3 * Alchemy Au1x00 ethernet driver
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
18 * ########################################################################
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
33 * ########################################################################
37 #include <linux/dma-mapping.h>
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/string.h>
41 #include <linux/timer.h>
42 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/bitops.h>
46 #include <linux/slab.h>
47 #include <linux/interrupt.h>
48 #include <linux/init.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/ethtool.h>
52 #include <linux/mii.h>
53 #include <linux/skbuff.h>
54 #include <linux/delay.h>
55 #include <linux/crc32.h>
56 #include <linux/phy.h>
59 #include <asm/mipsregs.h>
62 #include <asm/processor.h>
67 #include "au1000_eth.h"
69 #ifdef AU1000_ETH_DEBUG
70 static int au1000_debug = 5;
72 static int au1000_debug = 3;
75 #define DRV_NAME "au1000_eth"
76 #define DRV_VERSION "1.6"
77 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
78 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
80 MODULE_AUTHOR(DRV_AUTHOR);
81 MODULE_DESCRIPTION(DRV_DESC);
82 MODULE_LICENSE("GPL");
85 static void hard_stop(struct net_device *);
86 static void enable_rx_tx(struct net_device *dev);
87 static struct net_device * au1000_probe(int port_num);
88 static int au1000_init(struct net_device *);
89 static int au1000_open(struct net_device *);
90 static int au1000_close(struct net_device *);
91 static int au1000_tx(struct sk_buff *, struct net_device *);
92 static int au1000_rx(struct net_device *);
93 static irqreturn_t au1000_interrupt(int, void *);
94 static void au1000_tx_timeout(struct net_device *);
95 static void set_rx_mode(struct net_device *);
96 static int au1000_ioctl(struct net_device *, struct ifreq *, int);
97 static int au1000_mdio_read(struct net_device *, int, int);
98 static void au1000_mdio_write(struct net_device *, int, int, u16);
99 static void au1000_adjust_link(struct net_device *);
100 static void enable_mac(struct net_device *, int);
103 * Theory of operation
105 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
106 * There are four receive and four transmit descriptors. These
107 * descriptors are not in memory; rather, they are just a set of
108 * hardware registers.
110 * Since the Au1000 has a coherent data cache, the receive and
111 * transmit buffers are allocated from the KSEG0 segment. The
112 * hardware registers, however, are still mapped at KSEG1 to
113 * make sure there's no out-of-order writes, and that all writes
114 * complete immediately.
117 /* These addresses are only used if yamon doesn't tell us what
118 * the mac address is, and the mac address is not passed on the
121 static unsigned char au1000_mac_addr[6] __devinitdata = {
122 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
125 struct au1000_private *au_macs[NUM_ETH_INTERFACES];
128 * board-specific configurations
130 * PHY detection algorithm
132 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
135 * mii_probe() first searches the current MAC's MII bus for a PHY,
136 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
137 * defined) PHY address not already claimed by another netdev.
139 * If nothing was found that way when searching for the 2nd ethernet
140 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
141 * the first MII bus is searched as well for an unclaimed PHY; this is
142 * needed in case of a dual-PHY accessible only through the MAC0's MII
145 * Finally, if no PHY is found, then the corresponding ethernet
146 * controller is not registered to the network subsystem.
