Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[linux-2.6] / drivers / crypto / hifn_795x.c
1 /*
2  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38
39 #include <asm/kmap_types.h>
40
41 #undef dprintk
42
43 #define HIFN_TEST
44 //#define HIFN_DEBUG
45
46 #ifdef HIFN_DEBUG
47 #define dprintk(f, a...)        printk(f, ##a)
48 #else
49 #define dprintk(f, a...)        do {} while (0)
50 #endif
51
52 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
53 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
54 MODULE_PARM_DESC(hifn_pll_ref,
55                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
56
57 static atomic_t hifn_dev_number;
58
59 #define ACRYPTO_OP_DECRYPT      0
60 #define ACRYPTO_OP_ENCRYPT      1
61 #define ACRYPTO_OP_HMAC         2
62 #define ACRYPTO_OP_RNG          3
63
64 #define ACRYPTO_MODE_ECB                0
65 #define ACRYPTO_MODE_CBC                1
66 #define ACRYPTO_MODE_CFB                2
67 #define ACRYPTO_MODE_OFB                3
68
69 #define ACRYPTO_TYPE_AES_128    0
70 #define ACRYPTO_TYPE_AES_192    1
71 #define ACRYPTO_TYPE_AES_256    2
72 #define ACRYPTO_TYPE_3DES       3
73 #define ACRYPTO_TYPE_DES        4
74
75 #define PCI_VENDOR_ID_HIFN              0x13A3
76 #define PCI_DEVICE_ID_HIFN_7955         0x0020
77 #define PCI_DEVICE_ID_HIFN_7956         0x001d
78
79 /* I/O region sizes */
80
81 #define HIFN_BAR0_SIZE                  0x1000
82 #define HIFN_BAR1_SIZE                  0x2000
83 #define HIFN_BAR2_SIZE                  0x8000
84
85 /* DMA registres */
86
87 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
88 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
89 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
90 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
91 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
92 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
93 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
94 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
95 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
96
97 /*
98  * Processing Unit Registers (offset from BASEREG0)
99  */
100 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
101 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
102 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
103 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
104 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
105 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
106 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
107 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
108 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
109
110 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
111 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
112 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
113 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
114 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
115 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
116
117 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
118 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
119 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
120 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
121 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
122 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
123 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
124 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
125 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
126 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
127 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
128
129 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
130 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
131 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
132 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
133 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
134 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
135 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
136 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
137 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
138 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
139 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
140 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
141 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
142 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
143 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
144 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
145 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
146 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
147 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
148 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
149 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
150 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
151 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
152 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
153
154 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
155 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
156 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
157 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
158 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
159 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
160 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
161 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
162 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
163 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
164 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
165
166 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
167 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
168 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
169 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
170 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
171 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
172 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
173 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
174 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
175 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
176 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
177 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
178 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
179 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
180 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
181 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
182 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
183 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
184
185 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
186 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
187 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
188
189 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
190 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
191
192 /*
193  * DMA Interface Registers (offset from BASEREG1)
194  */
195 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
196 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
197 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
198 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
199 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
200 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
201 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
202 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
203 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
204 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
205 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
206 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
207 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
208 #define HIFN_1_REVID            0x98    /* Revision ID */
209 #define HIFN_1_UNLOCK_SECRET1   0xf4
210 #define HIFN_1_UNLOCK_SECRET2   0xfc
211 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
212 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
213 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
214 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
215 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
216 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
217 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
218 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
219 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
220 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
221
222 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
223 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
224 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
225 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
226 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
227 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
228 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
229 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
230 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
231 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
232 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
233 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
234 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
235 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
236 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
237 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
238 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
239 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
240 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
241 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
242 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
243 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
244 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
245 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
246 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
247 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
248 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
249 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
250 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
251 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
252 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
253 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
254 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
255 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
256 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
257 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
258 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
259 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
260 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
261
262 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
263 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
264 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
265 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
266 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
267 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
268 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
269 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
270 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
271 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
272 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
273 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
274 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
275 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
276 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
277 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
278 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
279 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
280 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
281 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
282 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
283 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
284 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
285
286 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
287 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
288 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
289 #define HIFN_DMACNFG_UNLOCK     0x00000800
290 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
291 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
292 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
293 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
294 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
295
296 /* PLL configuration register */
297 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
298 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
299 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
300 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
301 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
302 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
303 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
304 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
305 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
306 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
307 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
308 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
309 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
310 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
311 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
312 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
313 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
314
315 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
316
317 /* Public key reset register (HIFN_1_PUB_RESET) */
318 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
319
320 /* Public base address register (HIFN_1_PUB_BASE) */
321 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
322
323 /* Public operand length register (HIFN_1_PUB_OPLEN) */
324 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
325 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
326 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
327 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent lenght shift */
328 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
329 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
330
331 /* Public operation register (HIFN_1_PUB_OP) */
332 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
333 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
334 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
335 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
336 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
337 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
338 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
339 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
340 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
341 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
342 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
343 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
344 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
345 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
346 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
347 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
348 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
349 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
350 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
351 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
352
353 /* Public status register (HIFN_1_PUB_STATUS) */
354 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
355 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
356
357 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
358 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
359
360 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
361 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
362
363 #define HIFN_NAMESIZE                   32
364 #define HIFN_MAX_RESULT_ORDER           5
365
366 #define HIFN_D_CMD_RSIZE                24*4
367 #define HIFN_D_SRC_RSIZE                80*4
368 #define HIFN_D_DST_RSIZE                80*4
369 #define HIFN_D_RES_RSIZE                24*4
370
371 #define HIFN_D_DST_DALIGN               4
372
373 #define HIFN_QUEUE_LENGTH               HIFN_D_CMD_RSIZE-1
374
375 #define AES_MIN_KEY_SIZE                16
376 #define AES_MAX_KEY_SIZE                32
377
378 #define HIFN_DES_KEY_LENGTH             8
379 #define HIFN_3DES_KEY_LENGTH            24
380 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
381 #define HIFN_IV_LENGTH                  8
382 #define HIFN_AES_IV_LENGTH              16
383 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
384
385 #define HIFN_MAC_KEY_LENGTH             64
386 #define HIFN_MD5_LENGTH                 16
387 #define HIFN_SHA1_LENGTH                20
388 #define HIFN_MAC_TRUNC_LENGTH           12
389
390 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
391 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
392 #define HIFN_USED_RESULT                12
393
394 struct hifn_desc
395 {
396         volatile __le32         l;
397         volatile __le32         p;
398 };
399
400 struct hifn_dma {
401         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE+1];
402         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE+1];
403         struct hifn_desc        dstr[HIFN_D_DST_RSIZE+1];
404         struct hifn_desc        resr[HIFN_D_RES_RSIZE+1];
405
406         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
407         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
408
409         u64                     test_src, test_dst;
410
411         /*
412          *  Our current positions for insertion and removal from the descriptor
413          *  rings.
