UBIFS: fix integer overflow warning
[linux-2.6] / fs / ubifs / budget.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22
23 /*
24  * This file implements the budgeting sub-system which is responsible for UBIFS
25  * space management.
26  *
27  * Factors such as compression, wasted space at the ends of LEBs, space in other
28  * journal heads, the effect of updates on the index, and so on, make it
29  * impossible to accurately predict the amount of space needed. Consequently
30  * approximations are used.
31  */
32
33 #include "ubifs.h"
34 #include <linux/writeback.h>
35 #include <linux/math64.h>
36
37 /*
38  * When pessimistic budget calculations say that there is no enough space,
39  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
40  * or committing. The below constant defines maximum number of times UBIFS
41  * repeats the operations.
42  */
43 #define MAX_MKSPC_RETRIES 3
44
45 /*
46  * The below constant defines amount of dirty pages which should be written
47  * back at when trying to shrink the liability.
48  */
49 #define NR_TO_WRITE 16
50
51 /**
52  * shrink_liability - write-back some dirty pages/inodes.
53  * @c: UBIFS file-system description object
54  * @nr_to_write: how many dirty pages to write-back
55  *
56  * This function shrinks UBIFS liability by means of writing back some amount
57  * of dirty inodes and their pages. Returns the amount of pages which were
58  * written back. The returned value does not include dirty inodes which were
59  * synchronized.
60  *
61  * Note, this function synchronizes even VFS inodes which are locked
62  * (@i_mutex) by the caller of the budgeting function, because write-back does
63  * not touch @i_mutex.
64  */
65 static int shrink_liability(struct ubifs_info *c, int nr_to_write)
66 {
67         int nr_written;
68         struct writeback_control wbc = {
69                 .sync_mode   = WB_SYNC_NONE,
70                 .range_end   = LLONG_MAX,
71                 .nr_to_write = nr_to_write,
72         };
73
74         generic_sync_sb_inodes(c->vfs_sb, &wbc);
75         nr_written = nr_to_write - wbc.nr_to_write;
76
77         if (!nr_written) {
78                 /*
79                  * Re-try again but wait on pages/inodes which are being
80                  * written-back concurrently (e.g., by pdflush).
81                  */
82                 memset(&wbc, 0, sizeof(struct writeback_control));
83                 wbc.sync_mode   = WB_SYNC_ALL;
84                 wbc.range_end   = LLONG_MAX;
85                 wbc.nr_to_write = nr_to_write;
86                 generic_sync_sb_inodes(c->vfs_sb, &wbc);
87                 nr_written = nr_to_write - wbc.nr_to_write;
88         }
89
90         dbg_budg("%d pages were written back", nr_written);
91         return nr_written;
92 }
93
94 /**
95  * run_gc - run garbage collector.
96  * @c: UBIFS file-system description object
97  *
98  * This function runs garbage collector to make some more free space. Returns
99  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
100  * negative error code in case of failure.
101  */
102 static int run_gc(struct ubifs_info *c)
103 {
104         int err, lnum;
105
106         /* Make some free space by garbage-collecting dirty space */
107         down_read(&c->commit_sem);
108         lnum = ubifs_garbage_collect(c, 1);
109         up_read(&c->commit_sem);
110         if (lnum < 0)
111                 return lnum;
112
113         /* GC freed one LEB, return it to lprops */
114         dbg_budg("GC freed LEB %d", lnum);
115         err = ubifs_return_leb(c, lnum);
116         if (err)
117                 return err;
118         return 0;
119 }
120
121 /**
122  * get_liability - calculate current liability.
123  * @c: UBIFS file-system description object
124  *
125  * This function calculates and returns current UBIFS liability, i.e. the
126  * amount of bytes UBIFS has "promised" to write to the media.
127  */
128 static long long get_liability(struct ubifs_info *c)
129 {
130         long long liab;
131
132         spin_lock(&c->space_lock);
133         liab = c->budg_idx_growth + c->budg_data_growth + c->budg_dd_growth;
134         spin_unlock(&c->space_lock);
135         return liab;
136 }
137
138 /**
139  * make_free_space - make more free space on the file-system.