149 /* autodetection defaults */
150 #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
151 #define AU1XXX_PHY1_SEARCH_ON_MAC0
155 * most boards PHY setup should be detectable properly with the
156 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
157 * you have a switch attached, or want to use the PHY's interrupt
158 * notification capabilities) you can provide a static PHY
161 * IRQs may only be set, if a PHY address was configured
162 * If a PHY address is given, also a bus id is required to be set
164 * ps: make sure the used irqs are configured properly in the board
168 #if defined(CONFIG_MIPS_BOSPORUS)
170 * Micrel/Kendin 5 port switch attached to MAC0,
171 * MAC0 is associated with PHY address 5 (== WAN port)
172 * MAC1 is not associated with any PHY, since it's connected directly
174 * no interrupts are used
176 # define AU1XXX_PHY_STATIC_CONFIG
178 # define AU1XXX_PHY0_ADDR 5
179 # define AU1XXX_PHY0_BUSID 0
180 # undef AU1XXX_PHY0_IRQ
182 # undef AU1XXX_PHY1_ADDR
183 # undef AU1XXX_PHY1_BUSID
184 # undef AU1XXX_PHY1_IRQ
187 #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
188 # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
194 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
196 struct au1000_private *aup = (struct au1000_private *) dev->priv;
197 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
198 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
202 while (*mii_control_reg & MAC_MII_BUSY) {
204 if (--timedout == 0) {
205 printk(KERN_ERR "%s: read_MII busy timeout!!\n",
211 mii_control = MAC_SET_MII_SELECT_REG(reg) |
212 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
214 *mii_control_reg = mii_control;
217 while (*mii_control_reg & MAC_MII_BUSY) {
219 if (--timedout == 0) {
220 printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
225 return (int)*mii_data_reg;
228 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
231 struct au1000_private *aup = (struct au1000_private *) dev->priv;
232 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
233 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
237 while (*mii_control_reg & MAC_MII_BUSY) {
239 if (--timedout == 0) {
240 printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
246 mii_control = MAC_SET_MII_SELECT_REG(reg) |
247 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
249 *mii_data_reg = value;
250 *mii_control_reg = mii_control;
253 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
255 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
256 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
257 struct net_device *const dev = bus->priv;
259 enable_mac(dev, 0); /* make sure the MAC associated with this
260 * mii_bus is enabled */
261 return au1000_mdio_read(dev, phy_addr, regnum);
264 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
267 struct net_device *const dev = bus->priv;
269 enable_mac(dev, 0); /* make sure the MAC associated with this
270 * mii_bus is enabled */
271 au1000_mdio_write(dev, phy_addr, regnum, value);
275 static int au1000_mdiobus_reset(struct mii_bus *bus)
277 struct net_device *const dev = bus->priv;
279 enable_mac(dev, 0); /* make sure the MAC associated with this
280 * mii_bus is enabled */
284 static int mii_probe (struct net_device *dev)
286 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
287 struct phy_device *phydev = NULL;
289 #if defined(AU1XXX_PHY_STATIC_CONFIG)
290 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
292 if(aup->mac_id == 0) { /* get PHY0 */
293 # if defined(AU1XXX_PHY0_ADDR)
294 phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus->phy_map[AU1XXX_PHY0_ADDR];
296 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
299 # endif /* defined(AU1XXX_PHY0_ADDR) */
300 } else if (aup->mac_id == 1) { /* get PHY1 */
301 # if defined(AU1XXX_PHY1_ADDR)
302 phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus->phy_map[AU1XXX_PHY1_ADDR];
304 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
307 # endif /* defined(AU1XXX_PHY1_ADDR) */
310 #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
313 /* find the first (lowest address) PHY on the current MAC's MII bus */
314 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
315 if (aup->mii_bus->phy_map[phy_addr]) {
316 phydev = aup->mii_bus->phy_map[phy_addr];
317 # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
318 break; /* break out with first one found */
322 # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
323 /* try harder to find a PHY */
324 if (!phydev && (aup->mac_id == 1)) {
325 /* no PHY found, maybe we have a dual PHY? */
326 printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
327 "let's see if it's attached to MAC0...\n");
331 /* find the first (lowest address) non-attached PHY on
332 * the MAC0 MII bus */
333 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
334 struct phy_device *const tmp_phydev =
335 au_macs[0]->mii_bus->phy_map[phy_addr];
338 continue; /* no PHY here... */
340 if (tmp_phydev->attached_dev)
341 continue; /* already claimed by MAC0 */
344 break; /* found it */
347 # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
349 #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
351 printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
355 /* now we are supposed to have a proper phydev, to attach to... */
357 BUG_ON(phydev->attached_dev);
359 phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0,
360 PHY_INTERFACE_MODE_MII);
362 if (IS_ERR(phydev)) {
363 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
364 return PTR_ERR(phydev);
367 /* mask with MAC supported features */
368 phydev->supported &= (SUPPORTED_10baseT_Half
369 | SUPPORTED_10baseT_Full
370 | SUPPORTED_100baseT_Half
371 | SUPPORTED_100baseT_Full
373 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
377 phydev->advertising = phydev->supported;
381 aup->old_duplex = -1;
382 aup->phy_dev = phydev;
384 printk(KERN_INFO "%s: attached PHY driver [%s] "
385 "(mii_bus:phy_addr=%s, irq=%d)\n",
386 dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
393 * Buffer allocation/deallocation routines. The buffer descriptor returned
394 * has the virtual and dma address of a buffer suitable for
395 * both, receive and transmit operations.