414          */
415         volatile int            cmdi, srci, dsti, resi;
416         volatile int            cmdu, srcu, dstu, resu;
417         int                     cmdk, srck, dstk, resk;
418 };
419
420 #define HIFN_FLAG_CMD_BUSY      (1<<0)
421 #define HIFN_FLAG_SRC_BUSY      (1<<1)
422 #define HIFN_FLAG_DST_BUSY      (1<<2)
423 #define HIFN_FLAG_RES_BUSY      (1<<3)
424 #define HIFN_FLAG_OLD_KEY       (1<<4)
425
426 #define HIFN_DEFAULT_ACTIVE_NUM 5
427
428 struct hifn_device
429 {
430         char                    name[HIFN_NAMESIZE];
431
432         int                     irq;
433
434         struct pci_dev          *pdev;
435         void __iomem            *bar[3];
436
437         unsigned long           result_mem;
438         dma_addr_t              dst;
439
440         void                    *desc_virt;
441         dma_addr_t              desc_dma;
442
443         u32                     dmareg;
444
445         void                    *sa[HIFN_D_RES_RSIZE];
446
447         spinlock_t              lock;
448
449         void                    *priv;
450
451         u32                     flags;
452         int                     active, started;
453         struct delayed_work     work;
454         unsigned long           reset;
455         unsigned long           success;
456         unsigned long           prev_success;
457
458         u8                      snum;
459
460         struct tasklet_struct   tasklet;
461
462         struct crypto_queue     queue;
463         struct list_head        alg_list;
464
465         unsigned int            pk_clk_freq;
466
467 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
468         unsigned int            rng_wait_time;
469         ktime_t                 rngtime;
470         struct hwrng            rng;
471 #endif
472 };
473
474 #define HIFN_D_LENGTH                   0x0000ffff
475 #define HIFN_D_NOINVALID                0x01000000
476 #define HIFN_D_MASKDONEIRQ              0x02000000
477 #define HIFN_D_DESTOVER                 0x04000000
478 #define HIFN_D_OVER                     0x08000000
479 #define HIFN_D_LAST                     0x20000000
480 #define HIFN_D_JUMP                     0x40000000
481 #define HIFN_D_VALID                    0x80000000
482
483 struct hifn_base_command
484 {
485         volatile __le16         masks;
486         volatile __le16         session_num;
487         volatile __le16         total_source_count;
488         volatile __le16         total_dest_count;
489 };
490
491 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
492 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
493 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
494 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
495 #define HIFN_BASE_CMD_DECODE            0x2000
496 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
497 #define HIFN_BASE_CMD_SRCLEN_S          14
498 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
499 #define HIFN_BASE_CMD_DSTLEN_S          12
500 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
501 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
502
503 /*
504  * Structure to help build up the command data structure.
505  */
506 struct hifn_crypt_command
507 {
508         volatile __le16                 masks;
509         volatile __le16                 header_skip;
510         volatile __le16                 source_count;
511         volatile __le16                 reserved;
512 };
513
514 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
515 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
516 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
517 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
518 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
519 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
520 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
521 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
522 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
523 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
524 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
525 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
526 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
527 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
528 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
529 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
530 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
531 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
532 #define HIFN_CRYPT_CMD_SRCLEN_S         14
533
534 /*
535  * Structure to help build up the command data structure.
536  */
537 struct hifn_mac_command
538 {
539         volatile __le16         masks;
540         volatile __le16         header_skip;
541         volatile __le16         source_count;
542         volatile __le16         reserved;
543 };
544
545 #define HIFN_MAC_CMD_ALG_MASK           0x0001
546 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
547 #define HIFN_MAC_CMD_ALG_MD5            0x0001
548 #define HIFN_MAC_CMD_MODE_MASK          0x000c
549 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
550 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
551 #define HIFN_MAC_CMD_MODE_HASH          0x0008
552 #define HIFN_MAC_CMD_MODE_FULL          0x0004
553 #define HIFN_MAC_CMD_TRUNC              0x0010
554 #define HIFN_MAC_CMD_RESULT             0x0020
555 #define HIFN_MAC_CMD_APPEND             0x0040
556 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
557 #define HIFN_MAC_CMD_SRCLEN_S           14
558
559 /*
560  * MAC POS IPsec initiates authentication after encryption on encodes
561  * and before decryption on decodes.
