2 * MTD device concatenation layer
4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
6 * NAND support by Christian Gan <cgan@iders.ca>
10 * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/concat.h>
23 * Our storage structure:
24 * Subdev points to an array of pointers to struct mtd_info objects
25 * which is allocated along with this structure
31 struct mtd_info **subdev;
35 * how to calculate the size required for the above structure,
36 * including the pointer array subdev points to:
38 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
39 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
42 * Given a pointer to the MTD object in the mtd_concat structure,
43 * we can retrieve the pointer to that structure with this macro.
45 #define CONCAT(x) ((struct mtd_concat *)(x))
48 * MTD methods which look up the relevant subdevice, translate the
49 * effective address and pass through to the subdevice.
53 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
54 size_t * retlen, u_char * buf)
56 struct mtd_concat *concat = CONCAT(mtd);
62 for (i = 0; i < concat->num_subdev; i++) {
63 struct mtd_info *subdev = concat->subdev[i];
66 if (from >= subdev->size) {
67 /* Not destined for this subdev */
72 if (from + len > subdev->size)
73 /* First part goes into this subdev */
74 size = subdev->size - from;
76 /* Entire transaction goes into this subdev */
79 err = subdev->read(subdev, from, size, &retsize, buf);
97 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
98 size_t * retlen, const u_char * buf)
100 struct mtd_concat *concat = CONCAT(mtd);
104 if (!(mtd->flags & MTD_WRITEABLE))
109 for (i = 0; i < concat->num_subdev; i++) {
110 struct mtd_info *subdev = concat->subdev[i];
111 size_t size, retsize;
113 if (to >= subdev->size) {
118 if (to + len > subdev->size)
119 size = subdev->size - to;
123 if (!(subdev->flags & MTD_WRITEABLE))
126 err = subdev->write(subdev, to, size, &retsize, buf);
144 concat_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
145 size_t * retlen, u_char * buf, u_char * eccbuf,
146 struct nand_oobinfo *oobsel)
148 struct mtd_concat *concat = CONCAT(mtd);
154 for (i = 0; i < concat->num_subdev; i++) {
155 struct mtd_info *subdev = concat->subdev[i];
156 size_t size, retsize;
158 if (from >= subdev->size) {
159 /* Not destined for this subdev */
161 from -= subdev->size;
165 if (from + len > subdev->size)
166 /* First part goes into this subdev */
167 size = subdev->size - from;
169 /* Entire transaction goes into this subdev */
172 if (subdev->read_ecc)
173 err = subdev->read_ecc(subdev, from, size,
174 &retsize, buf, eccbuf, oobsel);
189 eccbuf += subdev->oobsize;
190 /* in nand.c at least, eccbufs are
191 tagged with 2 (int)eccstatus'; we
192 must account for these */
193 eccbuf += 2 * (sizeof (int));
201 concat_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
202 size_t * retlen, const u_char * buf, u_char * eccbuf,
203 struct nand_oobinfo *oobsel)
205 struct mtd_concat *concat = CONCAT(mtd);
209 if (!(mtd->flags & MTD_WRITEABLE))
214 for (i = 0; i < concat->num_subdev; i++) {
215 struct mtd_info *subdev = concat->subdev[i];
216 size_t size, retsize;
218 if (to >= subdev->size) {
223 if (to + len > subdev->size)
224 size = subdev->size - to;
228 if (!(subdev->flags & MTD_WRITEABLE))
230 else if (subdev->write_ecc)
231 err = subdev->write_ecc(subdev, to, size,
232 &retsize, buf, eccbuf, oobsel);
247 eccbuf += subdev->oobsize;
254 concat_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
255 size_t * retlen, u_char * buf)
257 struct mtd_concat *concat = CONCAT(mtd);
263 for (i = 0; i < concat->num_subdev; i++) {
264 struct mtd_info *subdev = concat->subdev[i];
265 size_t size, retsize;
267 if (from >= subdev->size) {
268 /* Not destined for this subdev */
270 from -= subdev->size;
273 if (from + len > subdev->size)
274 /* First part goes into this subdev */
275 size = subdev->size - from;
277 /* Entire transaction goes into this subdev */
280 if (subdev->read_oob)
281 err = subdev->read_oob(subdev, from, size,
302 concat_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
303 size_t * retlen, const u_char * buf)
305 struct mtd_concat *concat = CONCAT(mtd);
309 if (!(mtd->flags & MTD_WRITEABLE))
314 for (i = 0; i < concat->num_subdev; i++) {
315 struct mtd_info *subdev = concat->subdev[i];
316 size_t size, retsize;
318 if (to >= subdev->size) {
323 if (to + len > subdev->size)
324 size = subdev->size - to;
328 if (!(subdev->flags & MTD_WRITEABLE))
330 else if (subdev->write_oob)
331 err = subdev->write_oob(subdev, to, size, &retsize,
351 static void concat_erase_callback(struct erase_info *instr)
353 wake_up((wait_queue_head_t *) instr->priv);
356 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
359 wait_queue_head_t waitq;
360 DECLARE_WAITQUEUE(wait, current);
363 * This code was stol^H^H^H^Hinspired by mtdchar.c
365 init_waitqueue_head(&waitq);
368 erase->callback = concat_erase_callback;
369 erase->priv = (unsigned long) &waitq;
372 * FIXME: Allow INTERRUPTIBLE. Which means
373 * not having the wait_queue head on the stack.