397 static db_dest_t *GetFreeDB(struct au1000_private *aup)
403 aup->pDBfree = pDB->pnext;
408 void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
410 db_dest_t *pDBfree = aup->pDBfree;
412 pDBfree->pnext = pDB;
416 static void enable_rx_tx(struct net_device *dev)
418 struct au1000_private *aup = (struct au1000_private *) dev->priv;
420 if (au1000_debug > 4)
421 printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
423 aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
427 static void hard_stop(struct net_device *dev)
429 struct au1000_private *aup = (struct au1000_private *) dev->priv;
431 if (au1000_debug > 4)
432 printk(KERN_INFO "%s: hard stop\n", dev->name);
434 aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
438 static void enable_mac(struct net_device *dev, int force_reset)
441 struct au1000_private *aup = (struct au1000_private *) dev->priv;
443 spin_lock_irqsave(&aup->lock, flags);
445 if(force_reset || (!aup->mac_enabled)) {
446 *aup->enable = MAC_EN_CLOCK_ENABLE;
448 *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
449 | MAC_EN_CLOCK_ENABLE);
452 aup->mac_enabled = 1;
455 spin_unlock_irqrestore(&aup->lock, flags);
458 static void reset_mac_unlocked(struct net_device *dev)
460 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
465 *aup->enable = MAC_EN_CLOCK_ENABLE;
471 for (i = 0; i < NUM_RX_DMA; i++) {
472 /* reset control bits */
473 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
475 for (i = 0; i < NUM_TX_DMA; i++) {
476 /* reset control bits */
477 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
480 aup->mac_enabled = 0;
484 static void reset_mac(struct net_device *dev)
486 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
489 if (au1000_debug > 4)
490 printk(KERN_INFO "%s: reset mac, aup %x\n",
491 dev->name, (unsigned)aup);
493 spin_lock_irqsave(&aup->lock, flags);
495 reset_mac_unlocked (dev);
497 spin_unlock_irqrestore(&aup->lock, flags);
501 * Setup the receive and transmit "rings". These pointers are the addresses
502 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
503 * these are not descriptors sitting in memory.
506 setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
510 for (i = 0; i < NUM_RX_DMA; i++) {
511 aup->rx_dma_ring[i] =
512 (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
514 for (i = 0; i < NUM_TX_DMA; i++) {
515 aup->tx_dma_ring[i] =
516 (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
524 struct net_device *dev;
526 #ifdef CONFIG_SOC_AU1000
527 {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
528 {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
530 #ifdef CONFIG_SOC_AU1100
531 {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
533 #ifdef CONFIG_SOC_AU1500
534 {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
535 {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
537 #ifdef CONFIG_SOC_AU1550
538 {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
539 {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
546 * Setup the base address and interrupt of the Au1xxx ethernet macs
547 * based on cpu type and whether the interface is enabled in sys_pinfunc
548 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
550 static int __init au1000_init_module(void)
552 int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
553 struct net_device *dev;
554 int i, found_one = 0;
556 num_ifs = NUM_ETH_INTERFACES - ni;
558 for(i = 0; i < num_ifs; i++) {
559 dev = au1000_probe(i);
573 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
575 struct au1000_private *aup = (struct au1000_private *)dev->priv;
578 return phy_ethtool_gset(aup->phy_dev, cmd);
583 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
585 struct au1000_private *aup = (struct au1000_private *)dev->priv;
587 if (!capable(CAP_NET_ADMIN))
591 return phy_ethtool_sset(aup->phy_dev, cmd);
597 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
599 struct au1000_private *aup = (struct au1000_private *)dev->priv;
601 strcpy(info->driver, DRV_NAME);
602 strcpy(info->version, DRV_VERSION);
603 info->fw_version[0] = '\0';
604 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
605 info->regdump_len = 0;
608 static const struct ethtool_ops au1000_ethtool_ops = {
609 .get_settings = au1000_get_settings,
