Merge branch 'master' of git://git.infradead.org/~dedekind/ubi-2.6
[linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorcl) },
50         { "tx_bytes", E1000_STAT(stats.gotcl) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  \
99         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
100 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
101 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
102         "Register test  (offline)", "Eeprom test    (offline)",
103         "Interrupt test (offline)", "Loopback test  (offline)",
104         "Link test   (on/offline)"
105 };
106 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
107
108 static int e1000_get_settings(struct net_device *netdev,
109                               struct ethtool_cmd *ecmd)
110 {
111         struct e1000_adapter *adapter = netdev_priv(netdev);
112         struct e1000_hw *hw = &adapter->hw;
113
114         if (hw->media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         if (er32(STATUS) & E1000_STATUS_LU) {
151
152                 adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed,
153                                                   &adapter->link_duplex);
154                 ecmd->speed = adapter->link_speed;
155
156                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
157                  *        and HALF_DUPLEX != DUPLEX_HALF */
158
159                 if (adapter->link_duplex == FULL_DUPLEX)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
174 {
175         struct e1000_mac_info *mac = &adapter->hw.mac;
176
177         mac->autoneg = 0;
178
179         /* Fiber NICs only allow 1000 gbps Full duplex */
180         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
181                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
182                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
183                          "configuration\n");
184                 return -EINVAL;
185         }
186
187         switch (spddplx) {
188         case SPEED_10 + DUPLEX_HALF:
189                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
190                 break;
191         case SPEED_10 + DUPLEX_FULL:
192                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
193                 break;
194         case SPEED_100 + DUPLEX_HALF:
195                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
196                 break;
197         case SPEED_100 + DUPLEX_FULL:
198                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
199                 break;
200         case SPEED_1000 + DUPLEX_FULL:
201                 mac->autoneg = 1;
202                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
203                 break;
204         case SPEED_1000 + DUPLEX_HALF: /* not supported */
205         default:
206                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
207                          "configuration\n");
208                 return -EINVAL;
209         }
210         return 0;
211 }
212
213 static int e1000_set_settings(struct net_device *netdev,
214                               struct ethtool_cmd *ecmd)
215 {
216         struct e1000_adapter *adapter = netdev_priv(netdev);
217         struct e1000_hw *hw = &adapter->hw;
218
219         /* When SoL/IDER sessions are active, autoneg/speed/duplex
220          * cannot be changed */
221         if (e1000_check_reset_block(hw)) {
222                 ndev_err(netdev, "Cannot change link "
223                          "characteristics when SoL/IDER is active.\n");
224                 return -EINVAL;
225         }
226
227         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
228                 msleep(1);
229
230         if (ecmd->autoneg == AUTONEG_ENABLE) {
231                 hw->mac.autoneg = 1;
232                 if (hw->media_type == e1000_media_type_fiber)
233                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
234                                                      ADVERTISED_FIBRE |
235                                                      ADVERTISED_Autoneg;
236                 else
237                         hw->phy.autoneg_advertised = ecmd->advertising |
238                                                      ADVERTISED_TP |
239                                                      ADVERTISED_Autoneg;
240                 ecmd->advertising = hw->phy.autoneg_advertised;
241         } else {
242                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
243                         clear_bit(__E1000_RESETTING, &adapter->state);
244                         return -EINVAL;
245                 }
246         }
247
248         /* reset the link */
249
250         if (netif_running(adapter->netdev)) {
251                 e1000e_down(adapter);
252                 e1000e_up(adapter);
253         } else {
254                 e1000e_reset(adapter);
255         }
256
257         clear_bit(__E1000_RESETTING, &adapter->state);
258         return 0;
259 }
260
261 static void e1000_get_pauseparam(struct net_device *netdev,
262                                  struct ethtool_pauseparam *pause)
263 {
264         struct e1000_adapter *adapter = netdev_priv(netdev);
265         struct e1000_hw *hw = &adapter->hw;
266
267         pause->autoneg =
268                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
269
270         if (hw->mac.fc == e1000_fc_rx_pause) {
271                 pause->rx_pause = 1;
272         } else if (hw->mac.fc == e1000_fc_tx_pause) {
273                 pause->tx_pause = 1;
274         } else if (hw->mac.fc == e1000_fc_full) {
275                 pause->rx_pause = 1;
276                 pause->tx_pause = 1;
277         }
278 }
279
280 static int e1000_set_pauseparam(struct net_device *netdev,
281                                 struct ethtool_pauseparam *pause)
282 {
283         struct e1000_adapter *adapter = netdev_priv(netdev);
284         struct e1000_hw *hw = &adapter->hw;
285         int retval = 0;
286
287         adapter->fc_autoneg = pause->autoneg;
288
289         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
290                 msleep(1);
291
292         if (pause->rx_pause && pause->tx_pause)
293                 hw->mac.fc = e1000_fc_full;
294         else if (pause->rx_pause && !pause->tx_pause)
295                 hw->mac.fc = e1000_fc_rx_pause;
296         else if (!pause->rx_pause && pause->tx_pause)
297                 hw->mac.fc = e1000_fc_tx_pause;
298         else if (!pause->rx_pause && !pause->tx_pause)
299                 hw->mac.fc = e1000_fc_none;
300
301         hw->mac.original_fc = hw->mac.fc;
302
303         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
304                 hw->mac.fc = e1000_fc_default;
305                 if (netif_running(adapter->netdev)) {
306                         e1000e_down(adapter);
307                         e1000e_up(adapter);
308                 } else {
309                         e1000e_reset(adapter);
310                 }
311         } else {
312                 retval = ((hw->media_type == e1000_media_type_fiber) ?
