1 #include <linux/linkage.h>
2 #include <linux/errno.h>
3 #include <linux/signal.h>
4 #include <linux/sched.h>
5 #include <linux/ioport.h>
6 #include <linux/interrupt.h>
7 #include <linux/timex.h>
8 #include <linux/slab.h>
9 #include <linux/random.h>
10 #include <linux/init.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/sysdev.h>
13 #include <linux/bitops.h>
16 #include <asm/atomic.h>
17 #include <asm/system.h>
19 #include <asm/hw_irq.h>
20 #include <asm/pgtable.h>
21 #include <asm/delay.h>
26 * Common place to define all x86 IRQ vectors
28 * This builds up the IRQ handler stubs using some ugly macros in irq.h
30 * These macros create the low-level assembly IRQ routines that save
31 * register context and call do_IRQ(). do_IRQ() then does all the
32 * operations that are needed to keep the AT (or SMP IOAPIC)
33 * interrupt-controller happy.
39 #define BUILD_16_IRQS(x) \
40 BI(x,0) BI(x,1) BI(x,2) BI(x,3) \
41 BI(x,4) BI(x,5) BI(x,6) BI(x,7) \
42 BI(x,8) BI(x,9) BI(x,a) BI(x,b) \
43 BI(x,c) BI(x,d) BI(x,e) BI(x,f)
46 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
47 * (these are usually mapped to vectors 0x30-0x3f)
51 * The IO-APIC gives us many more interrupt sources. Most of these
52 * are unused but an SMP system is supposed to have enough memory ...
53 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
54 * across the spectrum, so we really want to be prepared to get all
55 * of these. Plus, more powerful systems might have more than 64
58 * (these are usually mapped into the 0x30-0xff vector range)
60 BUILD_16_IRQS(0x2) BUILD_16_IRQS(0x3)
61 BUILD_16_IRQS(0x4) BUILD_16_IRQS(0x5) BUILD_16_IRQS(0x6) BUILD_16_IRQS(0x7)
62 BUILD_16_IRQS(0x8) BUILD_16_IRQS(0x9) BUILD_16_IRQS(0xa) BUILD_16_IRQS(0xb)
63 BUILD_16_IRQS(0xc) BUILD_16_IRQS(0xd) BUILD_16_IRQS(0xe) BUILD_16_IRQS(0xf)
72 #define IRQLIST_16(x) \
73 IRQ(x,0), IRQ(x,1), IRQ(x,2), IRQ(x,3), \
74 IRQ(x,4), IRQ(x,5), IRQ(x,6), IRQ(x,7), \
75 IRQ(x,8), IRQ(x,9), IRQ(x,a), IRQ(x,b), \
76 IRQ(x,c), IRQ(x,d), IRQ(x,e), IRQ(x,f)
78 /* for the irq vectors */
79 static void (*interrupt[NR_VECTORS - FIRST_EXTERNAL_VECTOR])(void) = {
80 IRQLIST_16(0x2), IRQLIST_16(0x3),
81 IRQLIST_16(0x4), IRQLIST_16(0x5), IRQLIST_16(0x6), IRQLIST_16(0x7),
82 IRQLIST_16(0x8), IRQLIST_16(0x9), IRQLIST_16(0xa), IRQLIST_16(0xb),
83 IRQLIST_16(0xc), IRQLIST_16(0xd), IRQLIST_16(0xe), IRQLIST_16(0xf)
90 * This is the 'legacy' 8259A Programmable Interrupt Controller,
91 * present in the majority of PC/AT boxes.
92 * plus some generic x86 specific things if generic specifics makes
94 * this file should become arch/i386/kernel/irq.c when the old irq.c
95 * moves to arch independent land
98 static int i8259A_auto_eoi;
99 DEFINE_SPINLOCK(i8259A_lock);
100 static void mask_and_ack_8259A(unsigned int);
102 static struct irq_chip i8259A_chip = {
104 .mask = disable_8259A_irq,
105 .disable = disable_8259A_irq,
106 .unmask = enable_8259A_irq,
107 .mask_ack = mask_and_ack_8259A,
111 * 8259A PIC functions to handle ISA devices:
115 * This contains the irq mask for both 8259A irq controllers,
117 static unsigned int cached_irq_mask = 0xffff;
119 #define __byte(x,y) (((unsigned char *)&(y))[x])
120 #define cached_21 (__byte(0,cached_irq_mask))
121 #define cached_A1 (__byte(1,cached_irq_mask))
124 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
125 * boards the timer interrupt is not really connected to any IO-APIC pin,
126 * it's fed to the master 8259A's IR0 line only.