562  */
563 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
564 #define HIFN_MAC_CMD_NEW_KEY            0x0800
565
566 struct hifn_comp_command
567 {
568         volatile __le16         masks;
569         volatile __le16         header_skip;
570         volatile __le16         source_count;
571         volatile __le16         reserved;
572 };
573
574 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
575 #define HIFN_COMP_CMD_SRCLEN_S          14
576 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
577 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
578 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
579 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
580 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
581 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
582 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
583 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
584
585 struct hifn_base_result
586 {
587         volatile __le16         flags;
588         volatile __le16         session;
589         volatile __le16         src_cnt;                /* 15:0 of source count */
590         volatile __le16         dst_cnt;                /* 15:0 of dest count */
591 };
592
593 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
594 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
595 #define HIFN_BASE_RES_SRCLEN_S          14
596 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
597 #define HIFN_BASE_RES_DSTLEN_S          12
598
599 struct hifn_comp_result
600 {
601         volatile __le16         flags;
602         volatile __le16         crc;
603 };
604
605 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
606 #define HIFN_COMP_RES_LCB_S             8
607 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
608 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
609 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
610
611 struct hifn_mac_result
612 {
613         volatile __le16         flags;
614         volatile __le16         reserved;
615         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
616 };
617
618 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
619 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
620
621 struct hifn_crypt_result
622 {
623         volatile __le16         flags;
624         volatile __le16         reserved;
625 };
626
627 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
628
629 #ifndef HIFN_POLL_FREQUENCY
630 #define HIFN_POLL_FREQUENCY     0x1
631 #endif
632
633 #ifndef HIFN_POLL_SCALAR
634 #define HIFN_POLL_SCALAR        0x0
635 #endif
636
637 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
638 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
639
640 struct hifn_crypto_alg
641 {
642         struct list_head        entry;
643         struct crypto_alg       alg;
644         struct hifn_device      *dev;
645 };
646
647 #define ASYNC_SCATTERLIST_CACHE 16
648
649 #define ASYNC_FLAGS_MISALIGNED  (1<<0)
650
651 struct ablkcipher_walk
652 {
653         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
654         u32                     flags;
655         int                     num;
656 };
657
658 struct hifn_context
659 {
660         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
661         struct hifn_device      *dev;
662         unsigned int            keysize, ivsize;
663         u8                      op, type, mode, unused;
664         struct ablkcipher_walk  walk;
665         atomic_t                sg_num;
666 };
667
668 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
669
670 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
671 {
672         u32 ret;
673
674         ret = readl(dev->bar[0] + reg);
675
676         return ret;
677 }
678
679 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
680 {
681         u32 ret;
682
683         ret = readl(dev->bar[1] + reg);
684
685         return ret;
686 }
687
688 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
689 {
690         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
691 }
692
693 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
694 {
695         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
696 }
697
698 static void hifn_wait_puc(struct hifn_device *dev)
699 {
700         int i;
701         u32 ret;
702
703         for (i=10000; i > 0; --i) {
704                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
705                 if (!(ret & HIFN_PUCTRL_RESET))
706                         break;
707
708                 udelay(1);
709         }
710
711         if (!i)
712                 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
713 }
714
715 static void hifn_reset_puc(struct hifn_device *dev)
716 {
717         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
718         hifn_wait_puc(dev);
719 }
720
721 static void hifn_stop_device(struct hifn_device *dev)
722 {
723         hifn_write_1(dev, HIFN_1_DMA_CSR,
724                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
725                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
726         hifn_write_0(dev, HIFN_0_PUIER, 0);
727         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
728 }
729
730 static void hifn_reset_dma(struct hifn_device *dev, int full)
731 {
732         hifn_stop_device(dev);
733
734         /*
735          * Setting poll frequency and others to 0.
736          */
737         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
738                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
739         mdelay(1);
740
741         /*
742          * Reset DMA.
743          */
744         if (full) {
745                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
746                 mdelay(1);
747         } else {
748                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
749                                 HIFN_DMACNFG_MSTRESET);
750                 hifn_reset_puc(dev);
751         }
752
753         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
754                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
755
756         hifn_reset_puc(dev);
757 }
758
759 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
760 {
761         int i;
762         u32 v;
763
764         for (i = 0; i < cnt; i++) {
765
766                 /* get the parity */
767                 v = a & 0x80080125;
768                 v ^= v >> 16;
769                 v ^= v >> 8;
770                 v ^= v >> 4;
771                 v ^= v >> 2;
772                 v ^= v >> 1;
773
774                 a = (v & 1) ^ (a << 1);
775         }
776
777         return a;
778 }
779
780 static struct pci2id {
781         u_short         pci_vendor;
782         u_short         pci_prod;
783         char            card_id[13];
784 } pci2id[] = {
785         {
786                 PCI_VENDOR_ID_HIFN,
787                 PCI_DEVICE_ID_HIFN_7955,
788                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
789                   0x00, 0x00, 0x00, 0x00, 0x00 }
790         },
791         {
792                 PCI_VENDOR_ID_HIFN,
793                 PCI_DEVICE_ID_HIFN_7956,
794                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
795                   0x00, 0x00, 0x00, 0x00, 0x00 }
796         }
797 };
798
799 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
800 static int hifn_rng_data_present(struct hwrng *rng, int wait)
801 {
802         struct hifn_device *dev = (struct hifn_device *)rng->priv;
803         s64 nsec;
804
805         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
806         nsec -= dev->rng_wait_time;
807         if (nsec <= 0)
808                 return 1;
809         if (!wait)
810                 return 0;
811         ndelay(nsec);
812         return 1;
813 }
814
815 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
816 {
817         struct hifn_device *dev = (struct hifn_device *)rng->priv;
818
819         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
820         dev->rngtime = ktime_get();
821         return 4;
822 }
823
824 static int hifn_register_rng(struct hifn_device *dev)
825 {
826         /*
827          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
828          */
829         dev->rng_wait_time      = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
830                                   256;
831
832         dev->rng.name           = dev->name;
833         dev->rng.data_present   = hifn_rng_data_present,
834         dev->rng.data_read      = hifn_rng_data_read,
835         dev->rng.priv           = (unsigned long)dev;
836
837         return hwrng_register(&dev->rng);
838 }
839
840 static void hifn_unregister_rng(struct hifn_device *dev)
841 {
842         hwrng_unregister(&dev->rng);
843 }
844 #else
845 #define hifn_register_rng(dev)          0
846 #define hifn_unregister_rng(dev)
847 #endif
848
849 static int hifn_init_pubrng(struct hifn_device *dev)
850 {
851         int i;
852
853         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
854                         HIFN_PUBRST_RESET);
855
856         for (i=100; i > 0; --i) {
857                 mdelay(1);
858
859                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
860                         break;
861         }
862
863         if (!i)
864                 dprintk("Chip %s: Failed to initialise public key engine.\n",
865                                 dev->name);
866         else {
867                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
868                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
869                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
870
871                 dprintk("Chip %s: Public key engine has been sucessfully "
872                                 "initialised.\n", dev->name);
873         }
874
875         /*
876          * Enable RNG engine.