313                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
314         }
315
316         clear_bit(__E1000_RESETTING, &adapter->state);
317         return retval;
318 }
319
320 static u32 e1000_get_rx_csum(struct net_device *netdev)
321 {
322         struct e1000_adapter *adapter = netdev_priv(netdev);
323         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
324 }
325
326 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
327 {
328         struct e1000_adapter *adapter = netdev_priv(netdev);
329
330         if (data)
331                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
332         else
333                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
334
335         if (netif_running(netdev))
336                 e1000e_reinit_locked(adapter);
337         else
338                 e1000e_reset(adapter);
339         return 0;
340 }
341
342 static u32 e1000_get_tx_csum(struct net_device *netdev)
343 {
344         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
345 }
346
347 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
348 {
349         if (data)
350                 netdev->features |= NETIF_F_HW_CSUM;
351         else
352                 netdev->features &= ~NETIF_F_HW_CSUM;
353
354         return 0;
355 }
356
357 static int e1000_set_tso(struct net_device *netdev, u32 data)
358 {
359         struct e1000_adapter *adapter = netdev_priv(netdev);
360
361         if (data) {
362                 netdev->features |= NETIF_F_TSO;
363                 netdev->features |= NETIF_F_TSO6;
364         } else {
365                 netdev->features &= ~NETIF_F_TSO;
366                 netdev->features &= ~NETIF_F_TSO6;
367         }
368
369         ndev_info(netdev, "TSO is %s\n",
370                   data ? "Enabled" : "Disabled");
371         adapter->flags |= FLAG_TSO_FORCE;
372         return 0;
373 }
374
375 static u32 e1000_get_msglevel(struct net_device *netdev)
376 {
377         struct e1000_adapter *adapter = netdev_priv(netdev);
378         return adapter->msg_enable;
379 }
380
381 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
382 {
383         struct e1000_adapter *adapter = netdev_priv(netdev);
384         adapter->msg_enable = data;
385 }
386
387 static int e1000_get_regs_len(struct net_device *netdev)
388 {
389 #define E1000_REGS_LEN 32 /* overestimate */
390         return E1000_REGS_LEN * sizeof(u32);
391 }
392
393 static void e1000_get_regs(struct net_device *netdev,
394                            struct ethtool_regs *regs, void *p)
395 {
396         struct e1000_adapter *adapter = netdev_priv(netdev);
397         struct e1000_hw *hw = &adapter->hw;
398         u32 *regs_buff = p;
399         u16 phy_data;
400         u8 revision_id;
401
402         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
403
404         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
405
406         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
407
408         regs_buff[0]  = er32(CTRL);
409         regs_buff[1]  = er32(STATUS);
410
411         regs_buff[2]  = er32(RCTL);
412         regs_buff[3]  = er32(RDLEN);
413         regs_buff[4]  = er32(RDH);
414         regs_buff[5]  = er32(RDT);
415         regs_buff[6]  = er32(RDTR);
416
417         regs_buff[7]  = er32(TCTL);
418         regs_buff[8]  = er32(TDLEN);
419         regs_buff[9]  = er32(TDH);
420         regs_buff[10] = er32(TDT);
421         regs_buff[11] = er32(TIDV);
422
423         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
424         if (hw->phy.type == e1000_phy_m88) {
425                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
426                 regs_buff[13] = (u32)phy_data; /* cable length */
427                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
429                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
430                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
431                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
432                 regs_buff[18] = regs_buff[13]; /* cable polarity */
433                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
434                 regs_buff[20] = regs_buff[17]; /* polarity correction */
435                 /* phy receive errors */
436                 regs_buff[22] = adapter->phy_stats.receive_errors;
437                 regs_buff[23] = regs_buff[13]; /* mdix mode */
438         }
439         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
440         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
441         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
442         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
443 }
444
445 static int e1000_get_eeprom_len(struct net_device *netdev)
446 {
447         struct e1000_adapter *adapter = netdev_priv(netdev);
448         return adapter->hw.nvm.word_size * 2;
449 }
450
451 static int e1000_get_eeprom(struct net_device *netdev,
452                             struct ethtool_eeprom *eeprom, u8 *bytes)
453 {
454         struct e1000_adapter *adapter = netdev_priv(netdev);
455         struct e1000_hw *hw = &adapter->hw;
456         u16 *eeprom_buff;
457         int first_word;
458         int last_word;
459         int ret_val = 0;
460         u16 i;
461
462         if (eeprom->len == 0)
463                 return -EINVAL;
464
465         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
466
467         first_word = eeprom->offset >> 1;
468         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
469
470         eeprom_buff = kmalloc(sizeof(u16) *
471                         (last_word - first_word + 1), GFP_KERNEL);
472         if (!eeprom_buff)
473                 return -ENOMEM;
474
475         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
476                 ret_val = e1000_read_nvm(hw, first_word,
477                                          last_word - first_word + 1,
478                                          eeprom_buff);
479         } else {
480                 for (i = 0; i < last_word - first_word + 1; i++) {
481                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
482                                                       &eeprom_buff[i]);
483                         if (ret_val)
484                                 break;
485                 }
486         }
487
488         /* Device's eeprom is always little-endian, word addressable */
489         for (i = 0; i < last_word - first_word + 1; i++)
490                 le16_to_cpus(&eeprom_buff[i]);
491
492         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
493         kfree(eeprom_buff);
494
495         return ret_val;
496 }
497
498 static int e1000_set_eeprom(struct net_device *netdev,
499                             struct ethtool_eeprom *eeprom, u8 *bytes)
500 {
501         struct e1000_adapter *adapter = netdev_priv(netdev);
502         struct e1000_hw *hw = &adapter->hw;
503         u16 *eeprom_buff;
504         void *ptr;
505         int max_len;
506         int first_word;
507         int last_word;
508         int ret_val = 0;
509         u16 i;
510
511         if (eeprom->len == 0)
512                 return -EOPNOTSUPP;
513
514         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
515                 return -EFAULT;
516
517         max_len = hw->nvm.word_size * 2;
518
519         first_word = eeprom->offset >> 1;
520         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
521         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
522         if (!eeprom_buff)
523                 return -ENOMEM;
524
525         ptr = (void *)eeprom_buff;
526
527         if (eeprom->offset & 1) {
528                 /* need read/modify/write of first changed EEPROM word */
529                 /* only the second byte of the word is being modified */
530                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
531                 ptr++;
532         }
533         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
534                 /* need read/modify/write of last changed EEPROM word */
535                 /* only the first byte of the word is being modified */
536                 ret_val = e1000_read_nvm(hw, last_word, 1,
537                                   &eeprom_buff[last_word - first_word]);
538
539         /* Device's eeprom is always little-endian, word addressable */
540         for (i = 0; i < last_word - first_word + 1; i++)
541                 le16_to_cpus(&eeprom_buff[i]);