128 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
129 * this 'mixed mode' IRQ handling costs nothing because it's only used
132 unsigned long io_apic_irqs;
134 void disable_8259A_irq(unsigned int irq)
136 unsigned int mask = 1 << irq;
139 spin_lock_irqsave(&i8259A_lock, flags);
140 cached_irq_mask |= mask;
142 outb(cached_A1,0xA1);
144 outb(cached_21,0x21);
145 spin_unlock_irqrestore(&i8259A_lock, flags);
148 void enable_8259A_irq(unsigned int irq)
150 unsigned int mask = ~(1 << irq);
153 spin_lock_irqsave(&i8259A_lock, flags);
154 cached_irq_mask &= mask;
156 outb(cached_A1,0xA1);
158 outb(cached_21,0x21);
159 spin_unlock_irqrestore(&i8259A_lock, flags);
162 int i8259A_irq_pending(unsigned int irq)
164 unsigned int mask = 1<<irq;
168 spin_lock_irqsave(&i8259A_lock, flags);
170 ret = inb(0x20) & mask;
172 ret = inb(0xA0) & (mask >> 8);
173 spin_unlock_irqrestore(&i8259A_lock, flags);
178 void make_8259A_irq(unsigned int irq)
180 disable_irq_nosync(irq);
181 io_apic_irqs &= ~(1<<irq);
182 set_irq_chip_and_handler_name(irq, &i8259A_chip, handle_level_irq,
188 * This function assumes to be called rarely. Switching between
189 * 8259A registers is slow.
190 * This has to be protected by the irq controller spinlock
191 * before being called.
193 static inline int i8259A_irq_real(unsigned int irq)
196 int irqmask = 1<<irq;
199 outb(0x0B,0x20); /* ISR register */
200 value = inb(0x20) & irqmask;
201 outb(0x0A,0x20); /* back to the IRR register */
204 outb(0x0B,0xA0); /* ISR register */
205 value = inb(0xA0) & (irqmask >> 8);
206 outb(0x0A,0xA0); /* back to the IRR register */
211 * Careful! The 8259A is a fragile beast, it pretty
212 * much _has_ to be done exactly like this (mask it
213 * first, _then_ send the EOI, and the order of EOI
214 * to the two 8259s is important!
216 static void mask_and_ack_8259A(unsigned int irq)
218 unsigned int irqmask = 1 << irq;
221 spin_lock_irqsave(&i8259A_lock, flags);
223 * Lightweight spurious IRQ detection. We do not want
224 * to overdo spurious IRQ handling - it's usually a sign
225 * of hardware problems, so we only do the checks we can
226 * do without slowing down good hardware unnecessarily.
228 * Note that IRQ7 and IRQ15 (the two spurious IRQs
229 * usually resulting from the 8259A-1|2 PICs) occur
230 * even if the IRQ is masked in the 8259A. Thus we
231 * can check spurious 8259A IRQs without doing the
232 * quite slow i8259A_irq_real() call for every IRQ.
233 * This does not cover 100% of spurious interrupts,
234 * but should be enough to warn the user that there
235 * is something bad going on ...
237 if (cached_irq_mask & irqmask)
238 goto spurious_8259A_irq;
239 cached_irq_mask |= irqmask;
243 inb(0xA1); /* DUMMY - (do we need this?) */
244 outb(cached_A1,0xA1);
245 outb(0x60+(irq&7),0xA0);/* 'Specific EOI' to slave */
246 outb(0x62,0x20); /* 'Specific EOI' to master-IRQ2 */
248 inb(0x21); /* DUMMY - (do we need this?) */
249 outb(cached_21,0x21);
250 outb(0x60+irq,0x20); /* 'Specific EOI' to master */
252 spin_unlock_irqrestore(&i8259A_lock, flags);
257 * this is the slow path - should happen rarely.
259 if (i8259A_irq_real(irq))
261 * oops, the IRQ _is_ in service according to the
262 * 8259A - not spurious, go handle it.
264 goto handle_real_irq;
267 static int spurious_irq_mask;
269 * At this point we can be sure the IRQ is spurious,
270 * lets ACK and report it. [once per IRQ]
272 if (!(spurious_irq_mask & irqmask)) {
273 printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq);
274 spurious_irq_mask |= irqmask;
276 atomic_inc(&irq_err_count);
278 * Theoretically we do not have to handle this IRQ,
279 * but in Linux this does not cause problems and is
282 goto handle_real_irq;
286 void init_8259A(int auto_eoi)
290 i8259A_auto_eoi = auto_eoi;
292 spin_lock_irqsave(&i8259A_lock, flags);
294 outb(0xff, 0x21); /* mask all of 8259A-1 */
295 outb(0xff, 0xA1); /* mask all of 8259A-2 */
298 * outb_p - this has to work on a wide range of PC hardware.