140  * @c: UBIFS file-system description object
141  *
142  * This function is called when an operation cannot be budgeted because there
143  * is supposedly no free space. But in most cases there is some free space:
144  *   o budgeting is pessimistic, so it always budgets more than it is actually
145  *     needed, so shrinking the liability is one way to make free space - the
146  *     cached data will take less space then it was budgeted for;
147  *   o GC may turn some dark space into free space (budgeting treats dark space
148  *     as not available);
149  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
150  *
151  * So this function tries to do the above. Returns %-EAGAIN if some free space
152  * was presumably made and the caller has to re-try budgeting the operation.
153  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
154  * codes on failures.
155  */
156 static int make_free_space(struct ubifs_info *c)
157 {
158         int err, retries = 0;
159         long long liab1, liab2;
160
161         do {
162                 liab1 = get_liability(c);
163                 /*
164                  * We probably have some dirty pages or inodes (liability), try
165                  * to write them back.
166                  */
167                 dbg_budg("liability %lld, run write-back", liab1);
168                 shrink_liability(c, NR_TO_WRITE);
169
170                 liab2 = get_liability(c);
171                 if (liab2 < liab1)
172                         return -EAGAIN;
173
174                 dbg_budg("new liability %lld (not shrinked)", liab2);
175
176                 /* Liability did not shrink again, try GC */
177                 dbg_budg("Run GC");
178                 err = run_gc(c);
179                 if (!err)
180                         return -EAGAIN;
181
182                 if (err != -EAGAIN && err != -ENOSPC)
183                         /* Some real error happened */
184                         return err;
185
186                 dbg_budg("Run commit (retries %d)", retries);
187                 err = ubifs_run_commit(c);
188                 if (err)
189                         return err;
190         } while (retries++ < MAX_MKSPC_RETRIES);
191
192         return -ENOSPC;
193 }
194
195 /**
196  * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
197  * @c: UBIFS file-system description object
198  *
199  * This function calculates and returns the number of LEBs which should be kept
200  * for index usage.
201  */
202 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
203 {
204         int idx_lebs;
205         long long idx_size;
206
207         idx_size = c->old_idx_sz + c->budg_idx_growth + c->budg_uncommitted_idx;
208         /* And make sure we have thrice the index size of space reserved */
209         idx_size += idx_size << 1;
210         /*
211          * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
212          * pair, nor similarly the two variables for the new index size, so we
213          * have to do this costly 64-bit division on fast-path.
214          */
215         idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
216         /*
217          * The index head is not available for the in-the-gaps method, so add an
218          * extra LEB to compensate.
219          */
220         idx_lebs += 1;
221         if (idx_lebs < MIN_INDEX_LEBS)
222                 idx_lebs = MIN_INDEX_LEBS;
223         return idx_lebs;
224 }
225
226 /**
227  * ubifs_calc_available - calculate available FS space.
228  * @c: UBIFS file-system description object
229  * @min_idx_lebs: minimum number of LEBs reserved for the index
230  *
231  * This function calculates and returns amount of FS space available for use.
232  */
233 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
234 {
235         int subtract_lebs;
236         long long available;
237
238         available = c->main_bytes - c->lst.total_used;
239
240         /*
241          * Now 'available' contains theoretically available flash space
242          * assuming there is no index, so we have to subtract the space which
243          * is reserved for the index.
244          */
245         subtract_lebs = min_idx_lebs;
246
247         /* Take into account that GC reserves one LEB for its own needs */
248         subtract_lebs += 1;
249
250         /*
251          * The GC journal head LEB is not really accessible. And since
252          * different write types go to different heads, we may count only on
253          * one head's space.
254          */
255         subtract_lebs += c->jhead_cnt - 1;
256
257         /* We also reserve one LEB for deletions, which bypass budgeting */
258         subtract_lebs += 1;
259
260         available -= (long long)subtract_lebs * c->leb_size;
261
262         /* Subtract the dead space which is not available for use */
263         available -= c->lst.total_dead;
264
265         /*
266          * Subtract dark space, which might or might not be usable - it depends
267          * on the data which we have on the media and which will be written. If
268          * this is a lot of uncompressed or not-compressible data, the dark
269          * space cannot be used.
270          */
271         available -= c->lst.total_dark;
272
273         /*
274          * However, there is more dark space. The index may be bigger than
275          * @min_idx_lebs. Those extra LEBs are assumed to be available, but
276          * their dark space is not included in total_dark, so it is subtracted
277          * here.