877          */
878
879         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
880                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
881         dprintk("Chip %s: RNG engine has been successfully initialised.\n",
882                         dev->name);
883
884 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
885         /* First value must be discarded */
886         hifn_read_1(dev, HIFN_1_RNG_DATA);
887         dev->rngtime = ktime_get();
888 #endif
889         return 0;
890 }
891
892 static int hifn_enable_crypto(struct hifn_device *dev)
893 {
894         u32 dmacfg, addr;
895         char *offtbl = NULL;
896         int i;
897
898         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
899                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
900                                 pci2id[i].pci_prod == dev->pdev->device) {
901                         offtbl = pci2id[i].card_id;
902                         break;
903                 }
904         }
905
906         if (offtbl == NULL) {
907                 dprintk("Chip %s: Unknown card!\n", dev->name);
908                 return -ENODEV;
909         }
910
911         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
912
913         hifn_write_1(dev, HIFN_1_DMA_CNFG,
914                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
915                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
916         mdelay(1);
917         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
918         mdelay(1);
919         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
920         mdelay(1);
921
922         for (i=0; i<12; ++i) {
923                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
924                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
925
926                 mdelay(1);
927         }
928         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
929
930         dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
931
932         return 0;
933 }
934
935 static void hifn_init_dma(struct hifn_device *dev)
936 {
937         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
938         u32 dptr = dev->desc_dma;
939         int i;
940
941         for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
942                 dma->cmdr[i].p = __cpu_to_le32(dptr +
943                                 offsetof(struct hifn_dma, command_bufs[i][0]));
944         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
945                 dma->resr[i].p = __cpu_to_le32(dptr +
946                                 offsetof(struct hifn_dma, result_bufs[i][0]));
947
948         /*
949          * Setup LAST descriptors.
950          */
951         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
952                         offsetof(struct hifn_dma, cmdr[0]));
953         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
954                         offsetof(struct hifn_dma, srcr[0]));
955         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
956                         offsetof(struct hifn_dma, dstr[0]));
957         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
958                         offsetof(struct hifn_dma, resr[0]));
959
960         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
961         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
962         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
963 }
964
965 /*
966  * Initialize the PLL. We need to know the frequency of the reference clock
967  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
968  * allows us to operate without the risk of overclocking the chip. If it
969  * actually uses 33MHz, the chip will operate at half the speed, this can be
970  * overriden by specifying the frequency as module parameter (pci33).
971  *
972  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
973  * stable clock and the PCI clock frequency may vary, so the default is the
974  * external clock. There is no way to find out its frequency, we default to
975  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
976  * has an external crystal populated at 66MHz.
977  */
978 static void hifn_init_pll(struct hifn_device *dev)
979 {
980         unsigned int freq, m;
981         u32 pllcfg;
982
983         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
984
985         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
986                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
987         else
988                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
989
990         if (hifn_pll_ref[3] != '\0')
991                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
992         else {
993                 freq = 66;
994                 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
995                                  "override with hifn_pll_ref=%.3s<frequency>\n",
996                        freq, hifn_pll_ref);
997         }
998
999         m = HIFN_PLL_FCK_MAX / freq;
1000
1001         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1002         if (m <= 8)
1003                 pllcfg |= HIFN_PLL_IS_1_8;
1004         else
1005                 pllcfg |= HIFN_PLL_IS_9_12;
1006
1007         /* Select clock source and enable clock bypass */
1008         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1009                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1010
1011         /* Let the chip lock to the input clock */
1012         mdelay(10);
1013
1014         /* Disable clock bypass */
1015         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1016                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1017
1018         /* Switch the engines to the PLL */
1019         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1020                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1021
1022         /*
1023          * The Fpk_clk runs at half the total speed. Its frequency is needed to
1024          * calculate the minimum time between two reads of the rng. Since 33MHz
1025          * is actually 33.333... we overestimate the frequency here, resulting
1026          * in slightly larger intervals.