300 outb_p(0x11, 0x20); /* ICW1: select 8259A-1 init */
301 outb_p(IRQ0_VECTOR, 0x21); /* ICW2: 8259A-1 IR0-7 mapped to 0x30-0x37 */
302 outb_p(0x04, 0x21); /* 8259A-1 (the master) has a slave on IR2 */
304 outb_p(0x03, 0x21); /* master does Auto EOI */
306 outb_p(0x01, 0x21); /* master expects normal EOI */
308 outb_p(0x11, 0xA0); /* ICW1: select 8259A-2 init */
309 outb_p(IRQ8_VECTOR, 0xA1); /* ICW2: 8259A-2 IR0-7 mapped to 0x38-0x3f */
310 outb_p(0x02, 0xA1); /* 8259A-2 is a slave on master's IR2 */
311 outb_p(0x01, 0xA1); /* (slave's support for AEOI in flat mode
312 is to be investigated) */
316 * in AEOI mode we just have to mask the interrupt
319 i8259A_chip.mask_ack = disable_8259A_irq;
321 i8259A_chip.mask_ack = mask_and_ack_8259A;
323 udelay(100); /* wait for 8259A to initialize */
325 outb(cached_21, 0x21); /* restore master IRQ mask */
326 outb(cached_A1, 0xA1); /* restore slave IRQ mask */
328 spin_unlock_irqrestore(&i8259A_lock, flags);
331 static char irq_trigger[2];
333 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
335 static void restore_ELCR(char *trigger)
337 outb(trigger[0], 0x4d0);
338 outb(trigger[1], 0x4d1);
341 static void save_ELCR(char *trigger)
343 /* IRQ 0,1,2,8,13 are marked as reserved */
344 trigger[0] = inb(0x4d0) & 0xF8;
345 trigger[1] = inb(0x4d1) & 0xDE;
348 static int i8259A_resume(struct sys_device *dev)
350 init_8259A(i8259A_auto_eoi);
351 restore_ELCR(irq_trigger);
355 static int i8259A_suspend(struct sys_device *dev, pm_message_t state)
357 save_ELCR(irq_trigger);
361 static int i8259A_shutdown(struct sys_device *dev)
363 /* Put the i8259A into a quiescent state that
364 * the kernel initialization code can get it
367 outb(0xff, 0x21); /* mask all of 8259A-1 */
368 outb(0xff, 0xA1); /* mask all of 8259A-1 */
372 static struct sysdev_class i8259_sysdev_class = {
373 set_kset_name("i8259"),
374 .suspend = i8259A_suspend,
375 .resume = i8259A_resume,
376 .shutdown = i8259A_shutdown,
379 static struct sys_device device_i8259A = {
381 .cls = &i8259_sysdev_class,
384 static int __init i8259A_init_sysfs(void)
386 int error = sysdev_class_register(&i8259_sysdev_class);
388 error = sysdev_register(&device_i8259A);
392 device_initcall(i8259A_init_sysfs);
395 * IRQ2 is cascade interrupt to second interrupt controller
398 static struct irqaction irq2 = { no_action, 0, CPU_MASK_NONE, "cascade", NULL, NULL};
399 DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
400 [0 ... IRQ0_VECTOR - 1] = -1,
417 [IRQ15_VECTOR + 1 ... NR_VECTORS - 1] = -1
420 void __init init_ISA_irqs (void)
427 for (i = 0; i < NR_IRQS; i++) {
428 irq_desc[i].status = IRQ_DISABLED;
429 irq_desc[i].action = NULL;
430 irq_desc[i].depth = 1;
434 * 16 old-style INTA-cycle interrupts:
436 set_irq_chip_and_handler_name(i, &i8259A_chip,
437 handle_level_irq, "XT");
440 * 'high' PCI IRQs filled in on demand
442 irq_desc[i].chip = &no_irq_chip;
447 void __init init_IRQ(void)
453 * Cover the whole vector space, no vector can escape
454 * us. (some of these will be overridden and become
455 * 'special' SMP interrupts)
457 for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) {
458 int vector = FIRST_EXTERNAL_VECTOR + i;
459 if (vector != IA32_SYSCALL_VECTOR)
460 set_intr_gate(vector, interrupt[i]);
465 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
466 * IPI, driven by wakeup.
468 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
470 /* IPIs for invalidation */
471 set_intr_gate(INVALIDATE_TLB_VECTOR_START+0, invalidate_interrupt0);
472 set_intr_gate(INVALIDATE_TLB_VECTOR_START+1, invalidate_interrupt1);
473 set_intr_gate(INVALIDATE_TLB_VECTOR_START+2, invalidate_interrupt2);
474 set_intr_gate(INVALIDATE_TLB_VECTOR_START+3, invalidate_interrupt3);
475 set_intr_gate(INVALIDATE_TLB_VECTOR_START+4, invalidate_interrupt4);
476 set_intr_gate(INVALIDATE_TLB_VECTOR_START+5, invalidate_interrupt5);
477 set_intr_gate(INVALIDATE_TLB_VECTOR_START+6, invalidate_interrupt6);
478 set_intr_gate(INVALIDATE_TLB_VECTOR_START+7, invalidate_interrupt7);
480 /* IPI for generic function call */
481 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
483 /* Low priority IPI to cleanup after moving an irq */
484 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
486 set_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
487 set_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
489 /* self generated IPI for local APIC timer */
490 set_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
492 /* IPI vectors for APIC spurious and error interrupts */
493 set_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
494 set_intr_gate(ERROR_APIC_VECTOR, error_interrupt);