markers: add missing stdargs.h include, needed due to va_list usage
[linux-2.6] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR                       180
8 #define USB_DEVICE_MAJOR                189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>        /* for mdelay() */
15 #include <linux/interrupt.h>    /* for in_interrupt() */
16 #include <linux/list.h>         /* for struct list_head */
17 #include <linux/kref.h>         /* for struct kref */
18 #include <linux/device.h>       /* for struct device */
19 #include <linux/fs.h>           /* for struct file_operations */
20 #include <linux/completion.h>   /* for struct completion */
21 #include <linux/sched.h>        /* for current && schedule_timeout */
22 #include <linux/mutex.h>        /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27
28 /*-------------------------------------------------------------------------*/
29
30 /*
31  * Host-side wrappers for standard USB descriptors ... these are parsed
32  * from the data provided by devices.  Parsing turns them from a flat
33  * sequence of descriptors into a hierarchy:
34  *
35  *  - devices have one (usually) or more configs;
36  *  - configs have one (often) or more interfaces;
37  *  - interfaces have one (usually) or more settings;
38  *  - each interface setting has zero or (usually) more endpoints.
39  *
40  * And there might be other descriptors mixed in with those.
41  *
42  * Devices may also have class-specific or vendor-specific descriptors.
43  */
44
45 struct ep_device;
46
47 /**
48  * struct usb_host_endpoint - host-side endpoint descriptor and queue
49  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
50  * @urb_list: urbs queued to this endpoint; maintained by usbcore
51  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
52  *      with one or more transfer descriptors (TDs) per urb
53  * @ep_dev: ep_device for sysfs info
54  * @extra: descriptors following this endpoint in the configuration
55  * @extralen: how many bytes of "extra" are valid
56  * @enabled: URBs may be submitted to this endpoint
57  *
58  * USB requests are always queued to a given endpoint, identified by a
59  * descriptor within an active interface in a given USB configuration.
60  */
61 struct usb_host_endpoint {
62         struct usb_endpoint_descriptor  desc;
63         struct list_head                urb_list;
64         void                            *hcpriv;
65         struct ep_device                *ep_dev;        /* For sysfs info */
66
67         unsigned char *extra;   /* Extra descriptors */
68         int extralen;
69         int enabled;
70 };
71
72 /* host-side wrapper for one interface setting's parsed descriptors */
73 struct usb_host_interface {
74         struct usb_interface_descriptor desc;
75
76         /* array of desc.bNumEndpoint endpoints associated with this
77          * interface setting.  these will be in no particular order.
78          */
79         struct usb_host_endpoint *endpoint;
80
81         char *string;           /* iInterface string, if present */
82         unsigned char *extra;   /* Extra descriptors */
83         int extralen;
84 };
85
86 enum usb_interface_condition {
87         USB_INTERFACE_UNBOUND = 0,
88         USB_INTERFACE_BINDING,
89         USB_INTERFACE_BOUND,
90         USB_INTERFACE_UNBINDING,
91 };
92
93 /**
94  * struct usb_interface - what usb device drivers talk to
95  * @altsetting: array of interface structures, one for each alternate
96  *      setting that may be selected.  Each one includes a set of
97  *      endpoint configurations.  They will be in no particular order.
98  * @cur_altsetting: the current altsetting.
99  * @num_altsetting: number of altsettings defined.
100  * @intf_assoc: interface association descriptor
101  * @minor: the minor number assigned to this interface, if this
102  *      interface is bound to a driver that uses the USB major number.
103  *      If this interface does not use the USB major, this field should
104  *      be unused.  The driver should set this value in the probe()
105  *      function of the driver, after it has been assigned a minor
106  *      number from the USB core by calling usb_register_dev().
107  * @condition: binding state of the interface: not bound, binding
108  *      (in probe()), bound to a driver, or unbinding (in disconnect())
109  * @is_active: flag set when the interface is bound and not suspended.
110  * @sysfs_files_created: sysfs attributes exist
111  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
112  *      capability during autosuspend.
113  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
114  *      has been deferred.
115  * @needs_binding: flag set when the driver should be re-probed or unbound
116  *      following a reset or suspend operation it doesn't support.
117  * @dev: driver model's view of this device
118  * @usb_dev: if an interface is bound to the USB major, this will point
119  *      to the sysfs representation for that device.
120  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
121  *      allowed unless the counter is 0.
122  *
123  * USB device drivers attach to interfaces on a physical device.  Each
124  * interface encapsulates a single high level function, such as feeding
125  * an audio stream to a speaker or reporting a change in a volume control.
126  * Many USB devices only have one interface.  The protocol used to talk to
127  * an interface's endpoints can be defined in a usb "class" specification,
128  * or by a product's vendor.  The (default) control endpoint is part of
129  * every interface, but is never listed among the interface's descriptors.
130  *
131  * The driver that is bound to the interface can use standard driver model
132  * calls such as dev_get_drvdata() on the dev member of this structure.
133  *
134  * Each interface may have alternate settings.  The initial configuration
135  * of a device sets altsetting 0, but the device driver can change
136  * that setting using usb_set_interface().  Alternate settings are often
137  * used to control the use of periodic endpoints, such as by having
138  * different endpoints use different amounts of reserved USB bandwidth.
139  * All standards-conformant USB devices that use isochronous endpoints
140  * will use them in non-default settings.
141  *
142  * The USB specification says that alternate setting numbers must run from
143  * 0 to one less than the total number of alternate settings.  But some
144  * devices manage to mess this up, and the structures aren't necessarily
145  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
146  * look up an alternate setting in the altsetting array based on its number.
147  */
148 struct usb_interface {
149         /* array of alternate settings for this interface,
150          * stored in no particular order */
151         struct usb_host_interface *altsetting;
152
153         struct usb_host_interface *cur_altsetting;      /* the currently
154                                          * active alternate setting */
155         unsigned num_altsetting;        /* number of alternate settings */
156
157         /* If there is an interface association descriptor then it will list
158          * the associated interfaces */
159         struct usb_interface_assoc_descriptor *intf_assoc;
160
161         int minor;                      /* minor number this interface is
162                                          * bound to */
163         enum usb_interface_condition condition;         /* state of binding */
164         unsigned is_active:1;           /* the interface is not suspended */
165         unsigned sysfs_files_created:1; /* the sysfs attributes exist */
166         unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
167         unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
168         unsigned needs_binding:1;       /* needs delayed unbind/rebind */
169
170         struct device dev;              /* interface specific device info */
171         struct device *usb_dev;
172         int pm_usage_cnt;               /* usage counter for autosuspend */
173 };
174 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
175 #define interface_to_usbdev(intf) \
176         container_of(intf->dev.parent, struct usb_device, dev)
177
178 static inline void *usb_get_intfdata(struct usb_interface *intf)
179 {
180         return dev_get_drvdata(&intf->dev);
181 }
182
183 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
184 {
185         dev_set_drvdata(&intf->dev, data);
186 }
187
188 struct usb_interface *usb_get_intf(struct usb_interface *intf);
189 void usb_put_intf(struct usb_interface *intf);
190
191 /* this maximum is arbitrary */
192 #define USB_MAXINTERFACES       32
193 #define USB_MAXIADS             USB_MAXINTERFACES/2
194
195 /**
196  * struct usb_interface_cache - long-term representation of a device interface
197  * @num_altsetting: number of altsettings defined.
198  * @ref: reference counter.
199  * @altsetting: variable-length array of interface structures, one for
200  *      each alternate setting that may be selected.  Each one includes a
201  *      set of endpoint configurations.  They will be in no particular order.
202  *
203  * These structures persist for the lifetime of a usb_device, unlike
204  * struct usb_interface (which persists only as long as its configuration
205  * is installed).  The altsetting arrays can be accessed through these
206  * structures at any time, permitting comparison of configurations and
207  * providing support for the /proc/bus/usb/devices pseudo-file.