610 .set_settings = au1000_set_settings,
611 .get_drvinfo = au1000_get_drvinfo,
612 .get_link = ethtool_op_get_link,
615 static struct net_device * au1000_probe(int port_num)
617 static unsigned version_printed = 0;
618 struct au1000_private *aup = NULL;
619 struct net_device *dev = NULL;
620 db_dest_t *pDB, *pDBfree;
625 if (port_num >= NUM_ETH_INTERFACES)
628 base = CPHYSADDR(iflist[port_num].base_addr );
629 macen = CPHYSADDR(iflist[port_num].macen_addr);
630 irq = iflist[port_num].irq;
632 if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
633 !request_mem_region(macen, 4, "Au1x00 ENET"))
636 if (version_printed++ == 0)
637 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
639 dev = alloc_etherdev(sizeof(struct au1000_private));
641 printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
645 if ((err = register_netdev(dev)) != 0) {
646 printk(KERN_ERR "%s: Cannot register net device, error %d\n",
652 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
653 dev->name, base, irq);
657 spin_lock_init(&aup->lock);
659 /* Allocate the data buffers */
660 /* Snooping works fine with eth on all au1xxx */
661 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
662 (NUM_TX_BUFFS + NUM_RX_BUFFS),
666 release_mem_region( base, MAC_IOSIZE);
667 release_mem_region(macen, 4);
671 /* aup->mac is the base address of the MAC's registers */
672 aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
674 /* Setup some variables for quick register address access */
675 aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
676 aup->mac_id = port_num;
677 au_macs[port_num] = aup;
680 if (prom_get_ethernet_addr(ethaddr) == 0)
681 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
683 printk(KERN_INFO "%s: No MAC address found\n",
685 /* Use the hard coded MAC addresses */
688 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
689 } else if (port_num == 1)
690 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
693 * Assign to the Ethernet ports two consecutive MAC addresses
694 * to match those that are printed on their stickers
696 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
697 dev->dev_addr[5] += port_num;
700 aup->mac_enabled = 0;
702 aup->mii_bus = mdiobus_alloc();
703 if (aup->mii_bus == NULL)
706 aup->mii_bus->priv = dev;
707 aup->mii_bus->read = au1000_mdiobus_read;
708 aup->mii_bus->write = au1000_mdiobus_write;
709 aup->mii_bus->reset = au1000_mdiobus_reset;
710 aup->mii_bus->name = "au1000_eth_mii";
711 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id);
712 aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
713 for(i = 0; i < PHY_MAX_ADDR; ++i)
714 aup->mii_bus->irq[i] = PHY_POLL;
716 /* if known, set corresponding PHY IRQs */
717 #if defined(AU1XXX_PHY_STATIC_CONFIG)
718 # if defined(AU1XXX_PHY0_IRQ)
719 if (AU1XXX_PHY0_BUSID == aup->mac_id)
720 aup->mii_bus->irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
722 # if defined(AU1XXX_PHY1_IRQ)
723 if (AU1XXX_PHY1_BUSID == aup->mac_id)
724 aup->mii_bus->irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
727 mdiobus_register(aup->mii_bus);
729 if (mii_probe(dev) != 0) {
734 /* setup the data buffer descriptors and attach a buffer to each one */
736 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
737 pDB->pnext = pDBfree;
739 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
740 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
743 aup->pDBfree = pDBfree;
745 for (i = 0; i < NUM_RX_DMA; i++) {
746 pDB = GetFreeDB(aup);
750 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
751 aup->rx_db_inuse[i] = pDB;
753 for (i = 0; i < NUM_TX_DMA; i++) {
754 pDB = GetFreeDB(aup);
758 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
759 aup->tx_dma_ring[i]->len = 0;
760 aup->tx_db_inuse[i] = pDB;
763 dev->base_addr = base;
765 dev->open = au1000_open;
766 dev->hard_start_xmit = au1000_tx;
767 dev->stop = au1000_close;
768 dev->set_multicast_list = &set_rx_mode;
769 dev->do_ioctl = &au1000_ioctl;
770 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
771 dev->tx_timeout = au1000_tx_timeout;
772 dev->watchdog_timeo = ETH_TX_TIMEOUT;
775 * The boot code uses the ethernet controller, so reset it to start
776 * fresh. au1000_init() expects that the device is in reset state.