542
543         memcpy(ptr, bytes, eeprom->len);
544
545         for (i = 0; i < last_word - first_word + 1; i++)
546                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
547
548         ret_val = e1000_write_nvm(hw, first_word,
549                                   last_word - first_word + 1, eeprom_buff);
550
551         /* Update the checksum over the first part of the EEPROM if needed
552          * and flush shadow RAM for 82573 controllers */
553         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
554                                (hw->mac.type == e1000_82573)))
555                 e1000e_update_nvm_checksum(hw);
556
557         kfree(eeprom_buff);
558         return ret_val;
559 }
560
561 static void e1000_get_drvinfo(struct net_device *netdev,
562                               struct ethtool_drvinfo *drvinfo)
563 {
564         struct e1000_adapter *adapter = netdev_priv(netdev);
565         char firmware_version[32];
566         u16 eeprom_data;
567
568         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
569         strncpy(drvinfo->version, e1000e_driver_version, 32);
570
571         /* EEPROM image version # is reported as firmware version # for
572          * PCI-E controllers */
573         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
574         sprintf(firmware_version, "%d.%d-%d",
575                 (eeprom_data & 0xF000) >> 12,
576                 (eeprom_data & 0x0FF0) >> 4,
577                 eeprom_data & 0x000F);
578
579         strncpy(drvinfo->fw_version, firmware_version, 32);
580         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
581         drvinfo->regdump_len = e1000_get_regs_len(netdev);
582         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
583 }
584
585 static void e1000_get_ringparam(struct net_device *netdev,
586                                 struct ethtool_ringparam *ring)
587 {
588         struct e1000_adapter *adapter = netdev_priv(netdev);
589         struct e1000_ring *tx_ring = adapter->tx_ring;
590         struct e1000_ring *rx_ring = adapter->rx_ring;
591
592         ring->rx_max_pending = E1000_MAX_RXD;
593         ring->tx_max_pending = E1000_MAX_TXD;
594         ring->rx_mini_max_pending = 0;
595         ring->rx_jumbo_max_pending = 0;
596         ring->rx_pending = rx_ring->count;
597         ring->tx_pending = tx_ring->count;
598         ring->rx_mini_pending = 0;
599         ring->rx_jumbo_pending = 0;
600 }
601
602 static int e1000_set_ringparam(struct net_device *netdev,
603                                struct ethtool_ringparam *ring)
604 {
605         struct e1000_adapter *adapter = netdev_priv(netdev);
606         struct e1000_ring *tx_ring, *tx_old;
607         struct e1000_ring *rx_ring, *rx_old;
608         int err;
609
610         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
611                 return -EINVAL;
612
613         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
614                 msleep(1);
615
616         if (netif_running(adapter->netdev))
617                 e1000e_down(adapter);
618
619         tx_old = adapter->tx_ring;
620         rx_old = adapter->rx_ring;
621
622         err = -ENOMEM;
623         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
624         if (!tx_ring)
625                 goto err_alloc_tx;
626
627         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
628         if (!rx_ring)
629                 goto err_alloc_rx;
630
631         adapter->tx_ring = tx_ring;
632         adapter->rx_ring = rx_ring;
633
634         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
635         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
636         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
637
638         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
639         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
640         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
641
642         if (netif_running(adapter->netdev)) {
643                 /* Try to get new resources before deleting old */
644                 err = e1000e_setup_rx_resources(adapter);
645                 if (err)
646                         goto err_setup_rx;
647                 err = e1000e_setup_tx_resources(adapter);
648                 if (err)
649                         goto err_setup_tx;
650
651                 /* save the new, restore the old in order to free it,
652                  * then restore the new back again */
653                 adapter->rx_ring = rx_old;
654                 adapter->tx_ring = tx_old;
655                 e1000e_free_rx_resources(adapter);
656                 e1000e_free_tx_resources(adapter);
657                 kfree(tx_old);
658                 kfree(rx_old);
659                 adapter->rx_ring = rx_ring;
660                 adapter->tx_ring = tx_ring;
661                 err = e1000e_up(adapter);
662                 if (err)
663                         goto err_setup;
664         }
665
666         clear_bit(__E1000_RESETTING, &adapter->state);
667         return 0;
668 err_setup_tx:
669         e1000e_free_rx_resources(adapter);
670 err_setup_rx:
671         adapter->rx_ring = rx_old;
672         adapter->tx_ring = tx_old;
673         kfree(rx_ring);
674 err_alloc_rx:
675         kfree(tx_ring);
676 err_alloc_tx:
677         e1000e_up(adapter);
678 err_setup:
679         clear_bit(__E1000_RESETTING, &adapter->state);
680         return err;
681 }
682
683 #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
684 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable)                  \
685 {                                                                             \
686         u32 _pat;                                                             \
687         u32 _value;                                                           \
688         u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};       \
689         for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) {                    \
690                 E1000_WRITE_REG_ARRAY(hw, reg, offset,        \
691                                       (_test[_pat] & writeable));             \
692                 _value = E1000_READ_REG_ARRAY(hw, reg, offset);     \
693                 if (_value != (_test[_pat] & writeable & mask)) {             \
694                         ndev_err(netdev, "pattern test reg %04X "             \
695                                  "failed: got 0x%08X expected 0x%08X\n",      \
696                                  reg + offset,  \
697                                  value, (_test[_pat] & writeable & mask));    \
698                         *data = reg;                                          \
699                         return 1;                                             \
700                 }                                                             \
701         }                                                                     \
702 }
703
704 #define REG_SET_AND_CHECK(R, M, W)                                            \
705 {                                                                             \
706         u32 _value;                                                           \
707         __ew32(hw, R, W & M);                                           \
708         _value = __er32(hw, R);                                         \
709         if ((W & M) != (_value & M)) {                                        \
710                 ndev_err(netdev, "set/check reg %04X test failed: "           \
711                          "got 0x%08X expected 0x%08X\n", R, (_value & M),     \
712                          (W & M));                                            \
713                 *data = R;                                                    \
714                 return 1;                                                     \
715         }                                                                     \
716 }
717
718 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
719 {
720         struct e1000_hw *hw = &adapter->hw;
721         struct e1000_mac_info *mac = &adapter->hw.mac;
722         struct net_device *netdev = adapter->netdev;
723         u32 value;
724         u32 before;
725         u32 after;
726         u32 i;
727         u32 toggle;
728
729         /* The status register is Read Only, so a write should fail.
730          * Some bits that get toggled are ignored.
