2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
35 #include <asm/processor.h>
36 #include <asm/pgtable.h>
38 #include <asm/mmu_context.h>
40 #include <asm/types.h>
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 #include <asm/machdep.h>
45 #include <asm/abs_addr.h>
46 #include <asm/tlbflush.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
56 #define DBG(fmt...) udbg_printf(fmt)
62 #define DBG_LOW(fmt...) udbg_printf(fmt)
64 #define DBG_LOW(fmt...)
71 * Note: pte --> Linux PTE
72 * HPTE --> PowerPC Hashed Page Table Entry
75 * htab_initialize is called with the MMU off (of course), but
76 * the kernel has been copied down to zero so it can directly
77 * reference global data. At this point it is very difficult
78 * to print debug info.
83 extern unsigned long dart_tablebase;
84 #endif /* CONFIG_U3_DART */
86 static unsigned long _SDR1;
87 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
89 struct hash_pte *htab_address;
90 unsigned long htab_size_bytes;
91 unsigned long htab_hash_mask;
92 int mmu_linear_psize = MMU_PAGE_4K;
93 int mmu_virtual_psize = MMU_PAGE_4K;
94 int mmu_vmalloc_psize = MMU_PAGE_4K;
95 int mmu_io_psize = MMU_PAGE_4K;
96 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
97 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
98 #ifdef CONFIG_HUGETLB_PAGE
99 int mmu_huge_psize = MMU_PAGE_16M;
100 unsigned int HPAGE_SHIFT;
102 #ifdef CONFIG_PPC_64K_PAGES
103 int mmu_ci_restrictions;
105 #ifdef CONFIG_DEBUG_PAGEALLOC
106 static u8 *linear_map_hash_slots;
107 static unsigned long linear_map_hash_count;
108 static DEFINE_SPINLOCK(linear_map_hash_lock);
109 #endif /* CONFIG_DEBUG_PAGEALLOC */
111 /* There are definitions of page sizes arrays to be used when none
112 * is provided by the firmware.
115 /* Pre-POWER4 CPUs (4k pages only)
117 struct mmu_psize_def mmu_psize_defaults_old[] = {
127 /* POWER4, GPUL, POWER5
129 * Support for 16Mb large pages
131 struct mmu_psize_def mmu_psize_defaults_gp[] = {
149 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
150 unsigned long pstart, unsigned long mode,
151 int psize, int ssize)
153 unsigned long vaddr, paddr;
154 unsigned int step, shift;
155 unsigned long tmp_mode;
158 shift = mmu_psize_defs[psize].shift;
161 for (vaddr = vstart, paddr = pstart; vaddr < vend;
162 vaddr += step, paddr += step) {
163 unsigned long hash, hpteg;
164 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
165 unsigned long va = hpt_va(vaddr, vsid, ssize);
169 /* Make non-kernel text non-executable */
170 if (!in_kernel_text(vaddr))
171 tmp_mode = mode | HPTE_R_N;
173 hash = hpt_hash(va, shift, ssize);
174 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
176 DBG("htab_bolt_mapping: calling %p\n", ppc_md.hpte_insert);
178 BUG_ON(!ppc_md.hpte_insert);
179 ret = ppc_md.hpte_insert(hpteg, va, paddr,
180 tmp_mode, HPTE_V_BOLTED, psize, ssize);
184 #ifdef CONFIG_DEBUG_PAGEALLOC
185 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
186 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
187 #endif /* CONFIG_DEBUG_PAGEALLOC */
189 return ret < 0 ? ret : 0;
192 static int __init htab_dt_scan_seg_sizes(unsigned long node,
193 const char *uname, int depth,
196 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
198 unsigned long size = 0;
200 /* We are scanning "cpu" nodes only */
201 if (type == NULL || strcmp(type, "cpu") != 0)
204 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
208 for (; size >= 4; size -= 4, ++prop) {
210 DBG("1T segment support detected\n");
211 cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
218 static void __init htab_init_seg_sizes(void)
220 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
223 static int __init htab_dt_scan_page_sizes(unsigned long node,