783 if (aup->mii_bus != NULL) {
784 mdiobus_unregister(aup->mii_bus);
785 mdiobus_free(aup->mii_bus);
788 /* here we should have a valid dev plus aup-> register addresses
789 * so we can reset the mac properly.*/
792 for (i = 0; i < NUM_RX_DMA; i++) {
793 if (aup->rx_db_inuse[i])
794 ReleaseDB(aup, aup->rx_db_inuse[i]);
796 for (i = 0; i < NUM_TX_DMA; i++) {
797 if (aup->tx_db_inuse[i])
798 ReleaseDB(aup, aup->tx_db_inuse[i]);
800 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
801 (void *)aup->vaddr, aup->dma_addr);
802 unregister_netdev(dev);
804 release_mem_region( base, MAC_IOSIZE);
805 release_mem_region(macen, 4);
810 * Initialize the interface.
812 * When the device powers up, the clocks are disabled and the
813 * mac is in reset state. When the interface is closed, we
814 * do the same -- reset the device and disable the clocks to
815 * conserve power. Thus, whenever au1000_init() is called,
816 * the device should already be in reset state.
818 static int au1000_init(struct net_device *dev)
820 struct au1000_private *aup = (struct au1000_private *) dev->priv;
825 if (au1000_debug > 4)
826 printk("%s: au1000_init\n", dev->name);
828 /* bring the device out of reset */
831 spin_lock_irqsave(&aup->lock, flags);
833 aup->mac->control = 0;
834 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
835 aup->tx_tail = aup->tx_head;
836 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
838 aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
839 aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
840 dev->dev_addr[1]<<8 | dev->dev_addr[0];
842 for (i = 0; i < NUM_RX_DMA; i++) {
843 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
847 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
848 #ifndef CONFIG_CPU_LITTLE_ENDIAN
849 control |= MAC_BIG_ENDIAN;
852 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
853 control |= MAC_FULL_DUPLEX;
855 control |= MAC_DISABLE_RX_OWN;
856 } else { /* PHY-less op, assume full-duplex */
857 control |= MAC_FULL_DUPLEX;
860 aup->mac->control = control;
861 aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
864 spin_unlock_irqrestore(&aup->lock, flags);
869 au1000_adjust_link(struct net_device *dev)
871 struct au1000_private *aup = (struct au1000_private *) dev->priv;
872 struct phy_device *phydev = aup->phy_dev;
875 int status_change = 0;
877 BUG_ON(!aup->phy_dev);
879 spin_lock_irqsave(&aup->lock, flags);
881 if (phydev->link && (aup->old_speed != phydev->speed)) {
884 switch(phydev->speed) {
890 "%s: Speed (%d) is not 10/100 ???\n",
891 dev->name, phydev->speed);
895 aup->old_speed = phydev->speed;
900 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
901 // duplex mode changed
903 /* switching duplex mode requires to disable rx and tx! */
906 if (DUPLEX_FULL == phydev->duplex)
907 aup->mac->control = ((aup->mac->control
909 & ~MAC_DISABLE_RX_OWN);
911 aup->mac->control = ((aup->mac->control
913 | MAC_DISABLE_RX_OWN);
917 aup->old_duplex = phydev->duplex;
922 if(phydev->link != aup->old_link) {
923 // link state changed
928 aup->old_duplex = -1;
931 aup->old_link = phydev->link;
935 spin_unlock_irqrestore(&aup->lock, flags);
939 printk(KERN_INFO "%s: link up (%d/%s)\n",
940 dev->name, phydev->speed,
941 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
943 printk(KERN_INFO "%s: link down\n", dev->name);
947 static int au1000_open(struct net_device *dev)
950 struct au1000_private *aup = (struct au1000_private *) dev->priv;
952 if (au1000_debug > 4)
953 printk("%s: open: dev=%p\n", dev->name, dev);
955 if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
957 printk(KERN_ERR "%s: unable to get IRQ %d\n",
958 dev->name, dev->irq);
962 if ((retval = au1000_init(dev))) {
963 printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
964 free_irq(dev->irq, dev);
969 /* cause the PHY state machine to schedule a link state check */
970 aup->phy_dev->state = PHY_CHANGELINK;
971 phy_start(aup->phy_dev);
974 netif_start_queue(dev);
976 if (au1000_debug > 4)
977 printk("%s: open: Initialization done.\n", dev->name);
982 static int au1000_close(struct net_device *dev)