731          */
732         switch (mac->type) {
733         /* there are several bits on newer hardware that are r/w */
734         case e1000_82571:
735         case e1000_82572:
736         case e1000_80003es2lan:
737                 toggle = 0x7FFFF3FF;
738                 break;
739         case e1000_82573:
740         case e1000_ich8lan:
741         case e1000_ich9lan:
742                 toggle = 0x7FFFF033;
743                 break;
744         default:
745                 toggle = 0xFFFFF833;
746                 break;
747         }
748
749         before = er32(STATUS);
750         value = (er32(STATUS) & toggle);
751         ew32(STATUS, toggle);
752         after = er32(STATUS) & toggle;
753         if (value != after) {
754                 ndev_err(netdev, "failed STATUS register test got: "
755                          "0x%08X expected: 0x%08X\n", after, value);
756                 *data = 1;
757                 return 1;
758         }
759         /* restore previous status */
760         ew32(STATUS, before);
761
762         if ((mac->type != e1000_ich8lan) &&
763             (mac->type != e1000_ich9lan)) {
764                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
765                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
766                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
767                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
768         }
769
770         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
771         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
772         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
773         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
774         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
775         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
776         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
777         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
778         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
780
781         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
782
783         before = (((mac->type == e1000_ich8lan) ||
784                    (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
785         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
786         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
787
788         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
789         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
790         if ((mac->type != e1000_ich8lan) &&
791             (mac->type != e1000_ich9lan))
792                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
793         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
794         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
795         for (i = 0; i < mac->rar_entry_count; i++)
796                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
797                                        0x8003FFFF, 0xFFFFFFFF);
798
799         for (i = 0; i < mac->mta_reg_count; i++)
800                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
801
802         *data = 0;
803         return 0;
804 }
805
806 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
807 {
808         u16 temp;
809         u16 checksum = 0;
810         u16 i;
811
812         *data = 0;
813         /* Read and add up the contents of the EEPROM */
814         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
815                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
816                         *data = 1;
817                         break;
818                 }
819                 checksum += temp;
820         }
821
822         /* If Checksum is not Correct return error else test passed */
823         if ((checksum != (u16) NVM_SUM) && !(*data))
824                 *data = 2;
825
826         return *data;
827 }
828
829 static irqreturn_t e1000_test_intr(int irq, void *data)
830 {
831         struct net_device *netdev = (struct net_device *) data;
832         struct e1000_adapter *adapter = netdev_priv(netdev);
833         struct e1000_hw *hw = &adapter->hw;
834
835         adapter->test_icr |= er32(ICR);
836
837         return IRQ_HANDLED;
838 }
839
840 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
841 {
842         struct net_device *netdev = adapter->netdev;
843         struct e1000_hw *hw = &adapter->hw;
844         u32 mask;
845         u32 shared_int = 1;
846         u32 irq = adapter->pdev->irq;
847         int i;
848
849         *data = 0;
850
851         /* NOTE: we don't test MSI interrupts here, yet */
852         /* Hook up test interrupt handler just for this test */
853         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
854                          netdev)) {
855                 shared_int = 0;
856         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
857                  netdev->name, netdev)) {
858                 *data = 1;
859                 return -1;
860         }
861         ndev_info(netdev, "testing %s interrupt\n",
862                   (shared_int ? "shared" : "unshared"));
863
864         /* Disable all the interrupts */
865         ew32(IMC, 0xFFFFFFFF);
866         msleep(10);
867
868         /* Test each interrupt */
869         for (i = 0; i < 10; i++) {
870
871                 if (((adapter->hw.mac.type == e1000_ich8lan) ||
872                      (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
873                         continue;
874
875                 /* Interrupt to test */
876                 mask = 1 << i;
877
878                 if (!shared_int) {
879                         /* Disable the interrupt to be reported in
880                          * the cause register and then force the same
881                          * interrupt and see if one gets posted.  If
882                          * an interrupt was posted to the bus, the
883                          * test failed.
884                          */
885                         adapter->test_icr = 0;
886                         ew32(IMC, mask);
887                         ew32(ICS, mask);
888                         msleep(10);
889
890                         if (adapter->test_icr & mask) {
891                                 *data = 3;
892                                 break;
893                         }
894                 }
895
896                 /* Enable the interrupt to be reported in
897                  * the cause register and then force the same
898                  * interrupt and see if one gets posted.  If
899                  * an interrupt was not posted to the bus, the
900                  * test failed.
901                  */
902                 adapter->test_icr = 0;
903                 ew32(IMS, mask);
904                 ew32(ICS, mask);
905                 msleep(10);
906
907                 if (!(adapter->test_icr & mask)) {
908                         *data = 4;
909                         break;
910                 }
911
912                 if (!shared_int) {
913                         /* Disable the other interrupts to be reported in
914                          * the cause register and then force the other
915                          * interrupts and see if any get posted.  If
916                          * an interrupt was posted to the bus, the
917                          * test failed.
918                          */
919                         adapter->test_icr = 0;
920                         ew32(IMC, ~mask & 0x00007FFF);
921                         ew32(ICS, ~mask & 0x00007FFF);
922                         msleep(10);
923
924                         if (adapter->test_icr) {
925                                 *data = 5;
926                                 break;
927                         }
928                 }
929         }
930
931         /* Disable all the interrupts */
932         ew32(IMC, 0xFFFFFFFF);
933         msleep(10);
934
935         /* Unhook test interrupt handler */
936         free_irq(irq, netdev);
937
938         return *data;
939 }
940
941 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
942 {
943         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
944         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
945         struct pci_dev *pdev = adapter->pdev;
946         int i;
947
948         if (tx_ring->desc && tx_ring->buffer_info) {
949                 for (i = 0; i < tx_ring->count; i++) {
950                         if (tx_ring->buffer_info[i].dma)
951                                 pci_unmap_single(pdev,