208  */
209 struct usb_interface_cache {
210         unsigned num_altsetting;        /* number of alternate settings */
211         struct kref ref;                /* reference counter */
212
213         /* variable-length array of alternate settings for this interface,
214          * stored in no particular order */
215         struct usb_host_interface altsetting[0];
216 };
217 #define ref_to_usb_interface_cache(r) \
218                 container_of(r, struct usb_interface_cache, ref)
219 #define altsetting_to_usb_interface_cache(a) \
220                 container_of(a, struct usb_interface_cache, altsetting[0])
221
222 /**
223  * struct usb_host_config - representation of a device's configuration
224  * @desc: the device's configuration descriptor.
225  * @string: pointer to the cached version of the iConfiguration string, if
226  *      present for this configuration.
227  * @intf_assoc: list of any interface association descriptors in this config
228  * @interface: array of pointers to usb_interface structures, one for each
229  *      interface in the configuration.  The number of interfaces is stored
230  *      in desc.bNumInterfaces.  These pointers are valid only while the
231  *      the configuration is active.
232  * @intf_cache: array of pointers to usb_interface_cache structures, one
233  *      for each interface in the configuration.  These structures exist
234  *      for the entire life of the device.
235  * @extra: pointer to buffer containing all extra descriptors associated
236  *      with this configuration (those preceding the first interface
237  *      descriptor).
238  * @extralen: length of the extra descriptors buffer.
239  *
240  * USB devices may have multiple configurations, but only one can be active
241  * at any time.  Each encapsulates a different operational environment;
242  * for example, a dual-speed device would have separate configurations for
243  * full-speed and high-speed operation.  The number of configurations
244  * available is stored in the device descriptor as bNumConfigurations.
245  *
246  * A configuration can contain multiple interfaces.  Each corresponds to
247  * a different function of the USB device, and all are available whenever
248  * the configuration is active.  The USB standard says that interfaces
249  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
250  * of devices get this wrong.  In addition, the interface array is not
251  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
252  * look up an interface entry based on its number.
253  *
254  * Device drivers should not attempt to activate configurations.  The choice
255  * of which configuration to install is a policy decision based on such
256  * considerations as available power, functionality provided, and the user's
257  * desires (expressed through userspace tools).  However, drivers can call
258  * usb_reset_configuration() to reinitialize the current configuration and
259  * all its interfaces.
260  */
261 struct usb_host_config {
262         struct usb_config_descriptor    desc;
263
264         char *string;           /* iConfiguration string, if present */
265
266         /* List of any Interface Association Descriptors in this
267          * configuration. */
268         struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
269
270         /* the interfaces associated with this configuration,
271          * stored in no particular order */
272         struct usb_interface *interface[USB_MAXINTERFACES];
273
274         /* Interface information available even when this is not the
275          * active configuration */
276         struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
277
278         unsigned char *extra;   /* Extra descriptors */
279         int extralen;
280 };
281
282 int __usb_get_extra_descriptor(char *buffer, unsigned size,
283         unsigned char type, void **ptr);
284 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
285                                 __usb_get_extra_descriptor((ifpoint)->extra, \
286                                 (ifpoint)->extralen, \
287                                 type, (void **)ptr)
288
289 /* ----------------------------------------------------------------------- */
290
291 /* USB device number allocation bitmap */
292 struct usb_devmap {
293         unsigned long devicemap[128 / (8*sizeof(unsigned long))];
294 };
295
296 /*
297  * Allocated per bus (tree of devices) we have:
298  */
299 struct usb_bus {
300         struct device *controller;      /* host/master side hardware */
301         int busnum;                     /* Bus number (in order of reg) */
302         const char *bus_name;           /* stable id (PCI slot_name etc) */
303         u8 uses_dma;                    /* Does the host controller use DMA? */
304         u8 otg_port;                    /* 0, or number of OTG/HNP port */
305         unsigned is_b_host:1;           /* true during some HNP roleswitches */
306         unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
307
308         int devnum_next;                /* Next open device number in
309                                          * round-robin allocation */
310
311         struct usb_devmap devmap;       /* device address allocation map */
312         struct usb_device *root_hub;    /* Root hub */
313         struct list_head bus_list;      /* list of busses */
314
315         int bandwidth_allocated;        /* on this bus: how much of the time
316                                          * reserved for periodic (intr/iso)
317                                          * requests is used, on average?
318                                          * Units: microseconds/frame.
319                                          * Limits: Full/low speed reserve 90%,
320                                          * while high speed reserves 80%.
321                                          */
322         int bandwidth_int_reqs;         /* number of Interrupt requests */
323         int bandwidth_isoc_reqs;        /* number of Isoc. requests */
324
325 #ifdef CONFIG_USB_DEVICEFS
326         struct dentry *usbfs_dentry;    /* usbfs dentry entry for the bus */
327 #endif
328         struct device *dev;             /* device for this bus */
329
330 #if defined(CONFIG_USB_MON)
331         struct mon_bus *mon_bus;        /* non-null when associated */
332         int monitored;                  /* non-zero when monitored */
333 #endif
334 };
335
336 /* ----------------------------------------------------------------------- */
337
338 /* This is arbitrary.
339  * From USB 2.0 spec Table 11-13, offset 7, a hub can
340  * have up to 255 ports. The most yet reported is 10.
341  *
342  * Current Wireless USB host hardware (Intel i1480 for example) allows
343  * up to 22 devices to connect. Upcoming hardware might raise that
344  * limit. Because the arrays need to add a bit for hub status data, we
345  * do 31, so plus one evens out to four bytes.
346  */
347 #define USB_MAXCHILDREN         (31)
348
349 struct usb_tt;
350
351 /**
352  * struct usb_device - kernel's representation of a USB device
353  * @devnum: device number; address on a USB bus
354  * @devpath: device ID string for use in messages (e.g., /port/...)
355  * @state: device state: configured, not attached, etc.
356  * @speed: device speed: high/full/low (or error)
357  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
358  * @ttport: device port on that tt hub
359  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
360  * @parent: our hub, unless we're the root
361  * @bus: bus we're part of
362  * @ep0: endpoint 0 data (default control pipe)
363  * @dev: generic device interface
364  * @descriptor: USB device descriptor
365  * @config: all of the device's configs
366  * @actconfig: the active configuration
367  * @ep_in: array of IN endpoints
368  * @ep_out: array of OUT endpoints
369  * @rawdescriptors: raw descriptors for each config
370  * @bus_mA: Current available from the bus
371  * @portnum: parent port number (origin 1)
372  * @level: number of USB hub ancestors
373  * @can_submit: URBs may be submitted
374  * @discon_suspended: disconnected while suspended
375  * @persist_enabled:  USB_PERSIST enabled for this device
376  * @have_langid: whether string_langid is valid
377  * @authorized: policy has said we can use it;
378  *      (user space) policy determines if we authorize this device to be
379  *      used or not. By default, wired USB devices are authorized.
380  *      WUSB devices are not, until we authorize them from user space.
381  *      FIXME -- complete doc
382  * @authenticated: Crypto authentication passed
383  * @wusb: device is Wireless USB
384  * @string_langid: language ID for strings
385  * @product: iProduct string, if present (static)
386  * @manufacturer: iManufacturer string, if present (static)
387  * @serial: iSerialNumber string, if present (static)
388  * @filelist: usbfs files that are open to this device
389  * @usb_classdev: USB class device that was created for usbfs device
390  *      access from userspace
391  * @usbfs_dentry: usbfs dentry entry for the device
392  * @maxchild: number of ports if hub
393  * @children: child devices - USB devices that are attached to this hub
394  * @pm_usage_cnt: usage counter for autosuspend
395  * @quirks: quirks of the whole device
396  * @urbnum: number of URBs submitted for the whole device
397  * @active_duration: total time device is not suspended
398  * @autosuspend: for delayed autosuspends
399  * @pm_mutex: protects PM operations
400  * @last_busy: time of last use
401  * @autosuspend_delay: in jiffies
402  * @connect_time: time device was first connected
403  * @auto_pm: autosuspend/resume in progress
404  * @do_remote_wakeup:  remote wakeup should be enabled
405  * @reset_resume: needs reset instead of resume
406  * @autosuspend_disabled: autosuspend disabled by the user
407  * @autoresume_disabled: autoresume disabled by the user
408  * @skip_sys_resume: skip the next system resume
409  *
410  * Notes:
411  * Usbcore drivers should not set usbdev->state directly.  Instead use
412  * usb_set_device_state().