224 const char *uname, int depth,
227 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
229 unsigned long size = 0;
231 /* We are scanning "cpu" nodes only */
232 if (type == NULL || strcmp(type, "cpu") != 0)
235 prop = (u32 *)of_get_flat_dt_prop(node,
236 "ibm,segment-page-sizes", &size);
238 DBG("Page sizes from device-tree:\n");
240 cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
242 unsigned int shift = prop[0];
243 unsigned int slbenc = prop[1];
244 unsigned int lpnum = prop[2];
245 unsigned int lpenc = 0;
246 struct mmu_psize_def *def;
249 size -= 3; prop += 3;
250 while(size > 0 && lpnum) {
251 if (prop[0] == shift)
253 prop += 2; size -= 2;
268 cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
276 def = &mmu_psize_defs[idx];
281 def->avpnm = (1 << (shift - 23)) - 1;
284 /* We don't know for sure what's up with tlbiel, so
285 * for now we only set it for 4K and 64K pages
287 if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
292 DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
293 "tlbiel=%d, penc=%d\n",
294 idx, shift, def->sllp, def->avpnm, def->tlbiel,
302 static void __init htab_init_page_sizes(void)
306 /* Default to 4K pages only */
307 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
308 sizeof(mmu_psize_defaults_old));
311 * Try to find the available page sizes in the device-tree
313 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
314 if (rc != 0) /* Found */
318 * Not in the device-tree, let's fallback on known size
319 * list for 16M capable GP & GR
321 if (cpu_has_feature(CPU_FTR_16M_PAGE))
322 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
323 sizeof(mmu_psize_defaults_gp));
325 #ifndef CONFIG_DEBUG_PAGEALLOC
327 * Pick a size for the linear mapping. Currently, we only support
328 * 16M, 1M and 4K which is the default
330 if (mmu_psize_defs[MMU_PAGE_16M].shift)
331 mmu_linear_psize = MMU_PAGE_16M;
332 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
333 mmu_linear_psize = MMU_PAGE_1M;
334 #endif /* CONFIG_DEBUG_PAGEALLOC */
336 #ifdef CONFIG_PPC_64K_PAGES
338 * Pick a size for the ordinary pages. Default is 4K, we support
339 * 64K for user mappings and vmalloc if supported by the processor.
340 * We only use 64k for ioremap if the processor
341 * (and firmware) support cache-inhibited large pages.
342 * If not, we use 4k and set mmu_ci_restrictions so that
343 * hash_page knows to switch processes that use cache-inhibited
344 * mappings to 4k pages.
346 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
347 mmu_virtual_psize = MMU_PAGE_64K;
348 mmu_vmalloc_psize = MMU_PAGE_64K;
349 if (mmu_linear_psize == MMU_PAGE_4K)
350 mmu_linear_psize = MMU_PAGE_64K;
351 if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE))
352 mmu_io_psize = MMU_PAGE_64K;
354 mmu_ci_restrictions = 1;
356 #endif /* CONFIG_PPC_64K_PAGES */
358 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
359 "virtual = %d, io = %d\n",
360 mmu_psize_defs[mmu_linear_psize].shift,
361 mmu_psize_defs[mmu_virtual_psize].shift,
362 mmu_psize_defs[mmu_io_psize].shift);
364 #ifdef CONFIG_HUGETLB_PAGE
365 /* Init large page size. Currently, we pick 16M or 1M depending
366 * on what is available
368 if (mmu_psize_defs[MMU_PAGE_16M].shift)
369 mmu_huge_psize = MMU_PAGE_16M;
370 /* With 4k/4level pagetables, we can't (for now) cope with a
371 * huge page size < PMD_SIZE */
372 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
373 mmu_huge_psize = MMU_PAGE_1M;
375 /* Calculate HPAGE_SHIFT and sanity check it */
376 if (mmu_psize_defs[mmu_huge_psize].shift > MIN_HUGEPTE_SHIFT &&
377 mmu_psize_defs[mmu_huge_psize].shift < SID_SHIFT)
378 HPAGE_SHIFT = mmu_psize_defs[mmu_huge_psize].shift;
