1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
9 #include <linux/delay.h>
11 #include <asm/fixmap.h>
13 #include <asm/i8253.h>
16 #define HPET_MASK CLOCKSOURCE_MASK(32)
21 #define FSEC_PER_NSEC 1000000
24 * HPET address is set in acpi/boot.c, when an ACPI entry exists
26 unsigned long hpet_address;
27 static void __iomem *hpet_virt_address;
29 unsigned long hpet_readl(unsigned long a)
31 return readl(hpet_virt_address + a);
34 static inline void hpet_writel(unsigned long d, unsigned long a)
36 writel(d, hpet_virt_address + a);
41 #include <asm/pgtable.h>
43 static inline void hpet_set_mapping(void)
45 set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
46 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
47 hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
50 static inline void hpet_clear_mapping(void)
52 hpet_virt_address = NULL;
57 static inline void hpet_set_mapping(void)
59 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
62 static inline void hpet_clear_mapping(void)
64 iounmap(hpet_virt_address);
65 hpet_virt_address = NULL;
70 * HPET command line enable / disable
72 static int boot_hpet_disable;
75 static int __init hpet_setup(char* str)
78 if (!strncmp("disable", str, 7))
79 boot_hpet_disable = 1;
80 if (!strncmp("force", str, 5))
85 __setup("hpet=", hpet_setup);
87 static int __init disable_hpet(char *str)
89 boot_hpet_disable = 1;
92 __setup("nohpet", disable_hpet);
94 static inline int is_hpet_capable(void)
96 return (!boot_hpet_disable && hpet_address);
100 * HPET timer interrupt enable / disable
102 static int hpet_legacy_int_enabled;
105 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
107 int is_hpet_enabled(void)
109 return is_hpet_capable() && hpet_legacy_int_enabled;
113 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
114 * timer 0 and timer 1 in case of RTC emulation.
117 static void hpet_reserve_platform_timers(unsigned long id)
119 struct hpet __iomem *hpet = hpet_virt_address;
120 unsigned int nrtimers;
123 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
125 memset(&hd, 0, sizeof (hd));
126 hd.hd_phys_address = hpet_address;
127 hd.hd_address = hpet;
128 hd.hd_nirqs = nrtimers;
129 hd.hd_flags = HPET_DATA_PLATFORM;
130 hpet_reserve_timer(&hd, 0);
132 #ifdef CONFIG_HPET_EMULATE_RTC
133 hpet_reserve_timer(&hd, 1);
135 hd.hd_irq[0] = HPET_LEGACY_8254;
136 hd.hd_irq[1] = HPET_LEGACY_RTC;
139 * IRQs for the other timers are assigned dynamically
145 static void hpet_reserve_platform_timers(unsigned long id) { }
151 static unsigned long hpet_period;
153 static void hpet_legacy_set_mode(enum clock_event_mode mode,
154 struct clock_event_device *evt);
155 static int hpet_legacy_next_event(unsigned long delta,
156 struct clock_event_device *evt);
159 * The hpet clock event device
161 static struct clock_event_device hpet_clockevent = {
163 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
164 .set_mode = hpet_legacy_set_mode,
165 .set_next_event = hpet_legacy_next_event,
171 static void hpet_start_counter(void)
173 unsigned long cfg = hpet_readl(HPET_CFG);
175 cfg &= ~HPET_CFG_ENABLE;
176 hpet_writel(cfg, HPET_CFG);
177 hpet_writel(0, HPET_COUNTER);
178 hpet_writel(0, HPET_COUNTER + 4);
179 cfg |= HPET_CFG_ENABLE;
180 hpet_writel(cfg, HPET_CFG);
183 static void hpet_resume_device(void)
188 static void hpet_restart_counter(void)
190 hpet_resume_device();
191 hpet_start_counter();
194 static void hpet_enable_legacy_int(void)
196 unsigned long cfg = hpet_readl(HPET_CFG);
198 cfg |= HPET_CFG_LEGACY;
199 hpet_writel(cfg, HPET_CFG);
200 hpet_legacy_int_enabled = 1;
203 static void hpet_legacy_clockevent_register(void)
207 /* Start HPET legacy interrupts */
208 hpet_enable_legacy_int();
211 * The period is a femto seconds value. We need to calculate the
212 * scaled math multiplication factor for nanosecond to hpet tick
215 hpet_freq = 1000000000000000ULL;
216 do_div(hpet_freq, hpet_period);
217 hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
219 /* Calculate the min / max delta */
220 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
222 hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
226 * Start hpet with the boot cpu mask and make it
227 * global after the IO_APIC has been initialized.