985 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
987 if (au1000_debug > 4)
988 printk("%s: close: dev=%p\n", dev->name, dev);
991 phy_stop(aup->phy_dev);
993 spin_lock_irqsave(&aup->lock, flags);
995 reset_mac_unlocked (dev);
997 /* stop the device */
998 netif_stop_queue(dev);
1000 /* disable the interrupt */
1001 free_irq(dev->irq, dev);
1002 spin_unlock_irqrestore(&aup->lock, flags);
1007 static void __exit au1000_cleanup_module(void)
1010 struct net_device *dev;
1011 struct au1000_private *aup;
1013 for (i = 0; i < num_ifs; i++) {
1014 dev = iflist[i].dev;
1016 aup = (struct au1000_private *) dev->priv;
1017 unregister_netdev(dev);
1018 mdiobus_unregister(aup->mii_bus);
1019 mdiobus_free(aup->mii_bus);
1020 for (j = 0; j < NUM_RX_DMA; j++)
1021 if (aup->rx_db_inuse[j])
1022 ReleaseDB(aup, aup->rx_db_inuse[j]);
1023 for (j = 0; j < NUM_TX_DMA; j++)
1024 if (aup->tx_db_inuse[j])
1025 ReleaseDB(aup, aup->tx_db_inuse[j]);
1026 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1027 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1028 (void *)aup->vaddr, aup->dma_addr);
1029 release_mem_region(dev->base_addr, MAC_IOSIZE);
1030 release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
1036 static void update_tx_stats(struct net_device *dev, u32 status)
1038 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1039 struct net_device_stats *ps = &dev->stats;
1041 if (status & TX_FRAME_ABORTED) {
1042 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
1043 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1044 /* any other tx errors are only valid
1045 * in half duplex mode */
1047 ps->tx_aborted_errors++;
1052 ps->tx_aborted_errors++;
1053 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
1054 ps->tx_carrier_errors++;
1061 * Called from the interrupt service routine to acknowledge
1062 * the TX DONE bits. This is a must if the irq is setup as
1065 static void au1000_tx_ack(struct net_device *dev)
1067 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1068 volatile tx_dma_t *ptxd;
1070 ptxd = aup->tx_dma_ring[aup->tx_tail];
1072 while (ptxd->buff_stat & TX_T_DONE) {
1073 update_tx_stats(dev, ptxd->status);
1074 ptxd->buff_stat &= ~TX_T_DONE;
1078 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
1079 ptxd = aup->tx_dma_ring[aup->tx_tail];
1083 netif_wake_queue(dev);
1090 * Au1000 transmit routine.
1092 static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
1094 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1095 struct net_device_stats *ps = &dev->stats;
1096 volatile tx_dma_t *ptxd;
1101 if (au1000_debug > 5)
1102 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1103 dev->name, (unsigned)aup, skb->len,
1104 skb->data, aup->tx_head);
1106 ptxd = aup->tx_dma_ring[aup->tx_head];
1107 buff_stat = ptxd->buff_stat;
1108 if (buff_stat & TX_DMA_ENABLE) {
1109 /* We've wrapped around and the transmitter is still busy */
1110 netif_stop_queue(dev);
1114 else if (buff_stat & TX_T_DONE) {
1115 update_tx_stats(dev, ptxd->status);
1121 netif_wake_queue(dev);
1124 pDB = aup->tx_db_inuse[aup->tx_head];
1125 skb_copy_from_linear_data(skb, pDB->vaddr, skb->len);
1126 if (skb->len < ETH_ZLEN) {
1127 for (i=skb->len; i<ETH_ZLEN; i++) {
1128 ((char *)pDB->vaddr)[i] = 0;
1130 ptxd->len = ETH_ZLEN;
1133 ptxd->len = skb->len;
1136 ps->tx_bytes += ptxd->len;
1138 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1141 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1142 dev->trans_start = jiffies;
1146 static inline void update_rx_stats(struct net_device *dev, u32 status)
1148 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1149 struct net_device_stats *ps = &dev->stats;
1152 if (status & RX_MCAST_FRAME)
1155 if (status & RX_ERROR) {
1157 if (status & RX_MISSED_FRAME)
1158 ps->rx_missed_errors++;
1159 if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
1160 ps->rx_length_errors++;
1161 if (status & RX_CRC_ERROR)
1162 ps->rx_crc_errors++;
1163 if (status & RX_COLL)
1167 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
1172 * Au1000 receive routine.