380 HPAGE_SHIFT = 0; /* No huge pages dude ! */
381 #endif /* CONFIG_HUGETLB_PAGE */
384 static int __init htab_dt_scan_pftsize(unsigned long node,
385 const char *uname, int depth,
388 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
391 /* We are scanning "cpu" nodes only */
392 if (type == NULL || strcmp(type, "cpu") != 0)
395 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
397 /* pft_size[0] is the NUMA CEC cookie */
398 ppc64_pft_size = prop[1];
404 static unsigned long __init htab_get_table_size(void)
406 unsigned long mem_size, rnd_mem_size, pteg_count;
408 /* If hash size isn't already provided by the platform, we try to
409 * retrieve it from the device-tree. If it's not there neither, we
410 * calculate it now based on the total RAM size
412 if (ppc64_pft_size == 0)
413 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
415 return 1UL << ppc64_pft_size;
417 /* round mem_size up to next power of 2 */
418 mem_size = lmb_phys_mem_size();
419 rnd_mem_size = 1UL << __ilog2(mem_size);
420 if (rnd_mem_size < mem_size)
424 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
426 return pteg_count << 7;
429 #ifdef CONFIG_MEMORY_HOTPLUG
430 void create_section_mapping(unsigned long start, unsigned long end)
432 BUG_ON(htab_bolt_mapping(start, end, __pa(start),
433 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX,
434 mmu_linear_psize, mmu_kernel_ssize));
436 #endif /* CONFIG_MEMORY_HOTPLUG */
438 static inline void make_bl(unsigned int *insn_addr, void *func)
440 unsigned long funcp = *((unsigned long *)func);
441 int offset = funcp - (unsigned long)insn_addr;
443 *insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
444 flush_icache_range((unsigned long)insn_addr, 4+
445 (unsigned long)insn_addr);
448 static void __init htab_finish_init(void)
450 extern unsigned int *htab_call_hpte_insert1;
451 extern unsigned int *htab_call_hpte_insert2;
452 extern unsigned int *htab_call_hpte_remove;
453 extern unsigned int *htab_call_hpte_updatepp;
455 #ifdef CONFIG_PPC_HAS_HASH_64K
456 extern unsigned int *ht64_call_hpte_insert1;
457 extern unsigned int *ht64_call_hpte_insert2;
458 extern unsigned int *ht64_call_hpte_remove;
459 extern unsigned int *ht64_call_hpte_updatepp;
461 make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
462 make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
463 make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
464 make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
465 #endif /* CONFIG_PPC_HAS_HASH_64K */
467 make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
468 make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
469 make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
470 make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
473 void __init htab_initialize(void)
476 unsigned long pteg_count;
477 unsigned long mode_rw;
478 unsigned long base = 0, size = 0;
481 extern unsigned long tce_alloc_start, tce_alloc_end;
483 DBG(" -> htab_initialize()\n");
485 /* Initialize segment sizes */
486 htab_init_seg_sizes();
488 /* Initialize page sizes */
489 htab_init_page_sizes();
491 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
492 mmu_kernel_ssize = MMU_SEGSIZE_1T;
493 mmu_highuser_ssize = MMU_SEGSIZE_1T;
494 printk(KERN_INFO "Using 1TB segments\n");
498 * Calculate the required size of the htab. We want the number of
499 * PTEGs to equal one half the number of real pages.
501 htab_size_bytes = htab_get_table_size();
502 pteg_count = htab_size_bytes >> 7;
504 htab_hash_mask = pteg_count - 1;
506 if (firmware_has_feature(FW_FEATURE_LPAR)) {
507 /* Using a hypervisor which owns the htab */
511 /* Find storage for the HPT. Must be contiguous in
512 * the absolute address space.