375 err = mtd->erase(mtd, erase);
377 set_current_state(TASK_UNINTERRUPTIBLE);
378 add_wait_queue(&waitq, &wait);
379 if (erase->state != MTD_ERASE_DONE
380 && erase->state != MTD_ERASE_FAILED)
382 remove_wait_queue(&waitq, &wait);
383 set_current_state(TASK_RUNNING);
385 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
390 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
392 struct mtd_concat *concat = CONCAT(mtd);
393 struct mtd_info *subdev;
395 u_int32_t length, offset = 0;
396 struct erase_info *erase;
398 if (!(mtd->flags & MTD_WRITEABLE))
401 if (instr->addr > concat->mtd.size)
404 if (instr->len + instr->addr > concat->mtd.size)
408 * Check for proper erase block alignment of the to-be-erased area.
409 * It is easier to do this based on the super device's erase
410 * region info rather than looking at each particular sub-device
413 if (!concat->mtd.numeraseregions) {
414 /* the easy case: device has uniform erase block size */
415 if (instr->addr & (concat->mtd.erasesize - 1))
417 if (instr->len & (concat->mtd.erasesize - 1))
420 /* device has variable erase size */
421 struct mtd_erase_region_info *erase_regions =
422 concat->mtd.eraseregions;
425 * Find the erase region where the to-be-erased area begins:
427 for (i = 0; i < concat->mtd.numeraseregions &&
428 instr->addr >= erase_regions[i].offset; i++) ;
432 * Now erase_regions[i] is the region in which the
433 * to-be-erased area begins. Verify that the starting
434 * offset is aligned to this region's erase size:
436 if (instr->addr & (erase_regions[i].erasesize - 1))
440 * now find the erase region where the to-be-erased area ends:
442 for (; i < concat->mtd.numeraseregions &&
443 (instr->addr + instr->len) >= erase_regions[i].offset;
447 * check if the ending offset is aligned to this region's erase size
449 if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
454 instr->fail_addr = 0xffffffff;
456 /* make a local copy of instr to avoid modifying the caller's struct */
457 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
466 * find the subdevice where the to-be-erased area begins, adjust
467 * starting offset to be relative to the subdevice start
469 for (i = 0; i < concat->num_subdev; i++) {
470 subdev = concat->subdev[i];
471 if (subdev->size <= erase->addr) {
472 erase->addr -= subdev->size;
473 offset += subdev->size;
479 /* must never happen since size limit has been verified above */
480 if (i >= concat->num_subdev)
483 /* now do the erase: */
485 for (; length > 0; i++) {
486 /* loop for all subdevices affected by this request */
487 subdev = concat->subdev[i]; /* get current subdevice */
489 /* limit length to subdevice's size: */
490 if (erase->addr + length > subdev->size)
491 erase->len = subdev->size - erase->addr;
495 if (!(subdev->flags & MTD_WRITEABLE)) {
499 length -= erase->len;
500 if ((err = concat_dev_erase(subdev, erase))) {
501 /* sanity check: should never happen since
502 * block alignment has been checked above */
505 if (erase->fail_addr != 0xffffffff)
506 instr->fail_addr = erase->fail_addr + offset;
510 * erase->addr specifies the offset of the area to be
511 * erased *within the current subdevice*. It can be
512 * non-zero only the first time through this loop, i.e.
513 * for the first subdevice where blocks need to be erased.
514 * All the following erases must begin at the start of the
515 * current subdevice, i.e. at offset zero.