278          */
279         if (c->lst.idx_lebs > min_idx_lebs) {
280                 subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
281                 available -= subtract_lebs * c->dark_wm;
282         }
283
284         /* The calculations are rough and may end up with a negative number */
285         return available > 0 ? available : 0;
286 }
287
288 /**
289  * can_use_rp - check whether the user is allowed to use reserved pool.
290  * @c: UBIFS file-system description object
291  *
292  * UBIFS has so-called "reserved pool" which is flash space reserved
293  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
294  * This function checks whether current user is allowed to use reserved pool.
295  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
296  */
297 static int can_use_rp(struct ubifs_info *c)
298 {
299         if (current_fsuid() == c->rp_uid || capable(CAP_SYS_RESOURCE) ||
300             (c->rp_gid != 0 && in_group_p(c->rp_gid)))
301                 return 1;
302         return 0;
303 }
304
305 /**
306  * do_budget_space - reserve flash space for index and data growth.
307  * @c: UBIFS file-system description object
308  *
309  * This function makes sure UBIFS has enough free LEBs for index growth and
310  * data.
311  *
312  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
313  * would take if it was consolidated and written to the flash. This guarantees
314  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
315  * be able to commit dirty index. So this function basically adds amount of
316  * budgeted index space to the size of the current index, multiplies this by 3,
317  * and makes sure this does not exceed the amount of free LEBs.
318  *
319  * Notes about @c->min_idx_lebs and @c->lst.idx_lebs variables:
320  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
321  *    be large, because UBIFS does not do any index consolidation as long as
322  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
323  *    will contain a lot of dirt.
324  * o @c->min_idx_lebs is the number of LEBS the index presumably takes. IOW,
325  *    the index may be consolidated to take up to @c->min_idx_lebs LEBs.
326  *
327  * This function returns zero in case of success, and %-ENOSPC in case of
328  * failure.
329  */
330 static int do_budget_space(struct ubifs_info *c)
331 {
332         long long outstanding, available;
333         int lebs, rsvd_idx_lebs, min_idx_lebs;
334
335         /* First budget index space */
336         min_idx_lebs = ubifs_calc_min_idx_lebs(c);
337
338         /* Now 'min_idx_lebs' contains number of LEBs to reserve */
339         if (min_idx_lebs > c->lst.idx_lebs)
340                 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
341         else
342                 rsvd_idx_lebs = 0;
343
344         /*
345          * The number of LEBs that are available to be used by the index is:
346          *
347          *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
348          *    @c->lst.taken_empty_lebs
349          *
350          * @c->lst.empty_lebs are available because they are empty.
351          * @c->freeable_cnt are available because they contain only free and
352          * dirty space, @c->idx_gc_cnt are available because they are index
353          * LEBs that have been garbage collected and are awaiting the commit
354          * before they can be used. And the in-the-gaps method will grab these
355          * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
356          * already been allocated for some purpose.
357          *
358          * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
359          * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
360          * are taken until after the commit).
361          *
362          * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
363          * because of the way we serialize LEB allocations and budgeting. See a
364          * comment in 'ubifs_find_free_space()'.
365          */
366         lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
367                c->lst.taken_empty_lebs;
368         if (unlikely(rsvd_idx_lebs > lebs)) {
369                 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), "
370                          "rsvd_idx_lebs %d", min_idx_lebs, c->min_idx_lebs,
371                          rsvd_idx_lebs);
372                 return -ENOSPC;
373         }
374
375         available = ubifs_calc_available(c, min_idx_lebs);
376         outstanding = c->budg_data_growth + c->budg_dd_growth;
377
378         if (unlikely(available < outstanding)) {
379                 dbg_budg("out of data space: available %lld, outstanding %lld",
380                          available, outstanding);
381                 return -ENOSPC;
382         }
383
384         if (available - outstanding <= c->rp_size && !can_use_rp(c))
385                 return -ENOSPC;
386
387         c->min_idx_lebs = min_idx_lebs;
388         return 0;
389 }
390
391 /**
392  * calc_idx_growth - calculate approximate index growth from budgeting request.
393  * @c: UBIFS file-system description object
394  * @req: budgeting request
395  *
396  * For now we assume each new node adds one znode. But this is rather poor
397  * approximation, though.
398  */
399 static int calc_idx_growth(const struct ubifs_info *c,
400                            const struct ubifs_budget_req *req)
401 {
402         int znodes;
403
404         znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
405                  req->new_dent;
406         return znodes * c->max_idx_node_sz;
407 }
408
409 /**
410  * calc_data_growth - calculate approximate amount of new data from budgeting
411  * request.