514 table = lmb_alloc(htab_size_bytes, htab_size_bytes);
516 DBG("Hash table allocated at %lx, size: %lx\n", table,
519 htab_address = abs_to_virt(table);
521 /* htab absolute addr + encoded htabsize */
522 _SDR1 = table + __ilog2(pteg_count) - 11;
524 /* Initialize the HPT with no entries */
525 memset((void *)table, 0, htab_size_bytes);
528 mtspr(SPRN_SDR1, _SDR1);
531 mode_rw = _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_COHERENT | PP_RWXX;
533 #ifdef CONFIG_DEBUG_PAGEALLOC
534 linear_map_hash_count = lmb_end_of_DRAM() >> PAGE_SHIFT;
535 linear_map_hash_slots = __va(lmb_alloc_base(linear_map_hash_count,
537 memset(linear_map_hash_slots, 0, linear_map_hash_count);
538 #endif /* CONFIG_DEBUG_PAGEALLOC */
540 /* On U3 based machines, we need to reserve the DART area and
541 * _NOT_ map it to avoid cache paradoxes as it's remapped non
545 /* create bolted the linear mapping in the hash table */
546 for (i=0; i < lmb.memory.cnt; i++) {
547 base = (unsigned long)__va(lmb.memory.region[i].base);
548 size = lmb.memory.region[i].size;
550 DBG("creating mapping for region: %lx : %lx\n", base, size);
552 #ifdef CONFIG_U3_DART
553 /* Do not map the DART space. Fortunately, it will be aligned
554 * in such a way that it will not cross two lmb regions and
555 * will fit within a single 16Mb page.
556 * The DART space is assumed to be a full 16Mb region even if
557 * we only use 2Mb of that space. We will use more of it later
558 * for AGP GART. We have to use a full 16Mb large page.
560 DBG("DART base: %lx\n", dart_tablebase);
562 if (dart_tablebase != 0 && dart_tablebase >= base
563 && dart_tablebase < (base + size)) {
564 unsigned long dart_table_end = dart_tablebase + 16 * MB;
565 if (base != dart_tablebase)
566 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
570 if ((base + size) > dart_table_end)
571 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
573 __pa(dart_table_end),
579 #endif /* CONFIG_U3_DART */
580 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
581 mode_rw, mmu_linear_psize, mmu_kernel_ssize));
585 * If we have a memory_limit and we've allocated TCEs then we need to
586 * explicitly map the TCE area at the top of RAM. We also cope with the
587 * case that the TCEs start below memory_limit.
588 * tce_alloc_start/end are 16MB aligned so the mapping should work
589 * for either 4K or 16MB pages.
591 if (tce_alloc_start) {
592 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
593 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
595 if (base + size >= tce_alloc_start)
596 tce_alloc_start = base + size + 1;
598 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
599 __pa(tce_alloc_start), mode_rw,
600 mmu_linear_psize, mmu_kernel_ssize));
605 DBG(" <- htab_initialize()\n");
610 void htab_initialize_secondary(void)
612 if (!firmware_has_feature(FW_FEATURE_LPAR))
613 mtspr(SPRN_SDR1, _SDR1);
617 * Called by asm hashtable.S for doing lazy icache flush
619 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
623 if (!pfn_valid(pte_pfn(pte)))
626 page = pte_page(pte);
629 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
631 __flush_dcache_icache(page_address(page));
632 set_bit(PG_arch_1, &page->flags);
640 * Demote a segment to using 4k pages.
641 * For now this makes the whole process use 4k pages.
