2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 #include <linux/config.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/compiler.h>
35 #include <linux/sched.h> /* current */
37 #include <asm/delay.h>
38 #include <asm/uaccess.h>
40 #include <linux/acpi.h>
41 #include <acpi/processor.h>
43 #include "speedstep-est-common.h"
45 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
47 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
48 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
49 MODULE_LICENSE("GPL");
52 struct cpufreq_acpi_io {
53 struct acpi_processor_performance acpi_data;
54 struct cpufreq_frequency_table *freq_table;
58 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
60 static struct cpufreq_driver acpi_cpufreq_driver;
62 static unsigned int acpi_pstate_strict;
65 acpi_processor_write_port(
72 } else if (bit_width <= 16) {
74 } else if (bit_width <= 32) {
83 acpi_processor_read_port(
91 } else if (bit_width <= 16) {
93 } else if (bit_width <= 32) {
102 acpi_processor_set_performance (
103 struct cpufreq_acpi_io *data,
112 struct cpufreq_freqs cpufreq_freqs;
113 cpumask_t saved_mask;
116 dprintk("acpi_processor_set_performance\n");
119 * TBD: Use something other than set_cpus_allowed.
120 * As set_cpus_allowed is a bit racy,
121 * with any other set_cpus_allowed for this process.
123 saved_mask = current->cpus_allowed;
124 set_cpus_allowed(current, cpumask_of_cpu(cpu));
125 if (smp_processor_id() != cpu) {
129 if (state == data->acpi_data.state) {
130 if (unlikely(data->resume)) {
131 dprintk("Called after resume, resetting to P%d\n", state);
134 dprintk("Already at target state (P%d)\n", state);
140 dprintk("Transitioning from P%d to P%d\n",
141 data->acpi_data.state, state);
143 /* cpufreq frequency struct */
144 cpufreq_freqs.cpu = cpu;
145 cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
146 cpufreq_freqs.new = data->freq_table[state].frequency;
149 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
152 * First we write the target state's 'control' value to the
156 port = data->acpi_data.control_register.address;
157 bit_width = data->acpi_data.control_register.bit_width;
158 value = (u32) data->acpi_data.states[state].control;
160 dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
162 ret = acpi_processor_write_port(port, bit_width, value);
164 dprintk("Invalid port width 0x%04x\n", bit_width);
170 * Assume the write went through when acpi_pstate_strict is not used.
171 * As read status_register is an expensive operation and there
172 * are no specific error cases where an IO port write will fail.
174 if (acpi_pstate_strict) {
175 /* Then we read the 'status_register' and compare the value
176 * with the target state's 'status' to make sure the
177 * transition was successful.
178 * Note that we'll poll for up to 1ms (100 cycles of 10us)
182 port = data->acpi_data.status_register.address;
183 bit_width = data->acpi_data.status_register.bit_width;
185 dprintk("Looking for 0x%08x from port 0x%04x\n",
186 (u32) data->acpi_data.states[state].status, port);
188 for (i=0; i<100; i++) {
189 ret = acpi_processor_read_port(port, bit_width, &value);
191 dprintk("Invalid port width 0x%04x\n", bit_width);
195 if (value == (u32) data->acpi_data.states[state].status)
201 value = (u32) data->acpi_data.states[state].status;
205 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
207 if (unlikely(value != (u32) data->acpi_data.states[state].status)) {
208 unsigned int tmp = cpufreq_freqs.new;
209 cpufreq_freqs.new = cpufreq_freqs.old;
210 cpufreq_freqs.old = tmp;
211 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
212 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
213 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
218 dprintk("Transition successful after %d microseconds\n", i * 10);
220 data->acpi_data.state = state;
224 set_cpus_allowed(current, saved_mask);
230 acpi_cpufreq_target (
231 struct cpufreq_policy *policy,
232 unsigned int target_freq,
233 unsigned int relation)
235 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
236 unsigned int next_state = 0;
237 unsigned int result = 0;
239 dprintk("acpi_cpufreq_setpolicy\n");
241 result = cpufreq_frequency_table_target(policy,
249 result = acpi_processor_set_performance (data, policy->cpu, next_state);
256 acpi_cpufreq_verify (
257 struct cpufreq_policy *policy)
259 unsigned int result = 0;
260 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
262 dprintk("acpi_cpufreq_verify\n");
264 result = cpufreq_frequency_table_verify(policy,
272 acpi_cpufreq_guess_freq (
273 struct cpufreq_acpi_io *data,
277 /* search the closest match to cpu_khz */
280 unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000;
282 for (i=0; i < (data->acpi_data.state_count - 1); i++) {
284 freqn = data->acpi_data.states[i+1].core_frequency * 1000;
285 if ((2 * cpu_khz) > (freqn + freq)) {
286 data->acpi_data.state = i;
290 data->acpi_data.state = data->acpi_data.state_count - 1;
293 /* assume CPU is at P0... */
294 data->acpi_data.state = 0;
295 return data->acpi_data.states[0].core_frequency * 1000;
301 * acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities
303 * @perf: processor-specific acpi_io_data struct
304 * @cpu: CPU being initialized