413  */
414 struct usb_device {
415         int             devnum;
416         char            devpath [16];
417         enum usb_device_state   state;
418         enum usb_device_speed   speed;
419
420         struct usb_tt   *tt;
421         int             ttport;
422
423         unsigned int toggle[2];
424
425         struct usb_device *parent;
426         struct usb_bus *bus;
427         struct usb_host_endpoint ep0;
428
429         struct device dev;
430
431         struct usb_device_descriptor descriptor;
432         struct usb_host_config *config;
433
434         struct usb_host_config *actconfig;
435         struct usb_host_endpoint *ep_in[16];
436         struct usb_host_endpoint *ep_out[16];
437
438         char **rawdescriptors;
439
440         unsigned short bus_mA;
441         u8 portnum;
442         u8 level;
443
444         unsigned can_submit:1;
445         unsigned discon_suspended:1;
446         unsigned persist_enabled:1;
447         unsigned have_langid:1;
448         unsigned authorized:1;
449         unsigned authenticated:1;
450         unsigned wusb:1;
451         int string_langid;
452
453         /* static strings from the device */
454         char *product;
455         char *manufacturer;
456         char *serial;
457
458         struct list_head filelist;
459 #ifdef CONFIG_USB_DEVICE_CLASS
460         struct device *usb_classdev;
461 #endif
462 #ifdef CONFIG_USB_DEVICEFS
463         struct dentry *usbfs_dentry;
464 #endif
465
466         int maxchild;
467         struct usb_device *children[USB_MAXCHILDREN];
468
469         int pm_usage_cnt;
470         u32 quirks;
471         atomic_t urbnum;
472
473         unsigned long active_duration;
474
475 #ifdef CONFIG_PM
476         struct delayed_work autosuspend;
477         struct mutex pm_mutex;
478
479         unsigned long last_busy;
480         int autosuspend_delay;
481         unsigned long connect_time;
482
483         unsigned auto_pm:1;
484         unsigned do_remote_wakeup:1;
485         unsigned reset_resume:1;
486         unsigned autosuspend_disabled:1;
487         unsigned autoresume_disabled:1;
488         unsigned skip_sys_resume:1;
489 #endif
490         struct wusb_dev *wusb_dev;
491 };
492 #define to_usb_device(d) container_of(d, struct usb_device, dev)
493
494 extern struct usb_device *usb_get_dev(struct usb_device *dev);
495 extern void usb_put_dev(struct usb_device *dev);
496
497 /* USB device locking */
498 #define usb_lock_device(udev)           down(&(udev)->dev.sem)
499 #define usb_unlock_device(udev)         up(&(udev)->dev.sem)
500 #define usb_trylock_device(udev)        down_trylock(&(udev)->dev.sem)
501 extern int usb_lock_device_for_reset(struct usb_device *udev,
502                                      const struct usb_interface *iface);
503
504 /* USB port reset for device reinitialization */
505 extern int usb_reset_device(struct usb_device *dev);
506
507 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
508
509 /* USB autosuspend and autoresume */
510 #ifdef CONFIG_USB_SUSPEND
511 extern int usb_autopm_set_interface(struct usb_interface *intf);
512 extern int usb_autopm_get_interface(struct usb_interface *intf);
513 extern void usb_autopm_put_interface(struct usb_interface *intf);
514
515 static inline void usb_autopm_enable(struct usb_interface *intf)
516 {
517         intf->pm_usage_cnt = 0;
518         usb_autopm_set_interface(intf);
519 }
520
521 static inline void usb_autopm_disable(struct usb_interface *intf)
522 {
523         intf->pm_usage_cnt = 1;
524         usb_autopm_set_interface(intf);
525 }
526
527 static inline void usb_mark_last_busy(struct usb_device *udev)
528 {
529         udev->last_busy = jiffies;
530 }
531
532 #else
533
534 static inline int usb_autopm_set_interface(struct usb_interface *intf)
535 { return 0; }
536
537 static inline int usb_autopm_get_interface(struct usb_interface *intf)
538 { return 0; }
539
540 static inline void usb_autopm_put_interface(struct usb_interface *intf)
541 { }
542 static inline void usb_autopm_enable(struct usb_interface *intf)
543 { }
544 static inline void usb_autopm_disable(struct usb_interface *intf)
545 { }
546 static inline void usb_mark_last_busy(struct usb_device *udev)
547 { }
548 #endif
549
550 /*-------------------------------------------------------------------------*/
551
552 /* for drivers using iso endpoints */
553 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
554
555 /* used these for multi-interface device registration */
556 extern int usb_driver_claim_interface(struct usb_driver *driver,
557                         struct usb_interface *iface, void *priv);
558
559 /**
560  * usb_interface_claimed - returns true iff an interface is claimed
561  * @iface: the interface being checked
562  *
563  * Returns true (nonzero) iff the interface is claimed, else false (zero).
564  * Callers must own the driver model's usb bus readlock.  So driver
565  * probe() entries don't need extra locking, but other call contexts
566  * may need to explicitly claim that lock.
567  *
568  */
569 static inline int usb_interface_claimed(struct usb_interface *iface)
570 {
571         return (iface->dev.driver != NULL);
572 }
573
574 extern void usb_driver_release_interface(struct usb_driver *driver,
575                         struct usb_interface *iface);
576 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
577                                          const struct usb_device_id *id);
578 extern int usb_match_one_id(struct usb_interface *interface,
579                             const struct usb_device_id *id);
580
581 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
582                 int minor);
583 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
584                 unsigned ifnum);
585 extern struct usb_host_interface *usb_altnum_to_altsetting(
586                 const struct usb_interface *intf, unsigned int altnum);
587
588
589 /**
590  * usb_make_path - returns stable device path in the usb tree
591  * @dev: the device whose path is being constructed
592  * @buf: where to put the string
593  * @size: how big is "buf"?
594  *
595  * Returns length of the string (> 0) or negative if size was too small.
596  *
597  * This identifier is intended to be "stable", reflecting physical paths in
598  * hardware such as physical bus addresses for host controllers or ports on
599  * USB hubs.  That makes it stay the same until systems are physically
600  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
601  * controllers.  Adding and removing devices, including virtual root hubs
602  * in host controller driver modules, does not change these path identifers;
603  * neither does rebooting or re-enumerating.  These are more useful identifiers
604  * than changeable ("unstable") ones like bus numbers or device addresses.
605  *
606  * With a partial exception for devices connected to USB 2.0 root hubs, these
607  * identifiers are also predictable.  So long as the device tree isn't changed,
608  * plugging any USB device into a given hub port always gives it the same path.
609  * Because of the use of "companion" controllers, devices connected to ports on
610  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
611  * high speed, and a different one if they are full or low speed.
612  */
613 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
614 {
615         int actual;
616         actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
617                           dev->devpath);
618         return (actual >= (int)size) ? -1 : actual;
619 }
620
621 /*-------------------------------------------------------------------------*/
622
623 /**
624  * usb_endpoint_num - get the endpoint's number
625  * @epd: endpoint to be checked
626  *
627  * Returns @epd's number: 0 to 15.
