasks
717 # /bin/echo PIDn > tasks
723 Q: what's up with this '/bin/echo' ?
724 A: bash's builtin 'echo' command does not check calls to write() against
725 errors. If you use it in the cpuset file system, you won't be
726 able to tell whether a command succeeded or failed.
728 Q: When I attach processes, only the first of the line gets really attached !
729 A: We can only return one error code per call to write(). So you should also
735 Web: http://www.bullopensource.org/cpuset