952                                         tx_ring->buffer_info[i].dma,
953                                         tx_ring->buffer_info[i].length,
954                                         PCI_DMA_TODEVICE);
955                         if (tx_ring->buffer_info[i].skb)
956                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
957                 }
958         }
959
960         if (rx_ring->desc && rx_ring->buffer_info) {
961                 for (i = 0; i < rx_ring->count; i++) {
962                         if (rx_ring->buffer_info[i].dma)
963                                 pci_unmap_single(pdev,
964                                         rx_ring->buffer_info[i].dma,
965                                         2048, PCI_DMA_FROMDEVICE);
966                         if (rx_ring->buffer_info[i].skb)
967                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
968                 }
969         }
970
971         if (tx_ring->desc) {
972                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
973                                   tx_ring->dma);
974                 tx_ring->desc = NULL;
975         }
976         if (rx_ring->desc) {
977                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
978                                   rx_ring->dma);
979                 rx_ring->desc = NULL;
980         }
981
982         kfree(tx_ring->buffer_info);
983         tx_ring->buffer_info = NULL;
984         kfree(rx_ring->buffer_info);
985         rx_ring->buffer_info = NULL;
986 }
987
988 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
989 {
990         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
991         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
992         struct pci_dev *pdev = adapter->pdev;
993         struct e1000_hw *hw = &adapter->hw;
994         u32 rctl;
995         int size;
996         int i;
997         int ret_val;
998
999         /* Setup Tx descriptor ring and Tx buffers */
1000
1001         if (!tx_ring->count)
1002                 tx_ring->count = E1000_DEFAULT_TXD;
1003
1004         size = tx_ring->count * sizeof(struct e1000_buffer);
1005         tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1006         if (!tx_ring->buffer_info) {
1007                 ret_val = 1;
1008                 goto err_nomem;
1009         }
1010         memset(tx_ring->buffer_info, 0, size);
1011
1012         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1013         tx_ring->size = ALIGN(tx_ring->size, 4096);
1014         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1015                                            &tx_ring->dma, GFP_KERNEL);
1016         if (!tx_ring->desc) {
1017                 ret_val = 2;
1018                 goto err_nomem;
1019         }
1020         memset(tx_ring->desc, 0, tx_ring->size);
1021         tx_ring->next_to_use = 0;
1022         tx_ring->next_to_clean = 0;
1023
1024         ew32(TDBAL,
1025                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1026         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1027         ew32(TDLEN,
1028                         tx_ring->count * sizeof(struct e1000_tx_desc));
1029         ew32(TDH, 0);
1030         ew32(TDT, 0);
1031         ew32(TCTL,
1032                         E1000_TCTL_PSP | E1000_TCTL_EN |
1033                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1034                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1035
1036         for (i = 0; i < tx_ring->count; i++) {
1037                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1038                 struct sk_buff *skb;
1039                 unsigned int skb_size = 1024;
1040
1041                 skb = alloc_skb(skb_size, GFP_KERNEL);
1042                 if (!skb) {
1043                         ret_val = 3;
1044                         goto err_nomem;
1045                 }
1046                 skb_put(skb, skb_size);
1047                 tx_ring->buffer_info[i].skb = skb;
1048                 tx_ring->buffer_info[i].length = skb->len;
1049                 tx_ring->buffer_info[i].dma =
1050                         pci_map_single(pdev, skb->data, skb->len,
1051                                        PCI_DMA_TODEVICE);
1052                 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1053                         ret_val = 4;
1054                         goto err_nomem;
1055                 }
1056                 tx_desc->buffer_addr = cpu_to_le64(
1057                                          tx_ring->buffer_info[i].dma);
1058                 tx_desc->lower.data = cpu_to_le32(skb->len);
1059                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1060                                                    E1000_TXD_CMD_IFCS |
1061                                                    E1000_TXD_CMD_RPS);
1062                 tx_desc->upper.data = 0;
1063         }
1064
1065         /* Setup Rx descriptor ring and Rx buffers */
1066
1067         if (!rx_ring->count)
1068                 rx_ring->count = E1000_DEFAULT_RXD;
1069
1070         size = rx_ring->count * sizeof(struct e1000_buffer);
1071         rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1072         if (!rx_ring->buffer_info) {
1073                 ret_val = 5;
1074                 goto err_nomem;
1075         }
1076         memset(rx_ring->buffer_info, 0, size);
1077
1078         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1079         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1080                                            &rx_ring->dma, GFP_KERNEL);
1081         if (!rx_ring->desc) {
1082                 ret_val = 6;
1083                 goto err_nomem;
1084         }
1085         memset(rx_ring->desc, 0, rx_ring->size);
1086         rx_ring->next_to_use = 0;
1087         rx_ring->next_to_clean = 0;
1088
1089         rctl = er32(RCTL);
1090         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1091         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1092         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1093         ew32(RDLEN, rx_ring->size);
1094         ew32(RDH, 0);
1095         ew32(RDT, 0);
1096         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1097                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1098                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1099         ew32(RCTL, rctl);
1100
1101         for (i = 0; i < rx_ring->count; i++) {
1102                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1103                 struct sk_buff *skb;
1104
1105                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1106                 if (!skb) {
1107                         ret_val = 7;
1108                         goto err_nomem;
1109                 }
1110                 skb_reserve(skb, NET_IP_ALIGN);
1111                 rx_ring->buffer_info[i].skb = skb;
1112                 rx_ring->buffer_info[i].dma =
1113                         pci_map_single(pdev, skb->data, 2048,
1114                                        PCI_DMA_FROMDEVICE);
1115                 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1116                         ret_val = 8;
1117                         goto err_nomem;
1118                 }
1119                 rx_desc->buffer_addr =
1120                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1121                 memset(skb->data, 0x00, skb->len);
1122         }
1123
1124         return 0;
1125
1126 err_nomem:
1127         e1000_free_desc_rings(adapter);
1128         return ret_val;
1129 }
1130
1131 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1132 {
1133         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1134         e1e_wphy(&adapter->hw, 29, 0x001F);
1135         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1136         e1e_wphy(&adapter->hw, 29, 0x001A);
1137         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1138 }
1139
1140 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1141 {
1142         struct e1000_hw *hw = &adapter->hw;
1143         u32 ctrl_reg = 0;
1144         u32 stat_reg = 0;
1145
1146         adapter->hw.mac.autoneg = 0;
1147
1148         if (adapter->hw.phy.type == e1000_phy_m88) {
1149                 /* Auto-MDI/MDIX Off */
1150                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1151                 /* reset to update Auto-MDI/MDIX */
1152                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1153                 /* autoneg off */