628  */
629 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
630 {
631         return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
632 }
633
634 /**
635  * usb_endpoint_type - get the endpoint's transfer type
636  * @epd: endpoint to be checked
637  *
638  * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
639  * to @epd's transfer type.
640  */
641 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
642 {
643         return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
644 }
645
646 /**
647  * usb_endpoint_dir_in - check if the endpoint has IN direction
648  * @epd: endpoint to be checked
649  *
650  * Returns true if the endpoint is of type IN, otherwise it returns false.
651  */
652 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
653 {
654         return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
655 }
656
657 /**
658  * usb_endpoint_dir_out - check if the endpoint has OUT direction
659  * @epd: endpoint to be checked
660  *
661  * Returns true if the endpoint is of type OUT, otherwise it returns false.
662  */
663 static inline int usb_endpoint_dir_out(
664                                 const struct usb_endpoint_descriptor *epd)
665 {
666         return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
667 }
668
669 /**
670  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
671  * @epd: endpoint to be checked
672  *
673  * Returns true if the endpoint is of type bulk, otherwise it returns false.
674  */
675 static inline int usb_endpoint_xfer_bulk(
676                                 const struct usb_endpoint_descriptor *epd)
677 {
678         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
679                 USB_ENDPOINT_XFER_BULK);
680 }
681
682 /**
683  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
684  * @epd: endpoint to be checked
685  *
686  * Returns true if the endpoint is of type control, otherwise it returns false.
687  */
688 static inline int usb_endpoint_xfer_control(
689                                 const struct usb_endpoint_descriptor *epd)
690 {
691         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
692                 USB_ENDPOINT_XFER_CONTROL);
693 }
694
695 /**
696  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
697  * @epd: endpoint to be checked
698  *
699  * Returns true if the endpoint is of type interrupt, otherwise it returns
700  * false.
701  */
702 static inline int usb_endpoint_xfer_int(
703                                 const struct usb_endpoint_descriptor *epd)
704 {
705         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
706                 USB_ENDPOINT_XFER_INT);
707 }
708
709 /**
710  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
711  * @epd: endpoint to be checked
712  *
713  * Returns true if the endpoint is of type isochronous, otherwise it returns
714  * false.
715  */
716 static inline int usb_endpoint_xfer_isoc(
717                                 const struct usb_endpoint_descriptor *epd)
718 {
719         return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
720                 USB_ENDPOINT_XFER_ISOC);
721 }
722
723 /**
724  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
725  * @epd: endpoint to be checked
726  *
727  * Returns true if the endpoint has bulk transfer type and IN direction,
728  * otherwise it returns false.
729  */
730 static inline int usb_endpoint_is_bulk_in(
731                                 const struct usb_endpoint_descriptor *epd)
732 {
733         return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
734 }
735
736 /**
737  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
738  * @epd: endpoint to be checked
739  *
740  * Returns true if the endpoint has bulk transfer type and OUT direction,
741  * otherwise it returns false.
742  */
743 static inline int usb_endpoint_is_bulk_out(
744                                 const struct usb_endpoint_descriptor *epd)
745 {
746         return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
747 }
748
749 /**
750  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
751  * @epd: endpoint to be checked
752  *
753  * Returns true if the endpoint has interrupt transfer type and IN direction,
754  * otherwise it returns false.
755  */
756 static inline int usb_endpoint_is_int_in(
757                                 const struct usb_endpoint_descriptor *epd)
758 {
759         return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
760 }
761
762 /**
763  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
764  * @epd: endpoint to be checked
765  *
766  * Returns true if the endpoint has interrupt transfer type and OUT direction,
767  * otherwise it returns false.
768  */
769 static inline int usb_endpoint_is_int_out(
770                                 const struct usb_endpoint_descriptor *epd)
771 {
772         return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
773 }
774
775 /**
776  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
777  * @epd: endpoint to be checked
778  *
779  * Returns true if the endpoint has isochronous transfer type and IN direction,
780  * otherwise it returns false.
781  */
782 static inline int usb_endpoint_is_isoc_in(
783                                 const struct usb_endpoint_descriptor *epd)
784 {
785         return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
786 }
787
788 /**
789  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
790  * @epd: endpoint to be checked
791  *
792  * Returns true if the endpoint has isochronous transfer type and OUT direction,
793  * otherwise it returns false.
794  */
795 static inline int usb_endpoint_is_isoc_out(
796                                 const struct usb_endpoint_descriptor *epd)
797 {
798         return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
799 }
800
801 /*-------------------------------------------------------------------------*/
802
803 #define USB_DEVICE_ID_MATCH_DEVICE \
804                 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
805 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
806                 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
807 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
808                 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
809 #define USB_DEVICE_ID_MATCH_DEV_INFO \
810                 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
811                 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
812                 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
813 #define USB_DEVICE_ID_MATCH_INT_INFO \
814                 (USB_DEVICE_ID_MATCH_INT_CLASS | \
815                 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
816                 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
817
818 /**
819  * USB_DEVICE - macro used to describe a specific usb device
820  * @vend: the 16 bit USB Vendor ID
821  * @prod: the 16 bit USB Product ID
822  *
823  * This macro is used to create a struct usb_device_id that matches a
824  * specific device.
825  */
826 #define USB_DEVICE(vend,prod) \
827         .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
828         .idVendor = (vend), \
829         .idProduct = (prod)
830 /**
831  * USB_DEVICE_VER - describe a specific usb device with a version range
832  * @vend: the 16 bit USB Vendor ID
833  * @prod: the 16 bit USB Product ID
834  * @lo: the bcdDevice_lo value
835  * @hi: the bcdDevice_hi value
836  *
837  * This macro is used to create a struct usb_device_id that matches a
838  * specific device, with a version range.
839  */
840 #define USB_DEVICE_VER(vend, prod, lo, hi) \
841         .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
842         .idVendor = (vend), \
843         .idProduct = (prod), \
844         .bcdDevice_lo = (lo), \
845         .bcdDevice_hi = (hi)
846
847 /**
848  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
849  * @vend: the 16 bit USB Vendor ID
850  * @prod: the 16 bit USB Product ID
851  * @pr: bInterfaceProtocol value
852  *
853  * This macro is used to create a struct usb_device_id that matches a
854  * specific interface protocol of devices.
855  */
856 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
857         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
858                        USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
859         .idVendor = (vend), \
860         .idProduct = (prod), \
861         .bInterfaceProtocol = (pr)
862
863 /**
864  * USB_DEVICE_INFO - macro used to describe a class of usb devices
865  * @cl: bDeviceClass value
866  * @sc: bDeviceSubClass value
867  * @pr: bDeviceProtocol value
868  *
869  * This macro is used to create a struct usb_device_id that matches a
870  * specific class of devices.
871  */
872 #define USB_DEVICE_INFO(cl, sc, pr) \
873         .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
874         .bDeviceClass = (cl), \
875         .bDeviceSubClass = (sc), \
876         .bDeviceProtocol = (pr)
877
878 /**
879  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
880  * @cl: bInterfaceClass value
881  * @sc: bInterfaceSubClass value
882  * @pr: bInterfaceProtocol value
883  *
884  * This macro is used to create a struct usb_device_id that matches a
885  * specific class of interfaces.
886  */
887 #define USB_INTERFACE_INFO(cl, sc, pr) \
888         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
889         .bInterfaceClass = (cl), \
890         .bInterfaceSubClass = (sc), \
891         .bInterfaceProtocol = (pr)
892
893 /**
894  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
895  * @vend: the 16 bit USB Vendor ID
896  * @prod: the 16 bit USB Product ID
897  * @cl: bInterfaceClass value
898  * @sc: bInterfaceSubClass value
899  * @pr: bInterfaceProtocol value
900  *
901  * This macro is used to create a struct usb_device_id that matches a
902  * specific device with a specific class of interfaces.
