2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
25 * The current flushing context - we pass it instead of 5 arguments:
34 unsigned force_split : 1;
38 static unsigned long direct_pages_count[PG_LEVEL_NUM];
40 void update_page_count(int level, unsigned long pages)
44 /* Protect against CPA */
45 spin_lock_irqsave(&pgd_lock, flags);
46 direct_pages_count[level] += pages;
47 spin_unlock_irqrestore(&pgd_lock, flags);
50 static void split_page_count(int level)
52 direct_pages_count[level]--;
53 direct_pages_count[level - 1] += PTRS_PER_PTE;
56 int arch_report_meminfo(char *page)
58 int n = sprintf(page, "DirectMap4k: %8lu\n"
59 "DirectMap2M: %8lu\n",
60 direct_pages_count[PG_LEVEL_4K],
61 direct_pages_count[PG_LEVEL_2M]);
63 n += sprintf(page + n, "DirectMap1G: %8lu\n",
64 direct_pages_count[PG_LEVEL_1G]);
69 static inline void split_page_count(int level) { }
74 static inline unsigned long highmap_start_pfn(void)
76 return __pa(_text) >> PAGE_SHIFT;
79 static inline unsigned long highmap_end_pfn(void)
81 return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
86 #ifdef CONFIG_DEBUG_PAGEALLOC
87 # define debug_pagealloc 1
89 # define debug_pagealloc 0
93 within(unsigned long addr, unsigned long start, unsigned long end)
95 return addr >= start && addr < end;
103 * clflush_cache_range - flush a cache range with clflush
104 * @addr: virtual start address
105 * @size: number of bytes to flush
107 * clflush is an unordered instruction which needs fencing with mfence
108 * to avoid ordering issues.
110 void clflush_cache_range(void *vaddr, unsigned int size)
112 void *vend = vaddr + size - 1;
116 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
119 * Flush any possible final partial cacheline:
126 static void __cpa_flush_all(void *arg)
128 unsigned long cache = (unsigned long)arg;
131 * Flush all to work around Errata in early athlons regarding
132 * large page flushing.
136 if (cache && boot_cpu_data.x86_model >= 4)
140 static void cpa_flush_all(unsigned long cache)
142 BUG_ON(irqs_disabled());
144 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
147 static void __cpa_flush_range(void *arg)
150 * We could optimize that further and do individual per page
151 * tlb invalidates for a low number of pages. Caveat: we must
152 * flush the high aliases on 64bit as well.
157 static void cpa_flush_range(unsigned long start, int numpages, int cache)
159 unsigned int i, level;
162 BUG_ON(irqs_disabled());
163 WARN_ON(PAGE_ALIGN(start) != start);
165 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
171 * We only need to flush on one CPU,
172 * clflush is a MESI-coherent instruction that
173 * will cause all other CPUs to flush the same
176 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
177 pte_t *pte = lookup_address(addr, &level);
180 * Only flush present addresses:
182 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
183 clflush_cache_range((void *) addr, PAGE_SIZE);
188 * Certain areas of memory on x86 require very specific protection flags,
189 * for example the BIOS area or kernel text. Callers don't always get this
190 * right (again, ioremap() on BIOS memory is not uncommon) so this function
191 * checks and fixes these known static required protection bits.
193 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
196 pgprot_t forbidden = __pgprot(0);
199 * The BIOS area between 640k and 1Mb needs to be executable for
200 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
202 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
203 pgprot_val(forbidden) |= _PAGE_NX;
206 * The kernel text needs to be executable for obvious reasons
207 * Does not cover __inittext since that is gone later on. On
208 * 64bit we do not enforce !NX on the low mapping
210 if (within(address, (unsigned long)_text, (unsigned long)_etext))
211 pgprot_val(forbidden) |= _PAGE_NX;
214 * The .rodata section needs to be read-only. Using the pfn
215 * catches all aliases.
217 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
218 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
219 pgprot_val(forbidden) |= _PAGE_RW;
221 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
227 * Lookup the page table entry for a virtual address. Return a pointer
228 * to the entry and the level of the mapping.
230 * Note: We return pud and pmd either when the entry is marked large
231 * or when the present bit is not set. Otherwise we would return a
232 * pointer to a nonexisting mapping.