412  * @c: UBIFS file-system description object
413  * @req: budgeting request
414  */
415 static int calc_data_growth(const struct ubifs_info *c,
416                             const struct ubifs_budget_req *req)
417 {
418         int data_growth;
419
420         data_growth = req->new_ino  ? c->inode_budget : 0;
421         if (req->new_page)
422                 data_growth += c->page_budget;
423         if (req->new_dent)
424                 data_growth += c->dent_budget;
425         data_growth += req->new_ino_d;
426         return data_growth;
427 }
428
429 /**
430  * calc_dd_growth - calculate approximate amount of data which makes other data
431  * dirty from budgeting request.
432  * @c: UBIFS file-system description object
433  * @req: budgeting request
434  */
435 static int calc_dd_growth(const struct ubifs_info *c,
436                           const struct ubifs_budget_req *req)
437 {
438         int dd_growth;
439
440         dd_growth = req->dirtied_page ? c->page_budget : 0;
441
442         if (req->dirtied_ino)
443                 dd_growth += c->inode_budget << (req->dirtied_ino - 1);
444         if (req->mod_dent)
445                 dd_growth += c->dent_budget;
446         dd_growth += req->dirtied_ino_d;
447         return dd_growth;
448 }
449
450 /**
451  * ubifs_budget_space - ensure there is enough space to complete an operation.
452  * @c: UBIFS file-system description object
453  * @req: budget request
454  *
455  * This function allocates budget for an operation. It uses pessimistic
456  * approximation of how much flash space the operation needs. The goal of this
457  * function is to make sure UBIFS always has flash space to flush all dirty
458  * pages, dirty inodes, and dirty znodes (liability). This function may force
459  * commit, garbage-collection or write-back. Returns zero in case of success,
460  * %-ENOSPC if there is no free space and other negative error codes in case of
461  * failures.
462  */
463 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
464 {
465         int uninitialized_var(cmt_retries), uninitialized_var(wb_retries);
466         int err, idx_growth, data_growth, dd_growth, retried = 0;
467
468         ubifs_assert(req->new_page <= 1);
469         ubifs_assert(req->dirtied_page <= 1);
470         ubifs_assert(req->new_dent <= 1);
471         ubifs_assert(req->mod_dent <= 1);
472         ubifs_assert(req->new_ino <= 1);
473         ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
474         ubifs_assert(req->dirtied_ino <= 4);
475         ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
476         ubifs_assert(!(req->new_ino_d & 7));
477         ubifs_assert(!(req->dirtied_ino_d & 7));
478
479         data_growth = calc_data_growth(c, req);
480         dd_growth = calc_dd_growth(c, req);
481         if (!data_growth && !dd_growth)
482                 return 0;
483         idx_growth = calc_idx_growth(c, req);
484
485 again:
486         spin_lock(&c->space_lock);
487         ubifs_assert(c->budg_idx_growth >= 0);
488         ubifs_assert(c->budg_data_growth >= 0);
489         ubifs_assert(c->budg_dd_growth >= 0);
490
491         if (unlikely(c->nospace) && (c->nospace_rp || !can_use_rp(c))) {
492                 dbg_budg("no space");
493                 spin_unlock(&c->space_lock);
494                 return -ENOSPC;
495         }
496
497         c->budg_idx_growth += idx_growth;
498         c->budg_data_growth += data_growth;
499         c->budg_dd_growth += dd_growth;
500
501         err = do_budget_space(c);
502         if (likely(!err)) {
503                 req->idx_growth = idx_growth;
504                 req->data_growth = data_growth;
505                 req->dd_growth = dd_growth;
506                 spin_unlock(&c->space_lock);
507                 return 0;
508         }
509
510         /* Restore the old values */
511         c->budg_idx_growth -= idx_growth;
512         c->budg_data_growth -= data_growth;
513         c->budg_dd_growth -= dd_growth;
514         spin_unlock(&c->space_lock);
515
516         if (req->fast) {
517                 dbg_budg("no space for fast budgeting");
518                 return err;
519         }
520
521         err = make_free_space(c);
522         cond_resched();
523         if (err == -EAGAIN) {
524                 dbg_budg("try again");
525                 goto again;
526         } else if (err == -ENOSPC) {
527                 if (!retried) {
528                         retried = 1;
529                         dbg_budg("-ENOSPC, but anyway try once again");
530                         goto again;
531                 }
532                 dbg_budg("FS is full, -ENOSPC");
533                 c->nospace = 1;
534                 if (can_use_rp(c) || c->rp_size == 0)
535                         c->nospace_rp = 1;
536                 smp_wmb();
537         } else
538                 ubifs_err("cannot budget space, error %d", err);
539         return err;
540 }
541
542 /**
543  * ubifs_release_budget - release budgeted free space.