903  *
904  * This is especially useful when explicitly matching devices that have
905  * vendor specific bDeviceClass values, but standards-compliant interfaces.
906  */
907 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
908         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
909                 | USB_DEVICE_ID_MATCH_DEVICE, \
910         .idVendor = (vend), \
911         .idProduct = (prod), \
912         .bInterfaceClass = (cl), \
913         .bInterfaceSubClass = (sc), \
914         .bInterfaceProtocol = (pr)
915
916 /* ----------------------------------------------------------------------- */
917
918 /* Stuff for dynamic usb ids */
919 struct usb_dynids {
920         spinlock_t lock;
921         struct list_head list;
922 };
923
924 struct usb_dynid {
925         struct list_head node;
926         struct usb_device_id id;
927 };
928
929 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
930                                 struct device_driver *driver,
931                                 const char *buf, size_t count);
932
933 /**
934  * struct usbdrv_wrap - wrapper for driver-model structure
935  * @driver: The driver-model core driver structure.
936  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
937  */
938 struct usbdrv_wrap {
939         struct device_driver driver;
940         int for_devices;
941 };
942
943 /**
944  * struct usb_driver - identifies USB interface driver to usbcore
945  * @name: The driver name should be unique among USB drivers,
946  *      and should normally be the same as the module name.
947  * @probe: Called to see if the driver is willing to manage a particular
948  *      interface on a device.  If it is, probe returns zero and uses
949  *      usb_set_intfdata() to associate driver-specific data with the
950  *      interface.  It may also use usb_set_interface() to specify the
951  *      appropriate altsetting.  If unwilling to manage the interface,
952  *      return -ENODEV, if genuine IO errors occured, an appropriate
953  *      negative errno value.
954  * @disconnect: Called when the interface is no longer accessible, usually
955  *      because its device has been (or is being) disconnected or the
956  *      driver module is being unloaded.
957  * @ioctl: Used for drivers that want to talk to userspace through
958  *      the "usbfs" filesystem.  This lets devices provide ways to
959  *      expose information to user space regardless of where they
960  *      do (or don't) show up otherwise in the filesystem.
961  * @suspend: Called when the device is going to be suspended by the system.
962  * @resume: Called when the device is being resumed by the system.
963  * @reset_resume: Called when the suspended device has been reset instead
964  *      of being resumed.
965  * @pre_reset: Called by usb_reset_device() when the device
966  *      is about to be reset.
967  * @post_reset: Called by usb_reset_device() after the device
968  *      has been reset
969  * @id_table: USB drivers use ID table to support hotplugging.
970  *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
971  *      or your driver's probe function will never get called.
972  * @dynids: used internally to hold the list of dynamically added device
973  *      ids for this driver.
974  * @drvwrap: Driver-model core structure wrapper.
975  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
976  *      added to this driver by preventing the sysfs file from being created.
977  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
978  *      for interfaces bound to this driver.
979  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
980  *      endpoints before calling the driver's disconnect method.
981  *
982  * USB interface drivers must provide a name, probe() and disconnect()
983  * methods, and an id_table.  Other driver fields are optional.
984  *
985  * The id_table is used in hotplugging.  It holds a set of descriptors,
986  * and specialized data may be associated with each entry.  That table
987  * is used by both user and kernel mode hotplugging support.
988  *
989  * The probe() and disconnect() methods are called in a context where
990  * they can sleep, but they should avoid abusing the privilege.  Most
991  * work to connect to a device should be done when the device is opened,
992  * and undone at the last close.  The disconnect code needs to address
993  * concurrency issues with respect to open() and close() methods, as
994  * well as forcing all pending I/O requests to complete (by unlinking
995  * them as necessary, and blocking until the unlinks complete).
996  */
997 struct usb_driver {
998         const char *name;
999
1000         int (*probe) (struct usb_interface *intf,
1001                       const struct usb_device_id *id);
1002
1003         void (*disconnect) (struct usb_interface *intf);
1004
1005         int (*ioctl) (struct usb_interface *intf, unsigned int code,
1006                         void *buf);
1007
1008         int (*suspend) (struct usb_interface *intf, pm_message_t message);
1009         int (*resume) (struct usb_interface *intf);
1010         int (*reset_resume)(struct usb_interface *intf);
1011
1012         int (*pre_reset)(struct usb_interface *intf);
1013         int (*post_reset)(struct usb_interface *intf);
1014
1015         const struct usb_device_id *id_table;
1016
1017         struct usb_dynids dynids;
1018         struct usbdrv_wrap drvwrap;
1019         unsigned int no_dynamic_id:1;
1020         unsigned int supports_autosuspend:1;
1021         unsigned int soft_unbind:1;
1022 };
1023 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1024
1025 /**
1026  * struct usb_device_driver - identifies USB device driver to usbcore
1027  * @name: The driver name should be unique among USB drivers,
1028  *      and should normally be the same as the module name.
1029  * @probe: Called to see if the driver is willing to manage a particular
1030  *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1031  *      to associate driver-specific data with the device.  If unwilling
1032  *      to manage the device, return a negative errno value.
1033  * @disconnect: Called when the device is no longer accessible, usually
1034  *      because it has been (or is being) disconnected or the driver's
1035  *      module is being unloaded.
1036  * @suspend: Called when the device is going to be suspended by the system.
1037  * @resume: Called when the device is being resumed by the system.
1038  * @drvwrap: Driver-model core structure wrapper.
1039  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1040  *      for devices bound to this driver.
1041  *
1042  * USB drivers must provide all the fields listed above except drvwrap.
1043  */
1044 struct usb_device_driver {
1045         const char *name;
1046
1047         int (*probe) (struct usb_device *udev);
1048         void (*disconnect) (struct usb_device *udev);
1049
1050         int (*suspend) (struct usb_device *udev, pm_message_t message);
1051         int (*resume) (struct usb_device *udev);
1052         struct usbdrv_wrap drvwrap;
1053         unsigned int supports_autosuspend:1;
1054 };
1055 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1056                 drvwrap.driver)
1057
1058 extern struct bus_type usb_bus_type;
1059
1060 /**
1061  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1062  * @name: the usb class device name for this driver.  Will show up in sysfs.
1063  * @fops: pointer to the struct file_operations of this driver.
1064  * @minor_base: the start of the minor range for this driver.
1065  *
1066  * This structure is used for the usb_register_dev() and
1067  * usb_unregister_dev() functions, to consolidate a number of the
1068  * parameters used for them.
1069  */
1070 struct usb_class_driver {
1071         char *name;
1072         const struct file_operations *fops;
1073         int minor_base;
1074 };
1075
1076 /*
1077  * use these in module_init()/module_exit()
1078  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1079  */
1080 extern int usb_register_driver(struct usb_driver *, struct module *,
1081                                const char *);
1082 static inline int usb_register(struct usb_driver *driver)
1083 {
1084         return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1085 }
1086 extern void usb_deregister(struct usb_driver *);
1087
1088 extern int usb_register_device_driver(struct usb_device_driver *,
1089                         struct module *);
1090 extern void usb_deregister_device_driver(struct usb_device_driver *);
1091
1092 extern int usb_register_dev(struct usb_interface *intf,
1093                             struct usb_class_driver *class_driver);
1094 extern void usb_deregister_dev(struct usb_interface *intf,
1095                                struct usb_class_driver *class_driver);
1096
1097 extern int usb_disabled(void);
1098
1099 /* ----------------------------------------------------------------------- */
1100
1101 /*
1102  * URB support, for asynchronous request completions
1103  */
1104
1105 /*
1106  * urb->transfer_flags:
1107  *
1108  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1109  */
1110 #define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1111 #define URB_ISO_ASAP            0x0002  /* iso-only, urb->start_frame
1112                                          * ignored */
1113 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1114 #define URB_NO_SETUP_DMA_MAP    0x0008  /* urb->setup_dma valid on submit */
1115 #define URB_NO_FSBR             0x0020  /* UHCI-specific */
1116 #define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1117 #define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1118                                          * needed */
1119 #define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1120
1121 #define URB_DIR_IN              0x0200  /* Transfer from device to host */
1122 #define URB_DIR_OUT             0
1123 #define URB_DIR_MASK            URB_DIR_IN
1124
1125 struct usb_iso_packet_descriptor {
1126         unsigned int offset;
1127         unsigned int length;            /* expected length */
1128         unsigned int actual_length;
1129         int status;
1130 };
1131
1132 struct urb;
1133
1134 struct usb_anchor {
1135         struct list_head urb_list;
1136         wait_queue_head_t wait;
1137         spinlock_t lock;
1138         unsigned int poisoned:1;
1139 };
1140
1141 static inline void init_usb_anchor(struct usb_anchor *anchor)
1142 {
1143         INIT_LIST_HEAD(&anchor->urb_list);
1144         init_waitqueue_head(&anchor->wait);
1145         spin_lock_init(&anchor->lock);
1146 }
1147
1148 typedef void (*usb_complete_t)(struct urb *);
1149
1150 /**
1151  * struct urb - USB Request Block
1152  * @urb_list: For use by current owner of the URB.