234 pte_t *lookup_address(unsigned long address, unsigned int *level)
236 pgd_t *pgd = pgd_offset_k(address);
240 *level = PG_LEVEL_NONE;
245 pud = pud_offset(pgd, address);
249 *level = PG_LEVEL_1G;
250 if (pud_large(*pud) || !pud_present(*pud))
253 pmd = pmd_offset(pud, address);
257 *level = PG_LEVEL_2M;
258 if (pmd_large(*pmd) || !pmd_present(*pmd))
261 *level = PG_LEVEL_4K;
263 return pte_offset_kernel(pmd, address);
267 * Set the new pmd in all the pgds we know about:
269 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
272 set_pte_atomic(kpte, pte);
274 if (!SHARED_KERNEL_PMD) {
277 list_for_each_entry(page, &pgd_list, lru) {
282 pgd = (pgd_t *)page_address(page) + pgd_index(address);
283 pud = pud_offset(pgd, address);
284 pmd = pmd_offset(pud, address);
285 set_pte_atomic((pte_t *)pmd, pte);
292 try_preserve_large_page(pte_t *kpte, unsigned long address,
293 struct cpa_data *cpa)
295 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
296 pte_t new_pte, old_pte, *tmp;
297 pgprot_t old_prot, new_prot;
301 if (cpa->force_split)
304 spin_lock_irqsave(&pgd_lock, flags);
306 * Check for races, another CPU might have split this page
309 tmp = lookup_address(address, &level);
315 psize = PMD_PAGE_SIZE;
316 pmask = PMD_PAGE_MASK;
320 psize = PUD_PAGE_SIZE;
321 pmask = PUD_PAGE_MASK;
330 * Calculate the number of pages, which fit into this large
331 * page starting at address:
333 nextpage_addr = (address + psize) & pmask;
334 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
335 if (numpages < cpa->numpages)
336 cpa->numpages = numpages;
339 * We are safe now. Check whether the new pgprot is the same:
342 old_prot = new_prot = pte_pgprot(old_pte);
344 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
345 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
348 * old_pte points to the large page base address. So we need
349 * to add the offset of the virtual address:
351 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
354 new_prot = static_protections(new_prot, address, pfn);
357 * We need to check the full range, whether
358 * static_protection() requires a different pgprot for one of
359 * the pages in the range we try to preserve:
361 addr = address + PAGE_SIZE;
363 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
364 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
366 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
371 * If there are no changes, return. maxpages has been updated
374 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
380 * We need to change the attributes. Check, whether we can
381 * change the large page in one go. We request a split, when
382 * the address is not aligned and the number of pages is
383 * smaller than the number of pages in the large page. Note
384 * that we limited the number of possible pages already to
385 * the number of pages in the large page.
387 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
389 * The address is aligned and the number of pages
390 * covers the full page.
392 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
393 __set_pmd_pte(kpte, address, new_pte);
399 spin_unlock_irqrestore(&pgd_lock, flags);
404 static LIST_HEAD(page_pool);
405 static unsigned long pool_size, pool_pages, pool_low;
406 static unsigned long pool_used, pool_failed;
408 static void cpa_fill_pool(struct page **ret)
410 gfp_t gfp = GFP_KERNEL;
415 * Avoid recursion (on debug-pagealloc) and also signal
416 * our priority to get to these pagetables:
418 if (current->flags & PF_MEMALLOC)
420 current->flags |= PF_MEMALLOC;
423 * Allocate atomically from atomic contexts:
425 if (in_atomic() || irqs_disabled() || debug_pagealloc)
426 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
428 while (pool_pages < pool_size || (ret && !*ret)) {
429 p = alloc_pages(gfp, 0);
435 * If the call site needs a page right now, provide it:
441 spin_lock_irqsave(&pgd_lock, flags);
442 list_add(&p->lru, &page_pool);
444 spin_unlock_irqrestore(&pgd_lock, flags);
447 current->flags &= ~PF_MEMALLOC;
450 #define SHIFT_MB (20 - PAGE_SHIFT)
451 #define ROUND_MB_GB ((1 << 10) - 1)
452 #define SHIFT_MB_GB 10
453 #define POOL_PAGES_PER_GB 16
455 void __init cpa_init(void)
462 * Calculate the number of pool pages:
464 * Convert totalram (nr of pages) to MiB and round to the next
465 * GiB. Shift MiB to Gib and multiply the result by
468 if (debug_pagealloc) {