1154                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1155         } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1156                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1157
1158         ctrl_reg = er32(CTRL);
1159
1160         if (adapter->hw.phy.type == e1000_phy_ife) {
1161                 /* force 100, set loopback */
1162                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1163
1164                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1165                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1166                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1167                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1168                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1169                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1170         } else {
1171                 /* force 1000, set loopback */
1172                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1173
1174                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1175                 ctrl_reg = er32(CTRL);
1176                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1177                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1178                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1179                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1180                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1181         }
1182
1183         if (adapter->hw.media_type == e1000_media_type_copper &&
1184            adapter->hw.phy.type == e1000_phy_m88) {
1185                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1186         } else {
1187                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1188                  * detected. */
1189                 stat_reg = er32(STATUS);
1190                 if ((stat_reg & E1000_STATUS_FD) == 0)
1191                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1192         }
1193
1194         ew32(CTRL, ctrl_reg);
1195
1196         /* Disable the receiver on the PHY so when a cable is plugged in, the
1197          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1198          */
1199         if (adapter->hw.phy.type == e1000_phy_m88)
1200                 e1000_phy_disable_receiver(adapter);
1201
1202         udelay(500);
1203
1204         return 0;
1205 }
1206
1207 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1208 {
1209         struct e1000_hw *hw = &adapter->hw;
1210         u32 ctrl = er32(CTRL);
1211         int link = 0;
1212
1213         /* special requirements for 82571/82572 fiber adapters */
1214
1215         /* jump through hoops to make sure link is up because serdes
1216          * link is hardwired up */
1217         ctrl |= E1000_CTRL_SLU;
1218         ew32(CTRL, ctrl);
1219
1220         /* disable autoneg */
1221         ctrl = er32(TXCW);
1222         ctrl &= ~(1 << 31);
1223         ew32(TXCW, ctrl);
1224
1225         link = (er32(STATUS) & E1000_STATUS_LU);
1226
1227         if (!link) {
1228                 /* set invert loss of signal */
1229                 ctrl = er32(CTRL);
1230                 ctrl |= E1000_CTRL_ILOS;
1231                 ew32(CTRL, ctrl);
1232         }
1233
1234         /* special write to serdes control register to enable SerDes analog
1235          * loopback */
1236 #define E1000_SERDES_LB_ON 0x410
1237         ew32(SCTL, E1000_SERDES_LB_ON);
1238         msleep(10);
1239
1240         return 0;
1241 }
1242
1243 /* only call this for fiber/serdes connections to es2lan */
1244 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1245 {
1246         struct e1000_hw *hw = &adapter->hw;
1247         u32 ctrlext = er32(CTRL_EXT);
1248         u32 ctrl = er32(CTRL);
1249
1250         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1251            on mac_type 80003es2lan) */
1252         adapter->tx_fifo_head = ctrlext;
1253
1254         /* clear the serdes mode bits, putting the device into mac loopback */
1255         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1256         ew32(CTRL_EXT, ctrlext);
1257
1258         /* force speed to 1000/FD, link up */
1259         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1260         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1261                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1262         ew32(CTRL, ctrl);
1263
1264         /* set mac loopback */
1265         ctrl = er32(RCTL);
1266         ctrl |= E1000_RCTL_LBM_MAC;
1267         ew32(RCTL, ctrl);
1268
1269         /* set testing mode parameters (no need to reset later) */
1270 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1271 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1272         ew32(KMRNCTRLSTA,
1273                 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1274
1275         return 0;
1276 }
1277
1278 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1279 {
1280         struct e1000_hw *hw = &adapter->hw;
1281         u32 rctl;
1282
1283         if (hw->media_type == e1000_media_type_fiber ||
1284             hw->media_type == e1000_media_type_internal_serdes) {
1285                 switch (hw->mac.type) {
1286                 case e1000_80003es2lan:
1287                         return e1000_set_es2lan_mac_loopback(adapter);
1288                         break;
1289                 case e1000_82571:
1290                 case e1000_82572:
1291                         return e1000_set_82571_fiber_loopback(adapter);
1292                         break;
1293                 default:
1294                         rctl = er32(RCTL);
1295                         rctl |= E1000_RCTL_LBM_TCVR;
1296                         ew32(RCTL, rctl);
1297                         return 0;
1298                 }
1299         } else if (hw->media_type == e1000_media_type_copper) {
1300                 return e1000_integrated_phy_loopback(adapter);
1301         }
1302
1303         return 7;
1304 }
1305
1306 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1307 {
1308         struct e1000_hw *hw = &adapter->hw;
1309         u32 rctl;
1310         u16 phy_reg;
1311
1312         rctl = er32(RCTL);
1313         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1314         ew32(RCTL, rctl);
1315
1316         switch (hw->mac.type) {
1317         case e1000_80003es2lan:
1318                 if (hw->media_type == e1000_media_type_fiber ||
1319                     hw->media_type == e1000_media_type_internal_serdes) {
1320                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1321                         ew32(CTRL_EXT,
1322                                         adapter->tx_fifo_head);
1323                         adapter->tx_fifo_head = 0;
1324                 }
1325                 /* fall through */
1326         case e1000_82571:
1327         case e1000_82572:
1328                 if (hw->media_type == e1000_media_type_fiber ||
1329                     hw->media_type == e1000_media_type_internal_serdes) {
1330 #define E1000_SERDES_LB_OFF 0x400
1331                         ew32(SCTL, E1000_SERDES_LB_OFF);
1332                         msleep(10);
1333                         break;
1334                 }
1335                 /* Fall Through */
1336         default:
1337                 hw->mac.autoneg = 1;
1338                 if (hw->phy.type == e1000_phy_gg82563)
1339                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1340                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1341                 if (phy_reg & MII_CR_LOOPBACK) {
1342                         phy_reg &= ~MII_CR_LOOPBACK;
1343                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1344                         e1000e_commit_phy(hw);
1345                 }
1346                 break;
1347         }
1348 }
1349
1350 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1351                                       unsigned int frame_size)
1352 {
1353         memset(skb->data, 0xFF, frame_size);
1354         frame_size &= ~1;
1355         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1356         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1357         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1358 }
1359
1360 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1361                                     unsigned int frame_size)
1362 {
1363         frame_size &= ~1;
1364         if (*(skb->data + 3) == 0xFF)