1153  * @anchor_list: membership in the list of an anchor
1154  * @anchor: to anchor URBs to a common mooring
1155  * @ep: Points to the endpoint's data structure.  Will eventually
1156  *      replace @pipe.
1157  * @pipe: Holds endpoint number, direction, type, and more.
1158  *      Create these values with the eight macros available;
1159  *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1160  *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1161  *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1162  *      numbers range from zero to fifteen.  Note that "in" endpoint two
1163  *      is a different endpoint (and pipe) from "out" endpoint two.
1164  *      The current configuration controls the existence, type, and
1165  *      maximum packet size of any given endpoint.
1166  * @dev: Identifies the USB device to perform the request.
1167  * @status: This is read in non-iso completion functions to get the
1168  *      status of the particular request.  ISO requests only use it
1169  *      to tell whether the URB was unlinked; detailed status for
1170  *      each frame is in the fields of the iso_frame-desc.
1171  * @transfer_flags: A variety of flags may be used to affect how URB
1172  *      submission, unlinking, or operation are handled.  Different
1173  *      kinds of URB can use different flags.
1174  * @transfer_buffer:  This identifies the buffer to (or from) which
1175  *      the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1176  *      is set).  This buffer must be suitable for DMA; allocate it with
1177  *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1178  *      of this buffer will be modified.  This buffer is used for the data
1179  *      stage of control transfers.
1180  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1181  *      the device driver is saying that it provided this DMA address,
1182  *      which the host controller driver should use in preference to the
1183  *      transfer_buffer.
1184  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1185  *      be broken up into chunks according to the current maximum packet
1186  *      size for the endpoint, which is a function of the configuration
1187  *      and is encoded in the pipe.  When the length is zero, neither
1188  *      transfer_buffer nor transfer_dma is used.
1189  * @actual_length: This is read in non-iso completion functions, and
1190  *      it tells how many bytes (out of transfer_buffer_length) were
1191  *      transferred.  It will normally be the same as requested, unless
1192  *      either an error was reported or a short read was performed.
1193  *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1194  *      short reads be reported as errors.
1195  * @setup_packet: Only used for control transfers, this points to eight bytes
1196  *      of setup data.  Control transfers always start by sending this data
1197  *      to the device.  Then transfer_buffer is read or written, if needed.
1198  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1199  *      device driver has provided this DMA address for the setup packet.
1200  *      The host controller driver should use this in preference to
1201  *      setup_packet.
1202  * @start_frame: Returns the initial frame for isochronous transfers.
1203  * @number_of_packets: Lists the number of ISO transfer buffers.
1204  * @interval: Specifies the polling interval for interrupt or isochronous
1205  *      transfers.  The units are frames (milliseconds) for for full and low
1206  *      speed devices, and microframes (1/8 millisecond) for highspeed ones.
1207  * @error_count: Returns the number of ISO transfers that reported errors.
1208  * @context: For use in completion functions.  This normally points to
1209  *      request-specific driver context.
1210  * @complete: Completion handler. This URB is passed as the parameter to the
1211  *      completion function.  The completion function may then do what
1212  *      it likes with the URB, including resubmitting or freeing it.
1213  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1214  *      collect the transfer status for each buffer.
1215  *
1216  * This structure identifies USB transfer requests.  URBs must be allocated by
1217  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1218  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1219  * are submitted using usb_submit_urb(), and pending requests may be canceled
1220  * using usb_unlink_urb() or usb_kill_urb().
1221  *
1222  * Data Transfer Buffers:
1223  *
1224  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1225  * taken from the general page pool.  That is provided by transfer_buffer
1226  * (control requests also use setup_packet), and host controller drivers
1227  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1228  * mapping operations can be expensive on some platforms (perhaps using a dma
1229  * bounce buffer or talking to an IOMMU),
1230  * although they're cheap on commodity x86 and ppc hardware.
1231  *
1232  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1233  * which tell the host controller driver that no such mapping is needed since
1234  * the device driver is DMA-aware.  For example, a device driver might
1235  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1236  * When these transfer flags are provided, host controller drivers will
1237  * attempt to use the dma addresses found in the transfer_dma and/or
1238  * setup_dma fields rather than determining a dma address themselves.  (Note
1239  * that transfer_buffer and setup_packet must still be set because not all
1240  * host controllers use DMA, nor do virtual root hubs).
1241  *
1242  * Initialization:
1243  *
1244  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1245  * zero), and complete fields.  All URBs must also initialize
1246  * transfer_buffer and transfer_buffer_length.  They may provide the
1247  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1248  * to be treated as errors; that flag is invalid for write requests.
1249  *
1250  * Bulk URBs may
1251  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1252  * should always terminate with a short packet, even if it means adding an
1253  * extra zero length packet.
1254  *
1255  * Control URBs must provide a setup_packet.  The setup_packet and
1256  * transfer_buffer may each be mapped for DMA or not, independently of
1257  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1258  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1259  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1260  *
1261  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1262  * or, for highspeed devices, 125 microsecond units)
1263  * to poll for transfers.  After the URB has been submitted, the interval
1264  * field reflects how the transfer was actually scheduled.
1265  * The polling interval may be more frequent than requested.
1266  * For example, some controllers have a maximum interval of 32 milliseconds,
1267  * while others support intervals of up to 1024 milliseconds.
1268  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1269  * endpoints, as well as high speed interrupt endpoints, the encoding of
1270  * the transfer interval in the endpoint descriptor is logarithmic.
1271  * Device drivers must convert that value to linear units themselves.)
1272  *
1273  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1274  * the host controller to schedule the transfer as soon as bandwidth
1275  * utilization allows, and then set start_frame to reflect the actual frame
1276  * selected during submission.  Otherwise drivers must specify the start_frame
1277  * and handle the case where the transfer can't begin then.  However, drivers
1278  * won't know how bandwidth is currently allocated, and while they can
1279  * find the current frame using usb_get_current_frame_number () they can't
1280  * know the range for that frame number.  (Ranges for frame counter values
1281  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1282  *
1283  * Isochronous URBs have a different data transfer model, in part because
1284  * the quality of service is only "best effort".  Callers provide specially
1285  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1286  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1287  * URBs are normally queued, submitted by drivers to arrange that
1288  * transfers are at least double buffered, and then explicitly resubmitted
1289  * in completion handlers, so
1290  * that data (such as audio or video) streams at as constant a rate as the
1291  * host controller scheduler can support.
1292  *
1293  * Completion Callbacks:
1294  *
1295  * The completion callback is made in_interrupt(), and one of the first
1296  * things that a completion handler should do is check the status field.