1174 static int au1000_rx(struct net_device *dev)
1176 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1177 struct sk_buff *skb;
1178 volatile rx_dma_t *prxd;
1179 u32 buff_stat, status;
1183 if (au1000_debug > 5)
1184 printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
1186 prxd = aup->rx_dma_ring[aup->rx_head];
1187 buff_stat = prxd->buff_stat;
1188 while (buff_stat & RX_T_DONE) {
1189 status = prxd->status;
1190 pDB = aup->rx_db_inuse[aup->rx_head];
1191 update_rx_stats(dev, status);
1192 if (!(status & RX_ERROR)) {
1195 frmlen = (status & RX_FRAME_LEN_MASK);
1196 frmlen -= 4; /* Remove FCS */
1197 skb = dev_alloc_skb(frmlen + 2);
1200 "%s: Memory squeeze, dropping packet.\n",
1202 dev->stats.rx_dropped++;
1205 skb_reserve(skb, 2); /* 16 byte IP header align */
1206 skb_copy_to_linear_data(skb,
1207 (unsigned char *)pDB->vaddr, frmlen);
1208 skb_put(skb, frmlen);
1209 skb->protocol = eth_type_trans(skb, dev);
1210 netif_rx(skb); /* pass the packet to upper layers */
1213 if (au1000_debug > 4) {
1214 if (status & RX_MISSED_FRAME)
1215 printk("rx miss\n");
1216 if (status & RX_WDOG_TIMER)
1217 printk("rx wdog\n");
1218 if (status & RX_RUNT)
1219 printk("rx runt\n");
1220 if (status & RX_OVERLEN)
1221 printk("rx overlen\n");
1222 if (status & RX_COLL)
1223 printk("rx coll\n");
1224 if (status & RX_MII_ERROR)
1225 printk("rx mii error\n");
1226 if (status & RX_CRC_ERROR)
1227 printk("rx crc error\n");
1228 if (status & RX_LEN_ERROR)
1229 printk("rx len error\n");
1230 if (status & RX_U_CNTRL_FRAME)
1231 printk("rx u control frame\n");
1232 if (status & RX_MISSED_FRAME)
1233 printk("rx miss\n");
1236 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
1237 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
1240 /* next descriptor */
1241 prxd = aup->rx_dma_ring[aup->rx_head];
1242 buff_stat = prxd->buff_stat;
1243 dev->last_rx = jiffies;
1250 * Au1000 interrupt service routine.
1252 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
1254 struct net_device *dev = dev_id;
1256 /* Handle RX interrupts first to minimize chance of overrun */
1260 return IRQ_RETVAL(1);
1265 * The Tx ring has been full longer than the watchdog timeout
1266 * value. The transmitter must be hung?
1268 static void au1000_tx_timeout(struct net_device *dev)
1270 printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
1273 dev->trans_start = jiffies;
1274 netif_wake_queue(dev);
1277 static void set_rx_mode(struct net_device *dev)
1279 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1281 if (au1000_debug > 4)
1282 printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
1284 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1285 aup->mac->control |= MAC_PROMISCUOUS;
1286 } else if ((dev->flags & IFF_ALLMULTI) ||
1287 dev->mc_count > MULTICAST_FILTER_LIMIT) {
1288 aup->mac->control |= MAC_PASS_ALL_MULTI;
1289 aup->mac->control &= ~MAC_PROMISCUOUS;
1290 printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
1293 struct dev_mc_list *mclist;
1294 u32 mc_filter[2]; /* Multicast hash filter */
1296 mc_filter[1] = mc_filter[0] = 0;
1297 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1298 i++, mclist = mclist->next) {
1299 set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
1302 aup->mac->multi_hash_high = mc_filter[1];
1303 aup->mac->multi_hash_low = mc_filter[0];
1304 aup->mac->control &= ~MAC_PROMISCUOUS;
1305 aup->mac->control |= MAC_HASH_MODE;
1309 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1311 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1313 if (!netif_running(dev)) return -EINVAL;
1315 if (!aup->phy_dev) return -EINVAL; // PHY not controllable
1317 return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
1320 module_init(au1000_init_module);
1321 module_exit(au1000_cleanup_module);