469 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
470 pool_size = POOL_PAGES_PER_GB * gb;
474 pool_low = pool_size;
478 "CPA: page pool initialized %lu of %lu pages preallocated\n",
479 pool_pages, pool_size);
482 static int split_large_page(pte_t *kpte, unsigned long address)
484 unsigned long flags, pfn, pfninc = 1;
485 unsigned int i, level;
491 * Get a page from the pool. The pool list is protected by the
492 * pgd_lock, which we have to take anyway for the split
495 spin_lock_irqsave(&pgd_lock, flags);
496 if (list_empty(&page_pool)) {
497 spin_unlock_irqrestore(&pgd_lock, flags);
499 cpa_fill_pool(&base);
502 spin_lock_irqsave(&pgd_lock, flags);
504 base = list_first_entry(&page_pool, struct page, lru);
505 list_del(&base->lru);
508 if (pool_pages < pool_low)
509 pool_low = pool_pages;
513 * Check for races, another CPU might have split this page
516 tmp = lookup_address(address, &level);
520 pbase = (pte_t *)page_address(base);
521 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
522 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
525 if (level == PG_LEVEL_1G) {
526 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
527 pgprot_val(ref_prot) |= _PAGE_PSE;
532 * Get the target pfn from the original entry:
534 pfn = pte_pfn(*kpte);
535 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
536 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
538 if (address >= (unsigned long)__va(0) &&
539 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
540 split_page_count(level);
543 * Install the new, split up pagetable. Important details here:
545 * On Intel the NX bit of all levels must be cleared to make a
546 * page executable. See section 4.13.2 of Intel 64 and IA-32
547 * Architectures Software Developer's Manual).
549 * Mark the entry present. The current mapping might be
550 * set to not present, which we preserved above.
552 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
553 pgprot_val(ref_prot) |= _PAGE_PRESENT;
554 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
559 * If we dropped out via the lookup_address check under
560 * pgd_lock then stick the page back into the pool:
563 list_add(&base->lru, &page_pool);
567 spin_unlock_irqrestore(&pgd_lock, flags);
572 static int __change_page_attr(struct cpa_data *cpa, int primary)
574 unsigned long address = cpa->vaddr;
577 pte_t *kpte, old_pte;
580 kpte = lookup_address(address, &level);
585 if (!pte_val(old_pte)) {
588 printk(KERN_WARNING "CPA: called for zero pte. "
589 "vaddr = %lx cpa->vaddr = %lx\n", address,
595 if (level == PG_LEVEL_4K) {
597 pgprot_t new_prot = pte_pgprot(old_pte);
598 unsigned long pfn = pte_pfn(old_pte);
600 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
601 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
603 new_prot = static_protections(new_prot, address, pfn);
606 * We need to keep the pfn from the existing PTE,
607 * after all we're only going to change it's attributes
608 * not the memory it points to
610 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
613 * Do we really change anything ?
615 if (pte_val(old_pte) != pte_val(new_pte)) {
616 set_pte_atomic(kpte, new_pte);
624 * Check, whether we can keep the large page intact
625 * and just change the pte:
627 do_split = try_preserve_large_page(kpte, address, cpa);
629 * When the range fits into the existing large page,
630 * return. cp->numpages and cpa->tlbflush have been updated in
637 * We have to split the large page:
639 err = split_large_page(kpte, address);
648 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
650 static int cpa_process_alias(struct cpa_data *cpa)
652 struct cpa_data alias_cpa;
655 if (cpa->pfn > max_pfn_mapped)
659 * No need to redo, when the primary call touched the direct
662 if (!within(cpa->vaddr, PAGE_OFFSET,
663 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
666 alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
668 ret = __change_page_attr_set_clr(&alias_cpa, 0);
675 * No need to redo, when the primary call touched the high
678 if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
682 * If the physical address is inside the kernel map, we need
683 * to touch the high mapped kernel as well:
685 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
690 (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
693 * The high mapping range is imprecise, so ignore the return value.