544  * @c: UBIFS file-system description object
545  * @req: budget request
546  *
547  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
548  * since the index changes (which were budgeted for in @req->idx_growth) will
549  * only be written to the media on commit, this function moves the index budget
550  * from @c->budg_idx_growth to @c->budg_uncommitted_idx. The latter will be
551  * zeroed by the commit operation.
552  */
553 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
554 {
555         ubifs_assert(req->new_page <= 1);
556         ubifs_assert(req->dirtied_page <= 1);
557         ubifs_assert(req->new_dent <= 1);
558         ubifs_assert(req->mod_dent <= 1);
559         ubifs_assert(req->new_ino <= 1);
560         ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA);
561         ubifs_assert(req->dirtied_ino <= 4);
562         ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
563         ubifs_assert(!(req->new_ino_d & 7));
564         ubifs_assert(!(req->dirtied_ino_d & 7));
565         if (!req->recalculate) {
566                 ubifs_assert(req->idx_growth >= 0);
567                 ubifs_assert(req->data_growth >= 0);
568                 ubifs_assert(req->dd_growth >= 0);
569         }
570
571         if (req->recalculate) {
572                 req->data_growth = calc_data_growth(c, req);
573                 req->dd_growth = calc_dd_growth(c, req);
574                 req->idx_growth = calc_idx_growth(c, req);
575         }
576
577         if (!req->data_growth && !req->dd_growth)
578                 return;
579
580         c->nospace = c->nospace_rp = 0;
581         smp_wmb();
582
583         spin_lock(&c->space_lock);
584         c->budg_idx_growth -= req->idx_growth;
585         c->budg_uncommitted_idx += req->idx_growth;
586         c->budg_data_growth -= req->data_growth;
587         c->budg_dd_growth -= req->dd_growth;
588         c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
589
590         ubifs_assert(c->budg_idx_growth >= 0);
591         ubifs_assert(c->budg_data_growth >= 0);
592         ubifs_assert(c->budg_dd_growth >= 0);
593         ubifs_assert(c->min_idx_lebs < c->main_lebs);
594         ubifs_assert(!(c->budg_idx_growth & 7));
595         ubifs_assert(!(c->budg_data_growth & 7));
596         ubifs_assert(!(c->budg_dd_growth & 7));
597         spin_unlock(&c->space_lock);
598 }
599
600 /**
601  * ubifs_convert_page_budget - convert budget of a new page.
602  * @c: UBIFS file-system description object
603  *
604  * This function converts budget which was allocated for a new page of data to
605  * the budget of changing an existing page of data. The latter is smaller than
606  * the former, so this function only does simple re-calculation and does not
607  * involve any write-back.
608  */
609 void ubifs_convert_page_budget(struct ubifs_info *c)
610 {
611         spin_lock(&c->space_lock);
612         /* Release the index growth reservation */
613         c->budg_idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
614         /* Release the data growth reservation */
615         c->budg_data_growth -= c->page_budget;
616         /* Increase the dirty data growth reservation instead */
617         c->budg_dd_growth += c->page_budget;
618         /* And re-calculate the indexing space reservation */
619         c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
620         spin_unlock(&c->space_lock);
621 }
622
623 /**
624  * ubifs_release_dirty_inode_budget - release dirty inode budget.
625  * @c: UBIFS file-system description object
626  * @ui: UBIFS inode to release the budget for
627  *
628  * This function releases budget corresponding to a dirty inode. It is usually
629  * called when after the inode has been written to the media and marked as
630  * clean. It also causes the "no space" flags to be cleared.
631  */
632 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
633                                       struct ubifs_inode *ui)
634 {
635         struct ubifs_budget_req req;
636
637         memset(&req, 0, sizeof(struct ubifs_budget_req));
638         /* The "no space" flags will be cleared because dd_growth is > 0 */
639         req.dd_growth = c->inode_budget + ALIGN(ui->data_len, 8);
640         ubifs_release_budget(c, &req);
641 }
642
643 /**
644  * ubifs_reported_space - calculate reported free space.