1027          */
1028         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1029 }
1030
1031 static void hifn_init_registers(struct hifn_device *dev)
1032 {
1033         u32 dptr = dev->desc_dma;
1034
1035         /* Initialization magic... */
1036         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1037         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1038         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1039
1040         /* write all 4 ring address registers */
1041         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1042                                 offsetof(struct hifn_dma, cmdr[0]));
1043         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1044                                 offsetof(struct hifn_dma, srcr[0]));
1045         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1046                                 offsetof(struct hifn_dma, dstr[0]));
1047         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1048                                 offsetof(struct hifn_dma, resr[0]));
1049
1050         mdelay(2);
1051 #if 0
1052         hifn_write_1(dev, HIFN_1_DMA_CSR,
1053             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1054             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1055             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1056             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1057             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1058             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1059             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1060             HIFN_DMACSR_S_WAIT |
1061             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1062             HIFN_DMACSR_C_WAIT |
1063             HIFN_DMACSR_ENGINE |
1064             HIFN_DMACSR_PUBDONE);
1065 #else
1066         hifn_write_1(dev, HIFN_1_DMA_CSR,
1067             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1068             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1069             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1070             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1071             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1072             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1073             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1074             HIFN_DMACSR_S_WAIT |
1075             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1076             HIFN_DMACSR_C_WAIT |
1077             HIFN_DMACSR_ENGINE |
1078             HIFN_DMACSR_PUBDONE);
1079 #endif
1080         hifn_read_1(dev, HIFN_1_DMA_CSR);
1081
1082         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1083             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1084             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1085             HIFN_DMAIER_ENGINE;
1086         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1087
1088         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1089         hifn_read_1(dev, HIFN_1_DMA_IER);
1090 #if 0
1091         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1092                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1093                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1094                     HIFN_PUCNFG_DRAM);
1095 #else
1096         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1097 #endif
1098         hifn_init_pll(dev);
1099
1100         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1101         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1102             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1103             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1104             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1105 }
1106
1107 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1108                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1109 {
1110         struct hifn_base_command *base_cmd;
1111         u8 *buf_pos = buf;
1112
1113         base_cmd = (struct hifn_base_command *)buf_pos;
1114         base_cmd->masks = __cpu_to_le16(mask);
1115         base_cmd->total_source_count =
1116                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1117         base_cmd->total_dest_count =
1118                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1119
1120         dlen >>= 16;
1121         slen >>= 16;
1122         base_cmd->session_num = __cpu_to_le16(snum |
1123             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1124             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1125
1126         return sizeof(struct hifn_base_command);
1127 }
1128
1129 static int hifn_setup_crypto_command(struct hifn_device *dev,
1130                 u8 *buf, unsigned dlen, unsigned slen,
1131                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1132 {
1133         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1134         struct hifn_crypt_command *cry_cmd;
1135         u8 *buf_pos = buf;
1136         u16 cmd_len;
1137
1138         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1139
1140         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1141         dlen >>= 16;
1142         cry_cmd->masks = __cpu_to_le16(mode |
1143                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1144                          HIFN_CRYPT_CMD_SRCLEN_M));
1145         cry_cmd->header_skip = 0;
1146         cry_cmd->reserved = 0;
1147
1148         buf_pos += sizeof(struct hifn_crypt_command);
1149
1150         dma->cmdu++;
1151         if (dma->cmdu > 1) {
1152                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1153                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1154         }
1155
1156         if (keylen) {
1157                 memcpy(buf_pos, key, keylen);
1158                 buf_pos += keylen;
1159         }
1160         if (ivsize) {
1161                 memcpy(buf_pos, iv, ivsize);
1162                 buf_pos += ivsize;
1163         }
1164
1165         cmd_len = buf_pos - buf;
1166
1167         return cmd_len;
1168 }
1169
1170 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1171                 struct hifn_context *ctx, void *priv, unsigned int nbytes)
1172 {
1173         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1174         int cmd_len, sa_idx;
1175         u8 *buf, *buf_pos;
1176         u16 mask;
1177
1178         sa_idx = dma->cmdi;
1179         buf_pos = buf = dma->command_bufs[dma->cmdi];
1180
1181         mask = 0;
1182         switch (ctx->op) {
1183                 case ACRYPTO_OP_DECRYPT:
1184                         mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1185                         break;
1186                 case ACRYPTO_OP_ENCRYPT:
1187                         mask = HIFN_BASE_CMD_CRYPT;
1188                         break;
1189                 case ACRYPTO_OP_HMAC:
1190                         mask = HIFN_BASE_CMD_MAC;
1191                         break;
1192                 default:
1193                         goto err_out;
1194         }
1195
1196         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1197                         nbytes, mask, dev->snum);
1198
1199         if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1200                 u16 md = 0;
1201
1202                 if (ctx->keysize)
1203                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1204                 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1205                         md |= HIFN_CRYPT_CMD_NEW_IV;
1206
1207                 switch (ctx->mode) {
1208                         case ACRYPTO_MODE_ECB:
1209                                 md |= HIFN_CRYPT_CMD_MODE_ECB;
1210                                 break;
1211                         case ACRYPTO_MODE_CBC:
1212                                 md |= HIFN_CRYPT_CMD_MODE_CBC;
1213                                 break;
1214                         case ACRYPTO_MODE_CFB:
1215                                 md |= HIFN_CRYPT_CMD_MODE_CFB;
1216                                 break;
1217                         case ACRYPTO_MODE_OFB:
1218                                 md |= HIFN_CRYPT_CMD_MODE_OFB;
1219                                 break;
1220                         default:
1221                                 goto err_out;
1222                 }
1223
1224                 switch (ctx->type) {
1225                         case ACRYPTO_TYPE_AES_128:
1226                                 if (ctx->keysize != 16)
1227                                         goto err_out;
1228                                 md |= HIFN_CRYPT_CMD_KSZ_128 |
1229                                         HIFN_CRYPT_CMD_ALG_AES;
1230                                 break;
1231                         case ACRYPTO_TYPE_AES_192:
1232                                 if (ctx->keysize != 24)
1233                                         goto err_out;
1234                                 md |= HIFN_CRYPT_CMD_KSZ_192 |
1235                                         HIFN_CRYPT_CMD_ALG_AES;
1236                                 break;
1237                         case ACRYPTO_TYPE_AES_256:
1238                                 if (ctx->keysize != 32)
1239                                         goto err_out;
1240                                 md |= HIFN_CRYPT_CMD_KSZ_256 |
1241                                         HIFN_CRYPT_CMD_ALG_AES;
1242                                 break;
1243                         case ACRYPTO_TYPE_3DES:
1244                                 if (ctx->keysize != 24)
1245                                         goto err_out;
1246                                 md |= HIFN_CRYPT_CMD_ALG_3DES;
1247                                 break;
1248                         case ACRYPTO_TYPE_DES:
1249                                 if (ctx->keysize != 8)
1250                                         goto err_out;