518 offset += subdev->size;
520 instr->state = erase->state;
526 instr->callback(instr);
530 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
532 struct mtd_concat *concat = CONCAT(mtd);
533 int i, err = -EINVAL;
535 if ((len + ofs) > mtd->size)
538 for (i = 0; i < concat->num_subdev; i++) {
539 struct mtd_info *subdev = concat->subdev[i];
542 if (ofs >= subdev->size) {
547 if (ofs + len > subdev->size)
548 size = subdev->size - ofs;
552 err = subdev->lock(subdev, ofs, size);
568 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
570 struct mtd_concat *concat = CONCAT(mtd);
573 if ((len + ofs) > mtd->size)
576 for (i = 0; i < concat->num_subdev; i++) {
577 struct mtd_info *subdev = concat->subdev[i];
580 if (ofs >= subdev->size) {
585 if (ofs + len > subdev->size)
586 size = subdev->size - ofs;
590 err = subdev->unlock(subdev, ofs, size);
606 static void concat_sync(struct mtd_info *mtd)
608 struct mtd_concat *concat = CONCAT(mtd);
611 for (i = 0; i < concat->num_subdev; i++) {
612 struct mtd_info *subdev = concat->subdev[i];
613 subdev->sync(subdev);
617 static int concat_suspend(struct mtd_info *mtd)
619 struct mtd_concat *concat = CONCAT(mtd);
622 for (i = 0; i < concat->num_subdev; i++) {
623 struct mtd_info *subdev = concat->subdev[i];
624 if ((rc = subdev->suspend(subdev)) < 0)
630 static void concat_resume(struct mtd_info *mtd)
632 struct mtd_concat *concat = CONCAT(mtd);
635 for (i = 0; i < concat->num_subdev; i++) {
636 struct mtd_info *subdev = concat->subdev[i];
637 subdev->resume(subdev);
642 * This function constructs a virtual MTD device by concatenating
643 * num_devs MTD devices. A pointer to the new device object is
644 * stored to *new_dev upon success. This function does _not_
645 * register any devices: this is the caller's responsibility.
647 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
648 int num_devs, /* number of subdevices */
650 { /* name for the new device */
653 struct mtd_concat *concat;
654 u_int32_t max_erasesize, curr_erasesize;
655 int num_erase_region;
657 printk(KERN_NOTICE "Concatenating MTD devices:\n");
658 for (i = 0; i < num_devs; i++)
659 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
660 printk(KERN_NOTICE "into device \"%s\"\n", name);
662 /* allocate the device structure */
663 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
664 concat = kmalloc(size, GFP_KERNEL);
667 ("memory allocation error while creating concatenated device \"%s\"\n",
671 memset(concat, 0, size);
672 concat->subdev = (struct mtd_info **) (concat + 1);
675 * Set up the new "super" device's MTD object structure, check for
676 * incompatibilites between the subdevices.
678 concat->mtd.type = subdev[0]->type;
679 concat->mtd.flags = subdev[0]->flags;
680 concat->mtd.size = subdev[0]->size;
681 concat->mtd.erasesize = subdev[0]->erasesize;
682 concat->mtd.oobblock = subdev[0]->oobblock;
683 concat->mtd.oobsize = subdev[0]->oobsize;
684 concat->mtd.ecctype = subdev[0]->ecctype;
685 concat->mtd.eccsize = subdev[0]->eccsize;
686 if (subdev[0]->read_ecc)
687 concat->mtd.read_ecc = concat_read_ecc;
688 if (subdev[0]->write_ecc)
689 concat->mtd.write_ecc = concat_write_ecc;
690 if (subdev[0]->read_oob)
691 concat->mtd.read_oob = concat_read_oob;
692 if (subdev[0]->write_oob)
693 concat->mtd.write_oob = concat_write_oob;
695 concat->subdev[0] = subdev[0];
697 for (i = 1; i < num_devs; i++) {
698 if (concat->mtd.type != subdev[i]->type) {
700 printk("Incompatible device type on \"%s\"\n",
704 if (concat->mtd.flags != subdev[i]->flags) {
706 * Expect all flags except MTD_WRITEABLE to be
707 * equal on all subdevices.
709 if ((concat->mtd.flags ^ subdev[i]->
710 flags) & ~MTD_WRITEABLE) {
712 printk("Incompatible device flags on \"%s\"\n",
716 /* if writeable attribute differs,
717 make super device writeable */
719 subdev[i]->flags & MTD_WRITEABLE;
721 concat->mtd.size += subdev[i]->size;
722 if (concat->mtd.oobblock != subdev[i]->oobblock ||
723 concat->mtd.oobsize != subdev[i]->oobsize ||
724 concat->mtd.ecctype != subdev[i]->ecctype ||
725 concat->mtd.eccsize != subdev[i]->eccsize ||
726 !concat->mtd.read_ecc != !subdev[i]->read_ecc ||
727 !concat->mtd.write_ecc != !subdev[i]->write_ecc ||
728 !concat->mtd.read_oob != !subdev[i]->read_oob ||
729 !concat->mtd.write_oob != !subdev[i]->write_oob) {
731 printk("Incompatible OOB or ECC data on \"%s\"\n",
735 concat->subdev[i] = subdev[i];
739 concat->num_subdev = num_devs;
740 concat->mtd.name = name;
743 * NOTE: for now, we do not provide any readv()/writev() methods
744 * because they are messy to implement and they are not
745 * used to a great extent anyway.