229 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
230 clockevents_register_device(&hpet_clockevent);
231 global_clock_event = &hpet_clockevent;
232 printk(KERN_DEBUG "hpet clockevent registered\n");
235 static void hpet_legacy_set_mode(enum clock_event_mode mode,
236 struct clock_event_device *evt)
238 unsigned long cfg, cmp, now;
242 case CLOCK_EVT_MODE_PERIODIC:
243 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
244 delta >>= hpet_clockevent.shift;
245 now = hpet_readl(HPET_COUNTER);
246 cmp = now + (unsigned long) delta;
247 cfg = hpet_readl(HPET_T0_CFG);
248 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
249 HPET_TN_SETVAL | HPET_TN_32BIT;
250 hpet_writel(cfg, HPET_T0_CFG);
252 * The first write after writing TN_SETVAL to the
253 * config register sets the counter value, the second
254 * write sets the period.
256 hpet_writel(cmp, HPET_T0_CMP);
258 hpet_writel((unsigned long) delta, HPET_T0_CMP);
261 case CLOCK_EVT_MODE_ONESHOT:
262 cfg = hpet_readl(HPET_T0_CFG);
263 cfg &= ~HPET_TN_PERIODIC;
264 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
265 hpet_writel(cfg, HPET_T0_CFG);
268 case CLOCK_EVT_MODE_UNUSED:
269 case CLOCK_EVT_MODE_SHUTDOWN:
270 cfg = hpet_readl(HPET_T0_CFG);
271 cfg &= ~HPET_TN_ENABLE;
272 hpet_writel(cfg, HPET_T0_CFG);
275 case CLOCK_EVT_MODE_RESUME:
276 hpet_enable_legacy_int();
281 static int hpet_legacy_next_event(unsigned long delta,
282 struct clock_event_device *evt)
286 cnt = hpet_readl(HPET_COUNTER);
288 hpet_writel(cnt, HPET_T0_CMP);
290 return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
294 * Clock source related code
296 static cycle_t read_hpet(void)
298 return (cycle_t)hpet_readl(HPET_COUNTER);
302 static cycle_t __vsyscall_fn vread_hpet(void)
304 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
308 static struct clocksource clocksource_hpet = {
314 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
315 .resume = hpet_restart_counter,
321 static int hpet_clocksource_register(void)
326 /* Start the counter */
327 hpet_start_counter();
329 /* Verify whether hpet counter works */
334 * We don't know the TSC frequency yet, but waiting for
335 * 200000 TSC cycles is safe:
342 } while ((now - start) < 200000UL);
344 if (t1 == read_hpet()) {
346 "HPET counter not counting. HPET disabled\n");
350 /* Initialize and register HPET clocksource
352 * hpet period is in femto seconds per cycle
353 * so we need to convert this to ns/cyc units
354 * approximated by mult/2^shift
356 * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
357 * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
358 * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
359 * (fsec/cyc << shift)/1000000 = mult
360 * (hpet_period << shift)/FSEC_PER_NSEC = mult
362 tmp = (u64)hpet_period << HPET_SHIFT;
363 do_div(tmp, FSEC_PER_NSEC);
364 clocksource_hpet.mult = (u32)tmp;
366 clocksource_register(&clocksource_hpet);
372 * Try to setup the HPET timer
374 int __init hpet_enable(void)
378 if (!is_hpet_capable())
384 * Read the period and check for a sane value:
386 hpet_period = hpet_readl(HPET_PERIOD);
387 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
391 * Read the HPET ID register to retrieve the IRQ routing
392 * information and the number of channels
394 id = hpet_readl(HPET_ID);
396 #ifdef CONFIG_HPET_EMULATE_RTC
398 * The legacy routing mode needs at least two channels, tick timer
399 * and the rtc emulation channel.
401 if (!(id & HPET_ID_NUMBER))
405 if (hpet_clocksource_register())
408 if (id & HPET_ID_LEGSUP) {
409 hpet_legacy_clockevent_register();
415 hpet_clear_mapping();
416 boot_hpet_disable = 1;
421 * Needs to be late, as the reserve_timer code calls kalloc !
423 * Not a problem on i386 as hpet_enable is called from late_time_init,
424 * but on x86_64 it is necessary !
426 static __init int hpet_late_init(void)
428 if (boot_hpet_disable)
432 if (!force_hpet_address)
435 hpet_address = force_hpet_address;
437 if (!hpet_virt_address)
441 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
445 fs_initcall(hpet_late_init);
447 void hpet_disable(void)
449 if (is_hpet_capable()) {
450 unsigned long cfg = hpet_readl(HPET_CFG);
452 if (hpet_legacy_int_enabled) {
453 cfg &= ~HPET_CFG_LEGACY;
454 hpet_legacy_int_enabled = 0;
456 cfg &= ~HPET_CFG_ENABLE;
457 hpet_writel(cfg, HPET_CFG);
461 #ifdef CONFIG_HPET_EMULATE_RTC
463 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
464 * is enabled, we support RTC interrupt functionality in software.