1251                                 md |= HIFN_CRYPT_CMD_ALG_DES;
1252                                 break;
1253                         default:
1254                                 goto err_out;
1255                 }
1256
1257                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1258                                 nbytes, nbytes, ctx->key, ctx->keysize,
1259                                 ctx->iv, ctx->ivsize, md);
1260         }
1261
1262         dev->sa[sa_idx] = priv;
1263
1264         cmd_len = buf_pos - buf;
1265         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1266                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1267
1268         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1269                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1270                         HIFN_D_VALID | HIFN_D_LAST |
1271                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1272                 dma->cmdi = 0;
1273         } else
1274                 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1275
1276         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1277                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1278                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1279         }
1280         return 0;
1281
1282 err_out:
1283         return -EINVAL;
1284 }
1285
1286 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1287                 unsigned int offset, unsigned int size)
1288 {
1289         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1290         int idx;
1291         dma_addr_t addr;
1292
1293         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1294
1295         idx = dma->srci;
1296
1297         dma->srcr[idx].p = __cpu_to_le32(addr);
1298         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1299                         HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1300
1301         if (++idx == HIFN_D_SRC_RSIZE) {
1302                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1303                                 HIFN_D_JUMP |
1304                                 HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1305                 idx = 0;
1306         }
1307
1308         dma->srci = idx;
1309         dma->srcu++;
1310
1311         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1312                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1313                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1314         }
1315
1316         return size;
1317 }
1318
1319 static void hifn_setup_res_desc(struct hifn_device *dev)
1320 {
1321         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1322
1323         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1324                         HIFN_D_VALID | HIFN_D_LAST);
1325         /*
1326          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1327          *                                      HIFN_D_LAST);
1328          */
1329
1330         if (++dma->resi == HIFN_D_RES_RSIZE) {
1331                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1332                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1333                 dma->resi = 0;
1334         }
1335
1336         dma->resu++;
1337
1338         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1339                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1340                 dev->flags |= HIFN_FLAG_RES_BUSY;
1341         }
1342 }
1343
1344 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1345                 unsigned offset, unsigned size)
1346 {
1347         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1348         int idx;
1349         dma_addr_t addr;
1350
1351         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1352
1353         idx = dma->dsti;
1354         dma->dstr[idx].p = __cpu_to_le32(addr);
1355         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1356                         HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1357
1358         if (++idx == HIFN_D_DST_RSIZE) {
1359                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1360                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1361                                 HIFN_D_LAST);
1362                 idx = 0;
1363         }
1364         dma->dsti = idx;
1365         dma->dstu++;
1366
1367         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1368                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1369                 dev->flags |= HIFN_FLAG_DST_BUSY;
1370         }
1371 }
1372
1373 static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
1374                 struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
1375                 struct hifn_context *ctx)
1376 {
1377         dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
1378                         dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
1379
1380         hifn_setup_src_desc(dev, spage, soff, nbytes);
1381         hifn_setup_cmd_desc(dev, ctx, priv, nbytes);
1382         hifn_setup_dst_desc(dev, dpage, doff, nbytes);
1383         hifn_setup_res_desc(dev);
1384         return 0;
1385 }
1386
1387 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1388                 int num, gfp_t gfp_flags)
1389 {
1390         int i;
1391
1392         num = min(ASYNC_SCATTERLIST_CACHE, num);
1393         sg_init_table(w->cache, num);
1394
1395         w->num = 0;
1396         for (i=0; i<num; ++i) {
1397                 struct page *page = alloc_page(gfp_flags);
1398                 struct scatterlist *s;
1399
1400                 if (!page)
1401                         break;
1402
1403                 s = &w->cache[i];
1404
1405                 sg_set_page(s, page, PAGE_SIZE, 0);
1406                 w->num++;
1407         }
1408
1409         return i;
1410 }
1411
1412 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1413 {
1414         int i;
1415
1416         for (i=0; i<w->num; ++i) {
1417                 struct scatterlist *s = &w->cache[i];
1418
1419                 __free_page(sg_page(s));
1420
1421                 s->length = 0;
1422         }
1423
1424         w->num = 0;
1425 }
1426
1427 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
1428                 unsigned int size, unsigned int *nbytesp)
1429 {
1430         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1431         int idx = 0;
1432         void *saddr;
1433
1434         if (drest < size || size > nbytes)
1435                 return -EINVAL;
1436
1437         while (size) {
1438                 copy = min(drest, min(size, src->length));
1439
1440                 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
1441                 memcpy(daddr, saddr + src->offset, copy);
1442                 kunmap_atomic(saddr, KM_SOFTIRQ1);
1443
1444                 size -= copy;
1445                 drest -= copy;
1446                 nbytes -= copy;
1447                 daddr += copy;
1448
1449                 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1450                                 __func__, copy, size, drest, nbytes);
1451
1452                 src++;
1453                 idx++;
1454         }
1455
1456         *nbytesp = nbytes;
1457         *drestp = drest;
1458
1459         return idx;
1460 }
1461
1462 static int ablkcipher_walk(struct ablkcipher_request *req,
1463                 struct ablkcipher_walk *w)
1464 {
1465         struct scatterlist *src, *dst, *t;
1466         void *daddr;
1467         unsigned int nbytes = req->nbytes, offset, copy, diff;
1468         int idx, tidx, err;
1469
1470         tidx = idx = 0;
1471         offset = 0;
1472         while (nbytes) {
1473                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1474                         return -EINVAL;
1475
1476                 src = &req->src[idx];
1477                 dst = &req->dst[idx];
1478
1479                 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
1480                                 "nbytes: %u.\n",
1481                                 __func__, src->length, dst->length, src->offset,
1482                                 dst->offset, offset, nbytes);
1483
1484                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1485                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1486                     offset) {
1487                         unsigned slen = min(src->length - offset, nbytes);
1488                         unsigned dlen = PAGE_SIZE;
1489
1490                         t = &w->cache[idx];
1491
1492                         daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1493                         err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
1494                         if (err < 0)
1495                                 goto err_out_unmap;
1496
1497                         idx += err;
1498
1499                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1500                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1501
1502                         if (dlen < nbytes) {
1503                                 /*
1504                                  * Destination page does not have enough space
1505                                  * to put there additional blocksized chunk,
1506                                  * so we mark that page as containing only
1507                                  * blocksize aligned chunks:
1508                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1509                                  * and increase number of bytes to be processed
1510                                  * in next chunk:
1511                                  *      nbytes += diff;
1512                                  */
1513                                 nbytes += diff;
1514
1515                                 /*
1516                                  * Temporary of course...
1517                                  * Kick author if you will catch this one.