1297  * The status field is provided for all URBs.  It is used to report
1298  * unlinked URBs, and status for all non-ISO transfers.  It should not
1299  * be examined before the URB is returned to the completion handler.
1300  *
1301  * The context field is normally used to link URBs back to the relevant
1302  * driver or request state.
1303  *
1304  * When the completion callback is invoked for non-isochronous URBs, the
1305  * actual_length field tells how many bytes were transferred.  This field
1306  * is updated even when the URB terminated with an error or was unlinked.
1307  *
1308  * ISO transfer status is reported in the status and actual_length fields
1309  * of the iso_frame_desc array, and the number of errors is reported in
1310  * error_count.  Completion callbacks for ISO transfers will normally
1311  * (re)submit URBs to ensure a constant transfer rate.
1312  *
1313  * Note that even fields marked "public" should not be touched by the driver
1314  * when the urb is owned by the hcd, that is, since the call to
1315  * usb_submit_urb() till the entry into the completion routine.
1316  */
1317 struct urb {
1318         /* private: usb core and host controller only fields in the urb */
1319         struct kref kref;               /* reference count of the URB */
1320         void *hcpriv;                   /* private data for host controller */
1321         atomic_t use_count;             /* concurrent submissions counter */
1322         u8 reject;                      /* submissions will fail */
1323         int unlinked;                   /* unlink error code */
1324
1325         /* public: documented fields in the urb that can be used by drivers */
1326         struct list_head urb_list;      /* list head for use by the urb's
1327                                          * current owner */
1328         struct list_head anchor_list;   /* the URB may be anchored */
1329         struct usb_anchor *anchor;
1330         struct usb_device *dev;         /* (in) pointer to associated device */
1331         struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1332         unsigned int pipe;              /* (in) pipe information */
1333         int status;                     /* (return) non-ISO status */
1334         unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1335         void *transfer_buffer;          /* (in) associated data buffer */
1336         dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1337         int transfer_buffer_length;     /* (in) data buffer length */
1338         int actual_length;              /* (return) actual transfer length */
1339         unsigned char *setup_packet;    /* (in) setup packet (control only) */
1340         dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1341         int start_frame;                /* (modify) start frame (ISO) */
1342         int number_of_packets;          /* (in) number of ISO packets */
1343         int interval;                   /* (modify) transfer interval
1344                                          * (INT/ISO) */
1345         int error_count;                /* (return) number of ISO errors */
1346         void *context;                  /* (in) context for completion */
1347         usb_complete_t complete;        /* (in) completion routine */
1348         struct usb_iso_packet_descriptor iso_frame_desc[0];
1349                                         /* (in) ISO ONLY */
1350 };
1351
1352 /* ----------------------------------------------------------------------- */
1353
1354 /**
1355  * usb_fill_control_urb - initializes a control urb
1356  * @urb: pointer to the urb to initialize.
1357  * @dev: pointer to the struct usb_device for this urb.
1358  * @pipe: the endpoint pipe
1359  * @setup_packet: pointer to the setup_packet buffer
1360  * @transfer_buffer: pointer to the transfer buffer
1361  * @buffer_length: length of the transfer buffer
1362  * @complete_fn: pointer to the usb_complete_t function
1363  * @context: what to set the urb context to.
1364  *
1365  * Initializes a control urb with the proper information needed to submit
1366  * it to a device.
1367  */
1368 static inline void usb_fill_control_urb(struct urb *urb,
1369                                         struct usb_device *dev,
1370                                         unsigned int pipe,
1371                                         unsigned char *setup_packet,
1372                                         void *transfer_buffer,
1373                                         int buffer_length,
1374                                         usb_complete_t complete_fn,
1375                                         void *context)
1376 {
1377         urb->dev = dev;
1378         urb->pipe = pipe;
1379         urb->setup_packet = setup_packet;
1380         urb->transfer_buffer = transfer_buffer;
1381         urb->transfer_buffer_length = buffer_length;
1382         urb->complete = complete_fn;
1383         urb->context = context;
1384 }
1385
1386 /**
1387  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1388  * @urb: pointer to the urb to initialize.
1389  * @dev: pointer to the struct usb_device for this urb.
1390  * @pipe: the endpoint pipe
1391  * @transfer_buffer: pointer to the transfer buffer
1392  * @buffer_length: length of the transfer buffer
1393  * @complete_fn: pointer to the usb_complete_t function
1394  * @context: what to set the urb context to.
1395  *
1396  * Initializes a bulk urb with the proper information needed to submit it
1397  * to a device.
1398  */
1399 static inline void usb_fill_bulk_urb(struct urb *urb,
1400                                      struct usb_device *dev,
1401                                      unsigned int pipe,
1402                                      void *transfer_buffer,
1403                                      int buffer_length,
1404                                      usb_complete_t complete_fn,
1405                                      void *context)
1406 {
1407         urb->dev = dev;
1408         urb->pipe = pipe;
1409         urb->transfer_buffer = transfer_buffer;
1410         urb->transfer_buffer_length = buffer_length;
1411         urb->complete = complete_fn;
1412         urb->context = context;
1413 }
1414
1415 /**
1416  * usb_fill_int_urb - macro to help initialize a interrupt urb
1417  * @urb: pointer to the urb to initialize.
1418  * @dev: pointer to the struct usb_device for this urb.
1419  * @pipe: the endpoint pipe
1420  * @transfer_buffer: pointer to the transfer buffer
1421  * @buffer_length: length of the transfer buffer
1422  * @complete_fn: pointer to the usb_complete_t function
1423  * @context: what to set the urb context to.
1424  * @interval: what to set the urb interval to, encoded like
1425  *      the endpoint descriptor's bInterval value.
1426  *
1427  * Initializes a interrupt urb with the proper information needed to submit
1428  * it to a device.
1429  * Note that high speed interrupt endpoints use a logarithmic encoding of
1430  * the endpoint interval, and express polling intervals in microframes
1431  * (eight per millisecond) rather than in frames (one per millisecond).
1432  */
1433 static inline void usb_fill_int_urb(struct urb *urb,
1434                                     struct usb_device *dev,
1435                                     unsigned int pipe,
1436                                     void *transfer_buffer,
1437                                     int buffer_length,
1438                                     usb_complete_t complete_fn,
1439                                     void *context,
1440                                     int interval)
1441 {
1442         urb->dev = dev;
1443         urb->pipe = pipe;
1444         urb->transfer_buffer = transfer_buffer;
1445         urb->transfer_buffer_length = buffer_length;
1446         urb->complete = complete_fn;
1447         urb->context = context;
1448         if (dev->speed == USB_SPEED_HIGH)
1449                 urb->interval = 1 << (interval - 1);
1450         else
1451                 urb->interval = interval;
1452         urb->start_frame = -1;
1453 }
1454
1455 extern void usb_init_urb(struct urb *urb);
1456 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1457 extern void usb_free_urb(struct urb *urb);
1458 #define usb_put_urb usb_free_urb
1459 extern struct urb *usb_get_urb(struct urb *urb);
1460 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1461 extern int usb_unlink_urb(struct urb *urb);
1462 extern void usb_kill_urb(struct urb *urb);
1463 extern void usb_poison_urb(struct urb *urb);
1464 extern void usb_unpoison_urb(struct urb *urb);
1465 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1466 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1467 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1468 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1469 extern void usb_unanchor_urb(struct urb *urb);
1470 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1471                                          unsigned int timeout);
1472 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1473 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1474 extern int usb_anchor_empty(struct usb_anchor *anchor);
1475
1476 /**
1477  * usb_urb_dir_in - check if an URB describes an IN transfer
1478  * @urb: URB to be checked
1479  *
1480  * Returns 1 if @urb describes an IN transfer (device-to-host),
1481  * otherwise 0.