695 __change_page_attr_set_clr(&alias_cpa, 0);
700 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
702 int ret, numpages = cpa->numpages;
706 * Store the remaining nr of pages for the large page
707 * preservation check.
709 cpa->numpages = numpages;
711 ret = __change_page_attr(cpa, checkalias);
716 ret = cpa_process_alias(cpa);
722 * Adjust the number of pages with the result of the
723 * CPA operation. Either a large page has been
724 * preserved or a single page update happened.
726 BUG_ON(cpa->numpages > numpages);
727 numpages -= cpa->numpages;
728 cpa->vaddr += cpa->numpages * PAGE_SIZE;
733 static inline int cache_attr(pgprot_t attr)
735 return pgprot_val(attr) &
736 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
739 static int change_page_attr_set_clr(unsigned long addr, int numpages,
740 pgprot_t mask_set, pgprot_t mask_clr,
744 int ret, cache, checkalias;
747 * Check, if we are requested to change a not supported
750 mask_set = canon_pgprot(mask_set);
751 mask_clr = canon_pgprot(mask_clr);
752 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
755 /* Ensure we are PAGE_SIZE aligned */
756 if (addr & ~PAGE_MASK) {
759 * People should not be passing in unaligned addresses:
765 cpa.numpages = numpages;
766 cpa.mask_set = mask_set;
767 cpa.mask_clr = mask_clr;
769 cpa.force_split = force_split;
771 /* No alias checking for _NX bit modifications */
772 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
774 ret = __change_page_attr_set_clr(&cpa, checkalias);
777 * Check whether we really changed something:
783 * No need to flush, when we did not set any of the caching
786 cache = cache_attr(mask_set);
789 * On success we use clflush, when the CPU supports it to
790 * avoid the wbindv. If the CPU does not support it and in the
791 * error case we fall back to cpa_flush_all (which uses
794 if (!ret && cpu_has_clflush)
795 cpa_flush_range(addr, numpages, cache);
797 cpa_flush_all(cache);
805 static inline int change_page_attr_set(unsigned long addr, int numpages,
808 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0);
811 static inline int change_page_attr_clear(unsigned long addr, int numpages,
814 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0);
817 int _set_memory_uc(unsigned long addr, int numpages)
820 * for now UC MINUS. see comments in ioremap_nocache()
822 return change_page_attr_set(addr, numpages,
823 __pgprot(_PAGE_CACHE_UC_MINUS));
826 int set_memory_uc(unsigned long addr, int numpages)
829 * for now UC MINUS. see comments in ioremap_nocache()
831 if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
832 _PAGE_CACHE_UC_MINUS, NULL))
835 return _set_memory_uc(addr, numpages);
837 EXPORT_SYMBOL(set_memory_uc);
839 int _set_memory_wc(unsigned long addr, int numpages)
841 return change_page_attr_set(addr, numpages,
842 __pgprot(_PAGE_CACHE_WC));
845 int set_memory_wc(unsigned long addr, int numpages)
848 return set_memory_uc(addr, numpages);
850 if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
851 _PAGE_CACHE_WC, NULL))
854 return _set_memory_wc(addr, numpages);
856 EXPORT_SYMBOL(set_memory_wc);
858 int _set_memory_wb(unsigned long addr, int numpages)
860 return change_page_attr_clear(addr, numpages,
861 __pgprot(_PAGE_CACHE_MASK));
864 int set_memory_wb(unsigned long addr, int numpages)
866 free_memtype(addr, addr + numpages * PAGE_SIZE);
868 return _set_memory_wb(addr, numpages);
870 EXPORT_SYMBOL(set_memory_wb);
872 int set_memory_x(unsigned long addr, int numpages)
874 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
876 EXPORT_SYMBOL(set_memory_x);
878 int set_memory_nx(unsigned long addr, int numpages)
880 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
882 EXPORT_SYMBOL(set_memory_nx);
884 int set_memory_ro(unsigned long addr, int numpages)
886 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
889 int set_memory_rw(unsigned long addr, int numpages)
891 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
894 int set_memory_np(unsigned long addr, int numpages)