1518                                  */
1519                                 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1520                                         "slen: %u, offset: %u.\n",
1521                                         __func__, dlen, nbytes, slen, offset);
1522                                 printk(KERN_ERR "%s: please contact author to fix this "
1523                                         "issue, generally you should not catch "
1524                                         "this path under any condition but who "
1525                                         "knows how did you use crypto code.\n"
1526                                         "Thank you.\n", __func__);
1527                                 BUG();
1528                         } else {
1529                                 copy += diff + nbytes;
1530
1531                                 src = &req->src[idx];
1532
1533                                 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
1534                                 if (err < 0)
1535                                         goto err_out_unmap;
1536
1537                                 idx += err;
1538                         }
1539
1540                         t->length = copy;
1541                         t->offset = offset;
1542
1543                         kunmap_atomic(daddr, KM_SOFTIRQ0);
1544                 } else {
1545                         nbytes -= min(src->length, nbytes);
1546                         idx++;
1547                 }
1548
1549                 tidx++;
1550         }
1551
1552         return tidx;
1553
1554 err_out_unmap:
1555         kunmap_atomic(daddr, KM_SOFTIRQ0);
1556         return err;
1557 }
1558
1559 static int hifn_setup_session(struct ablkcipher_request *req)
1560 {
1561         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1562         struct hifn_device *dev = ctx->dev;
1563         struct page *spage, *dpage;
1564         unsigned long soff, doff, dlen, flags;
1565         unsigned int nbytes = req->nbytes, idx = 0, len;
1566         int err = -EINVAL, sg_num;
1567         struct scatterlist *src, *dst, *t;
1568
1569         if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1570                 goto err_out_exit;
1571
1572         ctx->walk.flags = 0;
1573
1574         while (nbytes) {
1575                 dst = &req->dst[idx];
1576                 dlen = min(dst->length, nbytes);
1577
1578                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1579                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1580                         ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1581
1582                 nbytes -= dlen;
1583                 idx++;
1584         }
1585
1586         if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1587                 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1588                 if (err < 0)
1589                         return err;
1590         }
1591
1592         nbytes = req->nbytes;
1593         idx = 0;
1594
1595         sg_num = ablkcipher_walk(req, &ctx->walk);
1596         if (sg_num < 0) {
1597                 err = sg_num;
1598                 goto err_out_exit;
1599         }
1600         atomic_set(&ctx->sg_num, sg_num);
1601
1602         spin_lock_irqsave(&dev->lock, flags);
1603         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1604                 err = -EAGAIN;
1605                 goto err_out;
1606         }
1607
1608         dev->snum++;
1609         dev->started += sg_num;
1610
1611         while (nbytes) {
1612                 src = &req->src[idx];
1613                 dst = &req->dst[idx];
1614                 t = &ctx->walk.cache[idx];
1615
1616                 if (t->length) {
1617                         spage = dpage = sg_page(t);
1618                         soff = doff = 0;
1619                         len = t->length;
1620                 } else {
1621                         spage = sg_page(src);
1622                         soff = src->offset;
1623
1624                         dpage = sg_page(dst);
1625                         doff = dst->offset;
1626
1627                         len = dst->length;
1628                 }
1629
1630                 idx++;
1631
1632                 err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes,
1633                                 req, ctx);
1634                 if (err)
1635                         goto err_out;
1636
1637                 nbytes -= min(len, nbytes);
1638         }
1639
1640         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1641         spin_unlock_irqrestore(&dev->lock, flags);
1642
1643         return 0;
1644
1645 err_out:
1646         spin_unlock_irqrestore(&dev->lock, flags);
1647 err_out_exit:
1648         if (err)
1649                 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1650                                 "type: %u, err: %d.\n",
1651                         dev->name, ctx->iv, ctx->ivsize,
1652                         ctx->key, ctx->keysize,
1653                         ctx->mode, ctx->op, ctx->type, err);
1654
1655         return err;
1656 }
1657
1658 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1659 {
1660         int n, err;
1661         u8 src[16];
1662         struct hifn_context ctx;
1663         u8 fips_aes_ecb_from_zero[16] = {
1664                 0x66, 0xE9, 0x4B, 0xD4,
1665                 0xEF, 0x8A, 0x2C, 0x3B,
1666                 0x88, 0x4C, 0xFA, 0x59,
1667                 0xCA, 0x34, 0x2B, 0x2E};
1668
1669         memset(src, 0, sizeof(src));
1670         memset(ctx.key, 0, sizeof(ctx.key));
1671
1672         ctx.dev = dev;
1673         ctx.keysize = 16;
1674         ctx.ivsize = 0;
1675         ctx.iv = NULL;
1676         ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1677         ctx.mode = ACRYPTO_MODE_ECB;
1678         ctx.type = ACRYPTO_TYPE_AES_128;
1679         atomic_set(&ctx.sg_num, 1);
1680
1681         err = hifn_setup_dma(dev,
1682                         virt_to_page(src), offset_in_page(src),
1683                         virt_to_page(src), offset_in_page(src),
1684                         sizeof(src), NULL, &ctx);
1685         if (err)
1686                 goto err_out;
1687
1688         msleep(200);
1689
1690         dprintk("%s: decoded: ", dev->name);
1691         for (n=0; n<sizeof(src); ++n)
1692                 dprintk("%02x ", src[n]);
1693         dprintk("\n");
1694         dprintk("%s: FIPS   : ", dev->name);
1695         for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1696                 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1697         dprintk("\n");
1698
1699         if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1700                 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1701                                 "passed.\n", dev->name);
1702                 return 0;
1703         }
1704
1705 err_out:
1706         printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1707         return -1;
1708 }
1709
1710 static int hifn_start_device(struct hifn_device *dev)
1711 {
1712         int err;
1713
1714         hifn_reset_dma(dev, 1);
1715
1716         err = hifn_enable_crypto(dev);
1717         if (err)
1718                 return err;
1719
1720         hifn_reset_puc(dev);
1721
1722         hifn_init_dma(dev);
1723
1724         hifn_init_registers(dev);
1725
1726         hifn_init_pubrng(dev);
1727
1728         return 0;
1729 }
1730
1731 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1732                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1733 {
1734         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1735         void *daddr;
1736         int idx = 0;
1737
1738         if (srest < size || size > nbytes)
1739                 return -EINVAL;
1740
1741         while (size) {
1742                 copy = min(srest, min(dst->length, size));
1743
1744                 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1745                 memcpy(daddr + dst->offset + offset, saddr, copy);
1746                 kunmap_atomic(daddr, KM_IRQ0);
1747
1748                 nbytes -= copy;
1749                 size -= copy;