643 #ifdef CONFIG_PPC_64K_PAGES
644 static void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
646 if (mm->context.user_psize == MMU_PAGE_4K)
648 slice_set_user_psize(mm, MMU_PAGE_4K);
649 #ifdef CONFIG_SPU_BASE
650 spu_flush_all_slbs(mm);
653 #endif /* CONFIG_PPC_64K_PAGES */
657 * 1 - normal page fault
658 * -1 - critical hash insertion error
660 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
664 struct mm_struct *mm;
667 int rc, user_region = 0, local = 0;
670 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
673 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
674 DBG_LOW(" out of pgtable range !\n");
678 /* Get region & vsid */
679 switch (REGION_ID(ea)) {
684 DBG_LOW(" user region with no mm !\n");
687 #ifdef CONFIG_PPC_MM_SLICES
688 psize = get_slice_psize(mm, ea);
690 psize = mm->context.user_psize;
692 ssize = user_segment_size(ea);
693 vsid = get_vsid(mm->context.id, ea, ssize);
695 case VMALLOC_REGION_ID:
697 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
698 if (ea < VMALLOC_END)
699 psize = mmu_vmalloc_psize;
701 psize = mmu_io_psize;
702 ssize = mmu_kernel_ssize;
706 * Send the problem up to do_page_fault
710 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
717 /* Check CPU locality */
718 tmp = cpumask_of_cpu(smp_processor_id());
719 if (user_region && cpus_equal(mm->cpu_vm_mask, tmp))
722 #ifdef CONFIG_HUGETLB_PAGE
723 /* Handle hugepage regions */
724 if (HPAGE_SHIFT && psize == mmu_huge_psize) {
725 DBG_LOW(" -> huge page !\n");
726 return hash_huge_page(mm, access, ea, vsid, local, trap);
728 #endif /* CONFIG_HUGETLB_PAGE */
730 #ifndef CONFIG_PPC_64K_PAGES
731 /* If we use 4K pages and our psize is not 4K, then we are hitting
732 * a special driver mapping, we need to align the address before
735 if (psize != MMU_PAGE_4K)
736 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
737 #endif /* CONFIG_PPC_64K_PAGES */
739 /* Get PTE and page size from page tables */
740 ptep = find_linux_pte(pgdir, ea);
741 if (ptep == NULL || !pte_present(*ptep)) {
742 DBG_LOW(" no PTE !\n");
746 #ifndef CONFIG_PPC_64K_PAGES
747 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
749 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
750 pte_val(*(ptep + PTRS_PER_PTE)));
752 /* Pre-check access permissions (will be re-checked atomically
753 * in __hash_page_XX but this pre-check is a fast path
755 if (access & ~pte_val(*ptep)) {
756 DBG_LOW(" no access !\n");
760 /* Do actual hashing */
761 #ifdef CONFIG_PPC_64K_PAGES
762 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
763 if (pte_val(*ptep) & _PAGE_4K_PFN) {
764 demote_segment_4k(mm, ea);
768 /* If this PTE is non-cacheable and we have restrictions on
769 * using non cacheable large pages, then we switch to 4k
771 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
772 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
774 demote_segment_4k(mm, ea);
776 } else if (ea < VMALLOC_END) {
778 * some driver did a non-cacheable mapping
779 * in vmalloc space, so switch vmalloc
782 printk(KERN_ALERT "Reducing vmalloc segment "
783 "to 4kB pages because of "
784 "non-cacheable mapping\n");
785 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
786 #ifdef CONFIG_SPU_BASE
787 spu_flush_all_slbs(mm);
792 if (psize != get_paca()->context.user_psize) {
793 get_paca()->context.user_psize =
794 mm->context.user_psize;
795 slb_flush_and_rebolt();
797 } else if (get_paca()->vmalloc_sllp !=
798 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
799 get_paca()->vmalloc_sllp =
800 mmu_psize_defs[mmu_vmalloc_psize].sllp;
801 slb_vmalloc_update();
803 #endif /* CONFIG_PPC_64K_PAGES */
805 #ifdef CONFIG_PPC_HAS_HASH_64K
806 if (psize == MMU_PAGE_64K)
807 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
809 #endif /* CONFIG_PPC_HAS_HASH_64K */
810 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize);
812 #ifndef CONFIG_PPC_64K_PAGES
813 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
815 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
816 pte_val(*(ptep + PTRS_PER_PTE)));
818 DBG_LOW(" -> rc=%d\n", rc);
821 EXPORT_SYMBOL_GPL(hash_page);
823 void hash_preload(struct mm_struct *mm, unsigned long ea,
824 unsigned long access, unsigned long trap)
834 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
836 #ifdef CONFIG_PPC_MM_SLICES
837 /* We only prefault standard pages for now */
838 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
842 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
843 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
845 /* Get Linux PTE if available */
849 ptep = find_linux_pte(pgdir, ea);
853 #ifdef CONFIG_PPC_64K_PAGES
854 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
855 * a 64K kernel), then we don't preload, hash_page() will take
856 * care of it once we actually try to access the page.