1365                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1366                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1367                         return 0;
1368         return 13;
1369 }
1370
1371 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1372 {
1373         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1374         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1375         struct pci_dev *pdev = adapter->pdev;
1376         struct e1000_hw *hw = &adapter->hw;
1377         int i, j, k, l;
1378         int lc;
1379         int good_cnt;
1380         int ret_val = 0;
1381         unsigned long time;
1382
1383         ew32(RDT, rx_ring->count - 1);
1384
1385         /* Calculate the loop count based on the largest descriptor ring
1386          * The idea is to wrap the largest ring a number of times using 64
1387          * send/receive pairs during each loop
1388          */
1389
1390         if (rx_ring->count <= tx_ring->count)
1391                 lc = ((tx_ring->count / 64) * 2) + 1;
1392         else
1393                 lc = ((rx_ring->count / 64) * 2) + 1;
1394
1395         k = 0;
1396         l = 0;
1397         for (j = 0; j <= lc; j++) { /* loop count loop */
1398                 for (i = 0; i < 64; i++) { /* send the packets */
1399                         e1000_create_lbtest_frame(
1400                                 tx_ring->buffer_info[i].skb, 1024);
1401                         pci_dma_sync_single_for_device(pdev,
1402                                         tx_ring->buffer_info[k].dma,
1403                                         tx_ring->buffer_info[k].length,
1404                                         PCI_DMA_TODEVICE);
1405                         k++;
1406                         if (k == tx_ring->count)
1407                                 k = 0;
1408                 }
1409                 ew32(TDT, k);
1410                 msleep(200);
1411                 time = jiffies; /* set the start time for the receive */
1412                 good_cnt = 0;
1413                 do { /* receive the sent packets */
1414                         pci_dma_sync_single_for_cpu(pdev,
1415                                         rx_ring->buffer_info[l].dma, 2048,
1416                                         PCI_DMA_FROMDEVICE);
1417
1418                         ret_val = e1000_check_lbtest_frame(
1419                                         rx_ring->buffer_info[l].skb, 1024);
1420                         if (!ret_val)
1421                                 good_cnt++;
1422                         l++;
1423                         if (l == rx_ring->count)
1424                                 l = 0;
1425                         /* time + 20 msecs (200 msecs on 2.4) is more than
1426                          * enough time to complete the receives, if it's
1427                          * exceeded, break and error off
1428                          */
1429                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1430                 if (good_cnt != 64) {
1431                         ret_val = 13; /* ret_val is the same as mis-compare */
1432                         break;
1433                 }
1434                 if (jiffies >= (time + 2)) {
1435                         ret_val = 14; /* error code for time out error */
1436                         break;
1437                 }
1438         } /* end loop count loop */
1439         return ret_val;
1440 }
1441
1442 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1443 {
1444         /* PHY loopback cannot be performed if SoL/IDER
1445          * sessions are active */
1446         if (e1000_check_reset_block(&adapter->hw)) {
1447                 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1448                          "when SoL/IDER is active.\n");
1449                 *data = 0;
1450                 goto out;
1451         }
1452
1453         *data = e1000_setup_desc_rings(adapter);
1454         if (data)
1455                 goto out;
1456
1457         *data = e1000_setup_loopback_test(adapter);
1458         if (data)
1459                 goto err_loopback;
1460
1461         *data = e1000_run_loopback_test(adapter);
1462         e1000_loopback_cleanup(adapter);
1463
1464 err_loopback:
1465         e1000_free_desc_rings(adapter);
1466 out:
1467         return *data;
1468 }
1469
1470 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1471 {
1472         struct e1000_hw *hw = &adapter->hw;
1473
1474         *data = 0;
1475         if (hw->media_type == e1000_media_type_internal_serdes) {
1476                 int i = 0;
1477                 hw->mac.serdes_has_link = 0;
1478
1479                 /* On some blade server designs, link establishment
1480                  * could take as long as 2-3 minutes */
1481                 do {
1482                         hw->mac.ops.check_for_link(hw);
1483                         if (hw->mac.serdes_has_link)
1484                                 return *data;
1485                         msleep(20);
1486                 } while (i++ < 3750);
1487
1488                 *data = 1;
1489         } else {
1490                 hw->mac.ops.check_for_link(hw);
1491                 if (hw->mac.autoneg)
1492                         msleep(4000);
1493
1494                 if (!(er32(STATUS) &
1495                       E1000_STATUS_LU))
1496                         *data = 1;
1497         }
1498         return *data;
1499 }
1500
1501 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1502 {
1503         switch (sset) {
1504         case ETH_SS_TEST:
1505                 return E1000_TEST_LEN;
1506         case ETH_SS_STATS:
1507                 return E1000_STATS_LEN;
1508         default:
1509                 return -EOPNOTSUPP;
1510         }
1511 }
1512
1513 static void e1000_diag_test(struct net_device *netdev,
1514                             struct ethtool_test *eth_test, u64 *data)
1515 {
1516         struct e1000_adapter *adapter = netdev_priv(netdev);
1517         u16 autoneg_advertised;
1518         u8 forced_speed_duplex;
1519         u8 autoneg;
1520         bool if_running = netif_running(netdev);
1521
1522         set_bit(__E1000_TESTING, &adapter->state);
1523         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1524                 /* Offline tests */
1525
1526                 /* save speed, duplex, autoneg settings */
1527                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1528                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1529                 autoneg = adapter->hw.mac.autoneg;
1530
1531                 ndev_info(netdev, "offline testing starting\n");
1532
1533                 /* Link test performed before hardware reset so autoneg doesn't
1534                  * interfere with test result */
1535                 if (e1000_link_test(adapter, &data[4]))
1536                         eth_test->flags |= ETH_TEST_FL_FAILED;
1537
1538                 if (if_running)
1539                         /* indicate we're in test mode */
1540                         dev_close(netdev);
1541                 else
1542                         e1000e_reset(adapter);
1543
1544                 if (e1000_reg_test(adapter, &data[0]))
1545                         eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547                 e1000e_reset(adapter);
1548                 if (e1000_eeprom_test(adapter, &data[1]))
1549                         eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551                 e1000e_reset(adapter);
1552                 if (e1000_intr_test(adapter, &data[2]))
1553                         eth_test->flags |= ETH_TEST_FL_FAILED;
1554
1555                 e1000e_reset(adapter);
1556                 /* make sure the phy is powered up */
1557                 e1000e_power_up_phy(adapter);
1558                 if (e1000_loopback_test(adapter, &data[3]))
1559                         eth_test->flags |= ETH_TEST_FL_FAILED;
1560
1561                 /* restore speed, duplex, autoneg settings */
1562                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1563                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1564                 adapter->hw.mac.autoneg = autoneg;
1565
1566                 /* force this routine to wait until autoneg complete/timeout */
1567                 adapter->hw.phy.wait_for_link = 1;
1568                 e1000e_reset(adapter);
1569                 adapter->hw.phy.wait_for_link = 0;
1570
1571                 clear_bit(__E1000_TESTING, &adapter->state);
1572                 if (if_running)