645  * @c: the UBIFS file-system description object
646  * @free: amount of free space
647  *
648  * This function calculates amount of free space which will be reported to
649  * user-space. User-space application tend to expect that if the file-system
650  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
651  * are able to write a file of size N. UBIFS attaches node headers to each data
652  * node and it has to write indexing nodes as well. This introduces additional
653  * overhead, and UBIFS has to report slightly less free space to meet the above
654  * expectations.
655  *
656  * This function assumes free space is made up of uncompressed data nodes and
657  * full index nodes (one per data node, tripled because we always allow enough
658  * space to write the index thrice).
659  *
660  * Note, the calculation is pessimistic, which means that most of the time
661  * UBIFS reports less space than it actually has.
662  */
663 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
664 {
665         int divisor, factor, f;
666
667         /*
668          * Reported space size is @free * X, where X is UBIFS block size
669          * divided by UBIFS block size + all overhead one data block
670          * introduces. The overhead is the node header + indexing overhead.
671          *
672          * Indexing overhead calculations are based on the following formula:
673          * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
674          * of data nodes, f - fanout. Because effective UBIFS fanout is twice
675          * as less than maximum fanout, we assume that each data node
676          * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
677          * Note, the multiplier 3 is because UBIFS reserves thrice as more space
678          * for the index.
679          */
680         f = c->fanout > 3 ? c->fanout >> 1 : 2;
681         factor = UBIFS_BLOCK_SIZE;
682         divisor = UBIFS_MAX_DATA_NODE_SZ;
683         divisor += (c->max_idx_node_sz * 3) / (f - 1);
684         free *= factor;
685         return div_u64(free, divisor);
686 }
687
688 /**
689  * ubifs_get_free_space_nolock - return amount of free space.
690  * @c: UBIFS file-system description object
691  *
692  * This function calculates amount of free space to report to user-space.
693  *
694  * Because UBIFS may introduce substantial overhead (the index, node headers,
695  * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
696  * free flash space it has (well, because not all dirty space is reclaimable,
697  * UBIFS does not actually know the real amount). If UBIFS did so, it would
698  * bread user expectations about what free space is. Users seem to accustomed
699  * to assume that if the file-system reports N bytes of free space, they would
700  * be able to fit a file of N bytes to the FS. This almost works for
701  * traditional file-systems, because they have way less overhead than UBIFS.
702  * So, to keep users happy, UBIFS tries to take the overhead into account.
703  */
704 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
705 {
706         int rsvd_idx_lebs, lebs;
707         long long available, outstanding, free;
708
709         ubifs_assert(c->min_idx_lebs == ubifs_calc_min_idx_lebs(c));
710         outstanding = c->budg_data_growth + c->budg_dd_growth;
711         available = ubifs_calc_available(c, c->min_idx_lebs);
712
713         /*
714          * When reporting free space to user-space, UBIFS guarantees that it is
715          * possible to write a file of free space size. This means that for
716          * empty LEBs we may use more precise calculations than
717          * 'ubifs_calc_available()' is using. Namely, we know that in empty
718          * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
719          * Thus, amend the available space.
720          *
721          * Note, the calculations below are similar to what we have in
722          * 'do_budget_space()', so refer there for comments.
723          */
724         if (c->min_idx_lebs > c->lst.idx_lebs)
725                 rsvd_idx_lebs = c->min_idx_lebs - c->lst.idx_lebs;
726         else
727                 rsvd_idx_lebs = 0;
728         lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
729                c->lst.taken_empty_lebs;
730         lebs -= rsvd_idx_lebs;
731         available += lebs * (c->dark_wm - c->leb_overhead);
732
733         if (available > outstanding)
734                 free = ubifs_reported_space(c, available - outstanding);
735         else
736                 free = 0;
737         return free;
738 }
739
740 /**
741  * ubifs_get_free_space - return amount of free space.
742  * @c: UBIFS file-system description object
743  *
744  * This function calculates and retuns amount of free space to report to
745  * user-space.
746  */
747 long long ubifs_get_free_space(struct ubifs_info *c)
748 {
749         long long free;
750
751         spin_lock(&c->space_lock);
752         free = ubifs_get_free_space_nolock(c);
753         spin_unlock(&c->space_lock);
754
755         return free;
756 }