1482  */
1483 static inline int usb_urb_dir_in(struct urb *urb)
1484 {
1485         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1486 }
1487
1488 /**
1489  * usb_urb_dir_out - check if an URB describes an OUT transfer
1490  * @urb: URB to be checked
1491  *
1492  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1493  * otherwise 0.
1494  */
1495 static inline int usb_urb_dir_out(struct urb *urb)
1496 {
1497         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1498 }
1499
1500 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1501         gfp_t mem_flags, dma_addr_t *dma);
1502 void usb_buffer_free(struct usb_device *dev, size_t size,
1503         void *addr, dma_addr_t dma);
1504
1505 #if 0
1506 struct urb *usb_buffer_map(struct urb *urb);
1507 void usb_buffer_dmasync(struct urb *urb);
1508 void usb_buffer_unmap(struct urb *urb);
1509 #endif
1510
1511 struct scatterlist;
1512 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1513                       struct scatterlist *sg, int nents);
1514 #if 0
1515 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1516                            struct scatterlist *sg, int n_hw_ents);
1517 #endif
1518 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1519                          struct scatterlist *sg, int n_hw_ents);
1520
1521 /*-------------------------------------------------------------------*
1522  *                         SYNCHRONOUS CALL SUPPORT                  *
1523  *-------------------------------------------------------------------*/
1524
1525 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1526         __u8 request, __u8 requesttype, __u16 value, __u16 index,
1527         void *data, __u16 size, int timeout);
1528 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1529         void *data, int len, int *actual_length, int timeout);
1530 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1531         void *data, int len, int *actual_length,
1532         int timeout);
1533
1534 /* wrappers around usb_control_msg() for the most common standard requests */
1535 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1536         unsigned char descindex, void *buf, int size);
1537 extern int usb_get_status(struct usb_device *dev,
1538         int type, int target, void *data);
1539 extern int usb_string(struct usb_device *dev, int index,
1540         char *buf, size_t size);
1541
1542 /* wrappers that also update important state inside usbcore */
1543 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1544 extern int usb_reset_configuration(struct usb_device *dev);
1545 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1546
1547 /* this request isn't really synchronous, but it belongs with the others */
1548 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1549
1550 /*
1551  * timeouts, in milliseconds, used for sending/receiving control messages
1552  * they typically complete within a few frames (msec) after they're issued
1553  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1554  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1555  */
1556 #define USB_CTRL_GET_TIMEOUT    5000
1557 #define USB_CTRL_SET_TIMEOUT    5000
1558
1559
1560 /**
1561  * struct usb_sg_request - support for scatter/gather I/O
1562  * @status: zero indicates success, else negative errno
1563  * @bytes: counts bytes transferred.
1564  *
1565  * These requests are initialized using usb_sg_init(), and then are used
1566  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1567  * members of the request object aren't for driver access.
1568  *
1569  * The status and bytecount values are valid only after usb_sg_wait()
1570  * returns.  If the status is zero, then the bytecount matches the total
1571  * from the request.
1572  *
1573  * After an error completion, drivers may need to clear a halt condition
1574  * on the endpoint.
1575  */
1576 struct usb_sg_request {
1577         int                     status;
1578         size_t                  bytes;
1579
1580         /*
1581          * members below are private: to usbcore,
1582          * and are not provided for driver access!
1583          */
1584         spinlock_t              lock;
1585
1586         struct usb_device       *dev;
1587         int                     pipe;
1588         struct scatterlist      *sg;
1589         int                     nents;
1590
1591         int                     entries;
1592         struct urb              **urbs;
1593
1594         int                     count;
1595         struct completion       complete;
1596 };
1597
1598 int usb_sg_init(
1599         struct usb_sg_request   *io,
1600         struct usb_device       *dev,
1601         unsigned                pipe,
1602         unsigned                period,
1603         struct scatterlist      *sg,
1604         int                     nents,
1605         size_t                  length,
1606         gfp_t                   mem_flags
1607 );
1608 void usb_sg_cancel(struct usb_sg_request *io);
1609 void usb_sg_wait(struct usb_sg_request *io);
1610
1611
1612 /* ----------------------------------------------------------------------- */
1613
1614 /*
1615  * For various legacy reasons, Linux has a small cookie that's paired with
1616  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1617  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1618  * an unsigned int encoded as:
1619  *
1620  *  - direction:        bit 7           (0 = Host-to-Device [Out],
1621  *                                       1 = Device-to-Host [In] ...
1622  *                                      like endpoint bEndpointAddress)
1623  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1624  *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1625  *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1626  *                                       10 = control, 11 = bulk)
1627  *
1628  * Given the device address and endpoint descriptor, pipes are redundant.
1629  */
1630
1631 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1632 /* (yet ... they're the values used by usbfs) */
1633 #define PIPE_ISOCHRONOUS                0
1634 #define PIPE_INTERRUPT                  1
1635 #define PIPE_CONTROL                    2
1636 #define PIPE_BULK                       3
1637
1638 #define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1639 #define usb_pipeout(pipe)       (!usb_pipein(pipe))
1640
1641 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1642 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1643
1644 #define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1645 #define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1646 #define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1647 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1648 #define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1649
1650 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1651 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1652 #define usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1653 #define usb_settoggle(dev, ep, out, bit) \
1654                 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1655                  ((bit) << (ep)))
1656
1657
1658 static inline unsigned int __create_pipe(struct usb_device *dev,
1659                 unsigned int endpoint)
1660 {
1661         return (dev->devnum << 8) | (endpoint << 15);
1662 }
1663
1664 /* Create various pipes... */
1665 #define usb_sndctrlpipe(dev,endpoint)   \
1666         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1667 #define usb_rcvctrlpipe(dev,endpoint)   \
1668         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1669 #define usb_sndisocpipe(dev,endpoint)   \
1670         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1671 #define usb_rcvisocpipe(dev,endpoint)   \
1672         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1673 #define usb_sndbulkpipe(dev,endpoint)   \
1674         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1675 #define usb_rcvbulkpipe(dev,endpoint)   \
1676         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1677 #define usb_sndintpipe(dev,endpoint)    \
1678         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1679 #define usb_rcvintpipe(dev,endpoint)    \
1680         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1681
1682 /*-------------------------------------------------------------------------*/
1683
1684 static inline __u16
1685 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1686 {
1687         struct usb_host_endpoint        *ep;
1688         unsigned                        epnum = usb_pipeendpoint(pipe);
1689
1690         if (is_out) {
1691                 WARN_ON(usb_pipein(pipe));
1692                 ep = udev->ep_out[epnum];
1693         } else {
1694                 WARN_ON(usb_pipeout(pipe));
1695                 ep = udev->ep_in[epnum];
1696         }
1697         if (!ep)
1698                 return 0;
1699
1700         /* NOTE:  only 0x07ff bits are for packet size... */
1701         return le16_to_cpu(ep->desc.wMaxPacketSize);
1702 }
1703
1704 /* ----------------------------------------------------------------------- */
1705
1706 /* Events from the usb core */
1707 #define USB_DEVICE_ADD          0x0001
1708 #define USB_DEVICE_REMOVE       0x0002
1709 #define USB_BUS_ADD             0x0003
1710 #define USB_BUS_REMOVE          0x0004
1711 extern void usb_register_notify(struct notifier_block *nb);
1712 extern void usb_unregister_notify(struct notifier_block *nb);
1713
1714 #ifdef DEBUG
1715 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1716         __FILE__ , ## arg)
1717 #else
1718 #define dbg(format, arg...) do {} while (0)
1719 #endif
1720
1721 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \
1722         format "\n" , ## arg)
1723 #define info(format, arg...) printk(KERN_INFO KBUILD_MODNAME ": " \
1724         format "\n" , ## arg)
1725 #define warn(format, arg...) printk(KERN_WARNING KBUILD_MODNAME ": " \
1726         format "\n" , ## arg)
1727
1728 #endif  /* __KERNEL__ */
1729
1730 #endif