1573                         dev_open(netdev);
1574         } else {
1575                 ndev_info(netdev, "online testing starting\n");
1576                 /* Online tests */
1577                 if (e1000_link_test(adapter, &data[4]))
1578                         eth_test->flags |= ETH_TEST_FL_FAILED;
1579
1580                 /* Online tests aren't run; pass by default */
1581                 data[0] = 0;
1582                 data[1] = 0;
1583                 data[2] = 0;
1584                 data[3] = 0;
1585
1586                 clear_bit(__E1000_TESTING, &adapter->state);
1587         }
1588         msleep_interruptible(4 * 1000);
1589 }
1590
1591 static void e1000_get_wol(struct net_device *netdev,
1592                           struct ethtool_wolinfo *wol)
1593 {
1594         struct e1000_adapter *adapter = netdev_priv(netdev);
1595
1596         wol->supported = 0;
1597         wol->wolopts = 0;
1598
1599         if (!(adapter->flags & FLAG_HAS_WOL))
1600                 return;
1601
1602         wol->supported = WAKE_UCAST | WAKE_MCAST |
1603                          WAKE_BCAST | WAKE_MAGIC;
1604
1605         /* apply any specific unsupported masks here */
1606         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1607                 wol->supported &= ~WAKE_UCAST;
1608
1609                 if (adapter->wol & E1000_WUFC_EX)
1610                         ndev_err(netdev, "Interface does not support "
1611                                  "directed (unicast) frame wake-up packets\n");
1612         }
1613
1614         if (adapter->wol & E1000_WUFC_EX)
1615                 wol->wolopts |= WAKE_UCAST;
1616         if (adapter->wol & E1000_WUFC_MC)
1617                 wol->wolopts |= WAKE_MCAST;
1618         if (adapter->wol & E1000_WUFC_BC)
1619                 wol->wolopts |= WAKE_BCAST;
1620         if (adapter->wol & E1000_WUFC_MAG)
1621                 wol->wolopts |= WAKE_MAGIC;
1622 }
1623
1624 static int e1000_set_wol(struct net_device *netdev,
1625                          struct ethtool_wolinfo *wol)
1626 {
1627         struct e1000_adapter *adapter = netdev_priv(netdev);
1628
1629         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1630                 return -EOPNOTSUPP;
1631
1632         if (!(adapter->flags & FLAG_HAS_WOL))
1633                 return wol->wolopts ? -EOPNOTSUPP : 0;
1634
1635         /* these settings will always override what we currently have */
1636         adapter->wol = 0;
1637
1638         if (wol->wolopts & WAKE_UCAST)
1639                 adapter->wol |= E1000_WUFC_EX;
1640         if (wol->wolopts & WAKE_MCAST)
1641                 adapter->wol |= E1000_WUFC_MC;
1642         if (wol->wolopts & WAKE_BCAST)
1643                 adapter->wol |= E1000_WUFC_BC;
1644         if (wol->wolopts & WAKE_MAGIC)
1645                 adapter->wol |= E1000_WUFC_MAG;
1646
1647         return 0;
1648 }
1649
1650 /* toggle LED 4 times per second = 2 "blinks" per second */
1651 #define E1000_ID_INTERVAL       (HZ/4)
1652
1653 /* bit defines for adapter->led_status */
1654 #define E1000_LED_ON            0
1655
1656 static void e1000_led_blink_callback(unsigned long data)
1657 {
1658         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1659
1660         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1661                 adapter->hw.mac.ops.led_off(&adapter->hw);
1662         else
1663                 adapter->hw.mac.ops.led_on(&adapter->hw);
1664
1665         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1666 }
1667
1668 static int e1000_phys_id(struct net_device *netdev, u32 data)
1669 {
1670         struct e1000_adapter *adapter = netdev_priv(netdev);
1671
1672         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1673                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1674
1675         if (adapter->hw.phy.type == e1000_phy_ife) {
1676                 if (!adapter->blink_timer.function) {
1677                         init_timer(&adapter->blink_timer);
1678                         adapter->blink_timer.function =
1679                                 e1000_led_blink_callback;
1680                         adapter->blink_timer.data = (unsigned long) adapter;
1681                 }
1682                 mod_timer(&adapter->blink_timer, jiffies);
1683                 msleep_interruptible(data * 1000);
1684                 del_timer_sync(&adapter->blink_timer);
1685                 e1e_wphy(&adapter->hw,
1686                                     IFE_PHY_SPECIAL_CONTROL_LED, 0);
1687         } else {
1688                 e1000e_blink_led(&adapter->hw);
1689                 msleep_interruptible(data * 1000);
1690         }
1691
1692         adapter->hw.mac.ops.led_off(&adapter->hw);
1693         clear_bit(E1000_LED_ON, &adapter->led_status);
1694         adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1695
1696         return 0;
1697 }
1698
1699 static int e1000_nway_reset(struct net_device *netdev)
1700 {
1701         struct e1000_adapter *adapter = netdev_priv(netdev);
1702         if (netif_running(netdev))
1703                 e1000e_reinit_locked(adapter);
1704         return 0;
1705 }
1706
1707 static void e1000_get_ethtool_stats(struct net_device *netdev,
1708                                     struct ethtool_stats *stats,
1709                                     u64 *data)
1710 {
1711         struct e1000_adapter *adapter = netdev_priv(netdev);
1712         int i;
1713
1714         e1000e_update_stats(adapter);
1715         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1716                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1717                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1718                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1719         }
1720 }
1721
1722 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1723                               u8 *data)
1724 {
1725         u8 *p = data;
1726         int i;
1727
1728         switch (stringset) {
1729         case ETH_SS_TEST:
1730                 memcpy(data, *e1000_gstrings_test,
1731                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1732                 break;
1733         case ETH_SS_STATS:
1734                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1735                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1736                                ETH_GSTRING_LEN);
1737                         p += ETH_GSTRING_LEN;
1738                 }
1739                 break;
1740         }
1741 }
1742
1743 static const struct ethtool_ops e1000_ethtool_ops = {
1744         .get_settings           = e1000_get_settings,
1745         .set_settings           = e1000_set_settings,
1746         .get_drvinfo            = e1000_get_drvinfo,
1747         .get_regs_len           = e1000_get_regs_len,
1748         .get_regs               = e1000_get_regs,
1749         .get_wol                = e1000_get_wol,
1750         .set_wol                = e1000_set_wol,
1751         .get_msglevel           = e1000_get_msglevel,
1752         .set_msglevel           = e1000_set_msglevel,
1753         .nway_reset             = e1000_nway_reset,
1754         .get_link               = ethtool_op_get_link,
1755         .get_eeprom_len         = e1000_get_eeprom_len,
1756         .get_eeprom             = e1000_get_eeprom,
1757         .set_eeprom             = e1000_set_eeprom,
1758         .get_ringparam          = e1000_get_ringparam,
1759         .set_ringparam          = e1000_set_ringparam,
1760         .get_pauseparam         = e1000_get_pauseparam,
1761         .set_pauseparam         = e1000_set_pauseparam,
1762         .get_rx_csum            = e1000_get_rx_csum,
1763         .set_rx_csum            = e1000_set_rx_csum,
1764         .get_tx_csum            = e1000_get_tx_csum,
1765         .set_tx_csum            = e1000_set_tx_csum,
1766         .get_sg                 = ethtool_op_get_sg,
1767         .set_sg                 = ethtool_op_set_sg,
1768         .get_tso                = ethtool_op_get_tso,
1769         .set_tso                = e1000_set_tso,
1770         .self_test              = e1000_diag_test,
1771         .get_strings            = e1000_get_strings,
1772         .phys_id                = e1000_phys_id,
1773         .get_ethtool_stats      = e1000_get_ethtool_stats,
1774         .get_sset_count         = e1000e_get_sset_count,
1775 };
1776
1777 void e1000e_set_ethtool_ops(struct net_device *netdev)
1778 {
1779         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1780 }