306 * To avoid issues with legacy OSes, some BIOSes require to be informed of
307 * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC
308 * accordingly, for Enhanced Speedstep. Actual call to _PDC is done in
309 * driver/acpi/processor.c
312 acpi_processor_cpu_init_pdc_est(
313 struct acpi_processor_performance *perf,
315 struct acpi_object_list *obj_list
318 union acpi_object *obj;
320 struct cpuinfo_x86 *c = cpu_data + cpu;
321 dprintk("acpi_processor_cpu_init_pdc_est\n");
323 if (!cpu_has(c, X86_FEATURE_EST))
326 /* Initialize pdc. It will be used later. */
330 if (!(obj_list->count && obj_list->pointer))
333 obj = obj_list->pointer;
334 if ((obj->buffer.length == 12) && obj->buffer.pointer) {
335 buf = (u32 *)obj->buffer.pointer;
336 buf[0] = ACPI_PDC_REVISION_ID;
338 buf[2] = ACPI_PDC_EST_CAPABILITY_SMP;
339 perf->pdc = obj_list;
345 /* CPU specific PDC initialization */
347 acpi_processor_cpu_init_pdc(
348 struct acpi_processor_performance *perf,
350 struct acpi_object_list *obj_list
353 struct cpuinfo_x86 *c = cpu_data + cpu;
354 dprintk("acpi_processor_cpu_init_pdc\n");
356 if (cpu_has(c, X86_FEATURE_EST))
357 acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list);
363 acpi_cpufreq_cpu_init (
364 struct cpufreq_policy *policy)
367 unsigned int cpu = policy->cpu;
368 struct cpufreq_acpi_io *data;
369 unsigned int result = 0;
371 union acpi_object arg0 = {ACPI_TYPE_BUFFER};
373 struct acpi_object_list arg_list = {1, &arg0};
375 dprintk("acpi_cpufreq_cpu_init\n");
376 /* setup arg_list for _PDC settings */
377 arg0.buffer.length = 12;
378 arg0.buffer.pointer = (u8 *) arg0_buf;
380 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
384 acpi_io_data[cpu] = data;
386 acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list);
387 result = acpi_processor_register_performance(&data->acpi_data, cpu);
388 data->acpi_data.pdc = NULL;
393 if (is_const_loops_cpu(cpu)) {
394 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
397 /* capability check */
398 if (data->acpi_data.state_count <= 1) {
399 dprintk("No P-States\n");
403 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
404 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
405 dprintk("Unsupported address space [%d, %d]\n",
406 (u32) (data->acpi_data.control_register.space_id),
407 (u32) (data->acpi_data.status_register.space_id));
412 /* alloc freq_table */
413 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL);
414 if (!data->freq_table) {
419 /* detect transition latency */
420 policy->cpuinfo.transition_latency = 0;
421 for (i=0; i<data->acpi_data.state_count; i++) {
422 if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
423 policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000;
425 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
427 /* The current speed is unknown and not detectable by ACPI... */
428 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
431 for (i=0; i<=data->acpi_data.state_count; i++)
433 data->freq_table[i].index = i;
434 if (i<data->acpi_data.state_count)
435 data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
437 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
440 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
445 /* notify BIOS that we exist */
446 acpi_processor_notify_smm(THIS_MODULE);
448 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
450 for (i = 0; i < data->acpi_data.state_count; i++)
451 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
452 (i == data->acpi_data.state?'*':' '), i,
453 (u32) data->acpi_data.states[i].core_frequency,
454 (u32) data->acpi_data.states[i].power,
455 (u32) data->acpi_data.states[i].transition_latency);
457 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
460 * the first call to ->target() should result in us actually
461 * writing something to the appropriate registers.
468 kfree(data->freq_table);
470 acpi_processor_unregister_performance(&data->acpi_data, cpu);
473 acpi_io_data[cpu] = NULL;
480 acpi_cpufreq_cpu_exit (
481 struct cpufreq_policy *policy)
483 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
486 dprintk("acpi_cpufreq_cpu_exit\n");
489 cpufreq_frequency_table_put_attr(policy->cpu);
490 acpi_io_data[policy->cpu] = NULL;
491 acpi_processor_unregister_performance(&data->acpi_data, policy->cpu);
499 acpi_cpufreq_resume (
500 struct cpufreq_policy *policy)
502 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
505 dprintk("acpi_cpufreq_resume\n");
513 static struct freq_attr* acpi_cpufreq_attr[] = {
514 &cpufreq_freq_attr_scaling_available_freqs,
518 static struct cpufreq_driver acpi_cpufreq_driver = {
519 .verify = acpi_cpufreq_verify,
520 .target = acpi_cpufreq_target,
521 .init = acpi_cpufreq_cpu_init,
522 .exit = acpi_cpufreq_cpu_exit,
523 .resume = acpi_cpufreq_resume,
524 .name = "acpi-cpufreq",
525 .owner = THIS_MODULE,
526 .attr = acpi_cpufreq_attr,
531 acpi_cpufreq_init (void)
535 dprintk("acpi_cpufreq_init\n");
537 result = cpufreq_register_driver(&acpi_cpufreq_driver);
544 acpi_cpufreq_exit (void)
546 dprintk("acpi_cpufreq_exit\n");
548 cpufreq_unregister_driver(&acpi_cpufreq_driver);
553 module_param(acpi_pstate_strict, uint, 0644);
554 MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
556 late_initcall(acpi_cpufreq_init);
557 module_exit(acpi_cpufreq_exit);
559 MODULE_ALIAS("acpi");