747 concat->mtd.erase = concat_erase;
748 concat->mtd.read = concat_read;
749 concat->mtd.write = concat_write;
750 concat->mtd.sync = concat_sync;
751 concat->mtd.lock = concat_lock;
752 concat->mtd.unlock = concat_unlock;
753 concat->mtd.suspend = concat_suspend;
754 concat->mtd.resume = concat_resume;
757 * Combine the erase block size info of the subdevices:
759 * first, walk the map of the new device and see how
760 * many changes in erase size we have
762 max_erasesize = curr_erasesize = subdev[0]->erasesize;
763 num_erase_region = 1;
764 for (i = 0; i < num_devs; i++) {
765 if (subdev[i]->numeraseregions == 0) {
766 /* current subdevice has uniform erase size */
767 if (subdev[i]->erasesize != curr_erasesize) {
768 /* if it differs from the last subdevice's erase size, count it */
770 curr_erasesize = subdev[i]->erasesize;
771 if (curr_erasesize > max_erasesize)
772 max_erasesize = curr_erasesize;
775 /* current subdevice has variable erase size */
777 for (j = 0; j < subdev[i]->numeraseregions; j++) {
779 /* walk the list of erase regions, count any changes */
780 if (subdev[i]->eraseregions[j].erasesize !=
784 subdev[i]->eraseregions[j].
786 if (curr_erasesize > max_erasesize)
787 max_erasesize = curr_erasesize;
793 if (num_erase_region == 1) {
795 * All subdevices have the same uniform erase size.
798 concat->mtd.erasesize = curr_erasesize;
799 concat->mtd.numeraseregions = 0;
802 * erase block size varies across the subdevices: allocate
803 * space to store the data describing the variable erase regions
805 struct mtd_erase_region_info *erase_region_p;
806 u_int32_t begin, position;
808 concat->mtd.erasesize = max_erasesize;
809 concat->mtd.numeraseregions = num_erase_region;
810 concat->mtd.eraseregions = erase_region_p =
811 kmalloc(num_erase_region *
812 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
813 if (!erase_region_p) {
816 ("memory allocation error while creating erase region list"
817 " for device \"%s\"\n", name);
822 * walk the map of the new device once more and fill in
823 * in erase region info:
825 curr_erasesize = subdev[0]->erasesize;
826 begin = position = 0;
827 for (i = 0; i < num_devs; i++) {
828 if (subdev[i]->numeraseregions == 0) {
829 /* current subdevice has uniform erase size */
830 if (subdev[i]->erasesize != curr_erasesize) {
832 * fill in an mtd_erase_region_info structure for the area
833 * we have walked so far:
835 erase_region_p->offset = begin;
836 erase_region_p->erasesize =
838 erase_region_p->numblocks =
839 (position - begin) / curr_erasesize;
842 curr_erasesize = subdev[i]->erasesize;
845 position += subdev[i]->size;
847 /* current subdevice has variable erase size */
849 for (j = 0; j < subdev[i]->numeraseregions; j++) {
850 /* walk the list of erase regions, count any changes */
851 if (subdev[i]->eraseregions[j].
852 erasesize != curr_erasesize) {
853 erase_region_p->offset = begin;
854 erase_region_p->erasesize =
856 erase_region_p->numblocks =
858 begin) / curr_erasesize;
862 subdev[i]->eraseregions[j].
867 subdev[i]->eraseregions[j].
868 numblocks * curr_erasesize;
872 /* Now write the final entry */
873 erase_region_p->offset = begin;
874 erase_region_p->erasesize = curr_erasesize;
875 erase_region_p->numblocks = (position - begin) / curr_erasesize;
882 * This function destroys an MTD object obtained from concat_mtd_devs()
885 void mtd_concat_destroy(struct mtd_info *mtd)
887 struct mtd_concat *concat = CONCAT(mtd);
888 if (concat->mtd.numeraseregions)
889 kfree(concat->mtd.eraseregions);
893 EXPORT_SYMBOL(mtd_concat_create);
894 EXPORT_SYMBOL(mtd_concat_destroy);
896 MODULE_LICENSE("GPL");
897 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
898 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");