465 * RTC has 3 kinds of interrupts:
466 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
468 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
469 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
470 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
471 * (1) and (2) above are implemented using polling at a frequency of
472 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
473 * overhead. (DEFAULT_RTC_INT_FREQ)
474 * For (3), we use interrupts at 64Hz or user specified periodic
475 * frequency, whichever is higher.
477 #include <linux/mc146818rtc.h>
478 #include <linux/rtc.h>
480 #define DEFAULT_RTC_INT_FREQ 64
481 #define DEFAULT_RTC_SHIFT 6
482 #define RTC_NUM_INTS 1
484 static unsigned long hpet_rtc_flags;
485 static unsigned long hpet_prev_update_sec;
486 static struct rtc_time hpet_alarm_time;
487 static unsigned long hpet_pie_count;
488 static unsigned long hpet_t1_cmp;
489 static unsigned long hpet_default_delta;
490 static unsigned long hpet_pie_delta;
491 static unsigned long hpet_pie_limit;
494 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
495 * is not supported by all HPET implementations for timer 1.
497 * hpet_rtc_timer_init() is called when the rtc is initialized.
499 int hpet_rtc_timer_init(void)
501 unsigned long cfg, cnt, delta, flags;
503 if (!is_hpet_enabled())
506 if (!hpet_default_delta) {
509 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
510 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
511 hpet_default_delta = (unsigned long) clc;
514 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
515 delta = hpet_default_delta;
517 delta = hpet_pie_delta;
519 local_irq_save(flags);
521 cnt = delta + hpet_readl(HPET_COUNTER);
522 hpet_writel(cnt, HPET_T1_CMP);
525 cfg = hpet_readl(HPET_T1_CFG);
526 cfg &= ~HPET_TN_PERIODIC;
527 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
528 hpet_writel(cfg, HPET_T1_CFG);
530 local_irq_restore(flags);
536 * The functions below are called from rtc driver.
537 * Return 0 if HPET is not being used.
538 * Otherwise do the necessary changes and return 1.
540 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
542 if (!is_hpet_enabled())
545 hpet_rtc_flags &= ~bit_mask;
549 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
551 unsigned long oldbits = hpet_rtc_flags;
553 if (!is_hpet_enabled())
556 hpet_rtc_flags |= bit_mask;
559 hpet_rtc_timer_init();
564 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
567 if (!is_hpet_enabled())
570 hpet_alarm_time.tm_hour = hrs;
571 hpet_alarm_time.tm_min = min;
572 hpet_alarm_time.tm_sec = sec;
577 int hpet_set_periodic_freq(unsigned long freq)
581 if (!is_hpet_enabled())
584 if (freq <= DEFAULT_RTC_INT_FREQ)
585 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
587 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
589 clc >>= hpet_clockevent.shift;
590 hpet_pie_delta = (unsigned long) clc;
595 int hpet_rtc_dropped_irq(void)
597 return is_hpet_enabled();
600 static void hpet_rtc_timer_reinit(void)
602 unsigned long cfg, delta;
605 if (unlikely(!hpet_rtc_flags)) {
606 cfg = hpet_readl(HPET_T1_CFG);
607 cfg &= ~HPET_TN_ENABLE;
608 hpet_writel(cfg, HPET_T1_CFG);
612 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
613 delta = hpet_default_delta;
615 delta = hpet_pie_delta;
618 * Increment the comparator value until we are ahead of the
622 hpet_t1_cmp += delta;
623 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
625 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
628 if (hpet_rtc_flags & RTC_PIE)
629 hpet_pie_count += lost_ints;
630 if (printk_ratelimit())
631 printk(KERN_WARNING "rtc: lost %d interrupts\n",
636 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
638 struct rtc_time curr_time;
639 unsigned long rtc_int_flag = 0;
641 hpet_rtc_timer_reinit();
643 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
644 rtc_get_rtc_time(&curr_time);
646 if (hpet_rtc_flags & RTC_UIE &&
647 curr_time.tm_sec != hpet_prev_update_sec) {
648 rtc_int_flag = RTC_UF;
649 hpet_prev_update_sec = curr_time.tm_sec;
652 if (hpet_rtc_flags & RTC_PIE &&
653 ++hpet_pie_count >= hpet_pie_limit) {
654 rtc_int_flag |= RTC_PF;
658 if (hpet_rtc_flags & RTC_AIE &&
659 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
660 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
661 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
662 rtc_int_flag |= RTC_AF;
665 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
666 rtc_interrupt(rtc_int_flag, dev_id);