896 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
899 int set_memory_4k(unsigned long addr, int numpages)
901 return change_page_attr_set_clr(addr, numpages, __pgprot(0),
905 int set_pages_uc(struct page *page, int numpages)
907 unsigned long addr = (unsigned long)page_address(page);
909 return set_memory_uc(addr, numpages);
911 EXPORT_SYMBOL(set_pages_uc);
913 int set_pages_wb(struct page *page, int numpages)
915 unsigned long addr = (unsigned long)page_address(page);
917 return set_memory_wb(addr, numpages);
919 EXPORT_SYMBOL(set_pages_wb);
921 int set_pages_x(struct page *page, int numpages)
923 unsigned long addr = (unsigned long)page_address(page);
925 return set_memory_x(addr, numpages);
927 EXPORT_SYMBOL(set_pages_x);
929 int set_pages_nx(struct page *page, int numpages)
931 unsigned long addr = (unsigned long)page_address(page);
933 return set_memory_nx(addr, numpages);
935 EXPORT_SYMBOL(set_pages_nx);
937 int set_pages_ro(struct page *page, int numpages)
939 unsigned long addr = (unsigned long)page_address(page);
941 return set_memory_ro(addr, numpages);
944 int set_pages_rw(struct page *page, int numpages)
946 unsigned long addr = (unsigned long)page_address(page);
948 return set_memory_rw(addr, numpages);
951 #ifdef CONFIG_DEBUG_PAGEALLOC
953 static int __set_pages_p(struct page *page, int numpages)
955 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
956 .numpages = numpages,
957 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
958 .mask_clr = __pgprot(0)};
960 return __change_page_attr_set_clr(&cpa, 1);
963 static int __set_pages_np(struct page *page, int numpages)
965 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
966 .numpages = numpages,
967 .mask_set = __pgprot(0),
968 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
970 return __change_page_attr_set_clr(&cpa, 1);
973 void kernel_map_pages(struct page *page, int numpages, int enable)
975 if (PageHighMem(page))
978 debug_check_no_locks_freed(page_address(page),
979 numpages * PAGE_SIZE);
983 * If page allocator is not up yet then do not call c_p_a():
985 if (!debug_pagealloc_enabled)
989 * The return value is ignored as the calls cannot fail.
990 * Large pages are kept enabled at boot time, and are
991 * split up quickly with DEBUG_PAGEALLOC. If a splitup
992 * fails here (due to temporary memory shortage) no damage
993 * is done because we just keep the largepage intact up
994 * to the next attempt when it will likely be split up:
997 __set_pages_p(page, numpages);
999 __set_pages_np(page, numpages);
1002 * We should perform an IPI and flush all tlbs,
1003 * but that can deadlock->flush only current cpu:
1008 * Try to refill the page pool here. We can do this only after
1011 cpa_fill_pool(NULL);
1014 #ifdef CONFIG_DEBUG_FS
1015 static int dpa_show(struct seq_file *m, void *v)
1017 seq_puts(m, "DEBUG_PAGEALLOC\n");
1018 seq_printf(m, "pool_size : %lu\n", pool_size);
1019 seq_printf(m, "pool_pages : %lu\n", pool_pages);
1020 seq_printf(m, "pool_low : %lu\n", pool_low);
1021 seq_printf(m, "pool_used : %lu\n", pool_used);
1022 seq_printf(m, "pool_failed : %lu\n", pool_failed);
1027 static int dpa_open(struct inode *inode, struct file *filp)
1029 return single_open(filp, dpa_show, NULL);
1032 static const struct file_operations dpa_fops = {
1035 .llseek = seq_lseek,
1036 .release = single_release,
1039 static int __init debug_pagealloc_proc_init(void)
1043 de = debugfs_create_file("debug_pagealloc", 0600, NULL, NULL,
1050 __initcall(debug_pagealloc_proc_init);
1053 #ifdef CONFIG_HIBERNATION
1055 bool kernel_page_present(struct page *page)
1060 if (PageHighMem(page))
1063 pte = lookup_address((unsigned long)page_address(page), &level);
1064 return (pte_val(*pte) & _PAGE_PRESENT);
1067 #endif /* CONFIG_HIBERNATION */
1069 #endif /* CONFIG_DEBUG_PAGEALLOC */
1072 * The testcases use internal knowledge of the implementation that shouldn't
1073 * be exposed to the rest of the kernel. Include these directly here.
1075 #ifdef CONFIG_CPA_DEBUG
1076 #include "pageattr-test.c"