857 * That way we don't have to duplicate all of the logic for segment
858 * page size demotion here
860 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
862 #endif /* CONFIG_PPC_64K_PAGES */
865 ssize = user_segment_size(ea);
866 vsid = get_vsid(mm->context.id, ea, ssize);
868 /* Hash doesn't like irqs */
869 local_irq_save(flags);
871 /* Is that local to this CPU ? */
872 mask = cpumask_of_cpu(smp_processor_id());
873 if (cpus_equal(mm->cpu_vm_mask, mask))
877 #ifdef CONFIG_PPC_HAS_HASH_64K
878 if (mm->context.user_psize == MMU_PAGE_64K)
879 __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
881 #endif /* CONFIG_PPC_HAS_HASH_64K */
882 __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize);
884 local_irq_restore(flags);
887 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
890 unsigned long hash, index, shift, hidx, slot;
892 DBG_LOW("flush_hash_page(va=%016x)\n", va);
893 pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
894 hash = hpt_hash(va, shift, ssize);
895 hidx = __rpte_to_hidx(pte, index);
896 if (hidx & _PTEIDX_SECONDARY)
898 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
899 slot += hidx & _PTEIDX_GROUP_IX;
900 DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index, slot, hidx);
901 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
902 } pte_iterate_hashed_end();
905 void flush_hash_range(unsigned long number, int local)
907 if (ppc_md.flush_hash_range)
908 ppc_md.flush_hash_range(number, local);
911 struct ppc64_tlb_batch *batch =
912 &__get_cpu_var(ppc64_tlb_batch);
914 for (i = 0; i < number; i++)
915 flush_hash_page(batch->vaddr[i], batch->pte[i],
916 batch->psize, batch->ssize, local);
921 * low_hash_fault is called when we the low level hash code failed
922 * to instert a PTE due to an hypervisor error
924 void low_hash_fault(struct pt_regs *regs, unsigned long address)
926 if (user_mode(regs)) {
929 info.si_signo = SIGBUS;
931 info.si_code = BUS_ADRERR;
932 info.si_addr = (void __user *)address;
933 force_sig_info(SIGBUS, &info, current);
936 bad_page_fault(regs, address, SIGBUS);
939 #ifdef CONFIG_DEBUG_PAGEALLOC
940 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
942 unsigned long hash, hpteg;
943 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
944 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
945 unsigned long mode = _PAGE_ACCESSED | _PAGE_DIRTY |
946 _PAGE_COHERENT | PP_RWXX | HPTE_R_N;
949 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
950 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
952 ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
954 mmu_linear_psize, mmu_kernel_ssize);
956 spin_lock(&linear_map_hash_lock);
957 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
958 linear_map_hash_slots[lmi] = ret | 0x80;
959 spin_unlock(&linear_map_hash_lock);
962 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
964 unsigned long hash, hidx, slot;
965 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
966 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
968 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
969 spin_lock(&linear_map_hash_lock);
970 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
971 hidx = linear_map_hash_slots[lmi] & 0x7f;
972 linear_map_hash_slots[lmi] = 0;
973 spin_unlock(&linear_map_hash_lock);
974 if (hidx & _PTEIDX_SECONDARY)
976 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
977 slot += hidx & _PTEIDX_GROUP_IX;
978 ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
981 void kernel_map_pages(struct page *page, int numpages, int enable)
983 unsigned long flags, vaddr, lmi;
986 local_irq_save(flags);
987 for (i = 0; i < numpages; i++, page++) {
988 vaddr = (unsigned long)page_address(page);
989 lmi = __pa(vaddr) >> PAGE_SHIFT;
990 if (lmi >= linear_map_hash_count)
993 kernel_map_linear_page(vaddr, lmi);
995 kernel_unmap_linear_page(vaddr, lmi);
997 local_irq_restore(flags);
999 #endif /* CONFIG_DEBUG_PAGEALLOC */