1750                 srest -= copy;
1751                 saddr += copy;
1752                 offset = 0;
1753
1754                 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1755                                 __func__, copy, size, srest, nbytes);
1756
1757                 dst++;
1758                 idx++;
1759         }
1760
1761         *nbytesp = nbytes;
1762         *srestp = srest;
1763
1764         return idx;
1765 }
1766
1767 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1768 {
1769         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1770         struct hifn_device *dev;
1771
1772         dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1773
1774         dev = ctx->dev;
1775         dprintk("%s: req: %p, started: %d, sg_num: %d.\n",
1776                 __func__, req, dev->started, atomic_read(&ctx->sg_num));
1777
1778         if (--dev->started < 0)
1779                 BUG();
1780
1781         if (atomic_dec_and_test(&ctx->sg_num)) {
1782                 unsigned int nbytes = req->nbytes;
1783                 int idx = 0, err;
1784                 struct scatterlist *dst, *t;
1785                 void *saddr;
1786
1787                 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1788                         while (nbytes) {
1789                                 t = &ctx->walk.cache[idx];
1790                                 dst = &req->dst[idx];
1791
1792                                 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1793                                         "sg_page(dst): %p, dst->length: %u, "
1794                                         "nbytes: %u.\n",
1795                                         __func__, sg_page(t), t->length,
1796                                         sg_page(dst), dst->length, nbytes);
1797
1798                                 if (!t->length) {
1799                                         nbytes -= min(dst->length, nbytes);
1800                                         idx++;
1801                                         continue;
1802                                 }
1803
1804                                 saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1805
1806                                 err = ablkcipher_get(saddr, &t->length, t->offset,
1807                                                 dst, nbytes, &nbytes);
1808                                 if (err < 0) {
1809                                         kunmap_atomic(saddr, KM_IRQ1);
1810                                         break;
1811                                 }
1812
1813                                 idx += err;
1814                                 kunmap_atomic(saddr, KM_IRQ1);
1815                         }
1816
1817                         ablkcipher_walk_exit(&ctx->walk);
1818                 }
1819
1820                 req->base.complete(&req->base, error);
1821         }
1822 }
1823
1824 static void hifn_check_for_completion(struct hifn_device *dev, int error)
1825 {
1826         int i;
1827         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1828
1829         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1830                 struct hifn_desc *d = &dma->resr[i];
1831
1832                 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1833                         dev->success++;
1834                         dev->reset = 0;
1835                         hifn_process_ready(dev->sa[i], error);
1836                         dev->sa[i] = NULL;
1837                 }
1838
1839                 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1840                         if (printk_ratelimit())
1841                                 printk("%s: overflow detected [d: %u, o: %u] "
1842                                                 "at %d resr: l: %08x, p: %08x.\n",
1843                                         dev->name,
1844                                         !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1845                                         !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1846                                         i, d->l, d->p);
1847         }
1848 }
1849
1850 static void hifn_clear_rings(struct hifn_device *dev)
1851 {
1852         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1853         int i, u;
1854
1855         dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1856                         "k: %d.%d.%d.%d.\n",
1857                         dev->name,
1858                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1859                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1860                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1861
1862         i = dma->resk; u = dma->resu;
1863         while (u != 0) {
1864                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1865                         break;
1866
1867                 if (i != HIFN_D_RES_RSIZE)
1868                         u--;
1869
1870                 if (++i == (HIFN_D_RES_RSIZE + 1))
1871                         i = 0;
1872         }
1873         dma->resk = i; dma->resu = u;
1874
1875         i = dma->srck; u = dma->srcu;
1876         while (u != 0) {
1877                 if (i == HIFN_D_SRC_RSIZE)
1878                         i = 0;
1879                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1880                         break;
1881                 i++, u--;
1882         }
1883         dma->srck = i; dma->srcu = u;
1884
1885         i = dma->cmdk; u = dma->cmdu;
1886         while (u != 0) {
1887                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1888                         break;
1889                 if (i != HIFN_D_CMD_RSIZE)
1890                         u--;
1891                 if (++i == (HIFN_D_CMD_RSIZE + 1))
1892                         i = 0;
1893         }
1894         dma->cmdk = i; dma->cmdu = u;
1895
1896         i = dma->dstk; u = dma->dstu;
1897         while (u != 0) {
1898                 if (i == HIFN_D_DST_RSIZE)
1899                         i = 0;
1900                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1901                         break;
1902                 i++, u--;
1903         }
1904         dma->dstk = i; dma->dstu = u;
1905
1906         dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1907                         "k: %d.%d.%d.%d.\n",
1908                         dev->name,
1909                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1910                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1911                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1912 }
1913
1914 static void hifn_work(struct work_struct *work)
1915 {
1916         struct delayed_work *dw = container_of(work, struct delayed_work, work);
1917         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1918         unsigned long flags;
1919         int reset = 0;
1920         u32 r = 0;
1921
1922         spin_lock_irqsave(&dev->lock, flags);
1923         if (dev->active == 0) {
1924                 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1925
1926                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1927                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1928                         r |= HIFN_DMACSR_C_CTRL_DIS;
1929                 }
1930                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1931                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1932                         r |= HIFN_DMACSR_S_CTRL_DIS;
1933                 }
1934                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1935                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1936                         r |= HIFN_DMACSR_D_CTRL_DIS;
1937                 }
1938                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1939                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1940                         r |= HIFN_DMACSR_R_CTRL_DIS;
1941                 }
1942                 if (r)
1943                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1944         } else
1945                 dev->active--;
1946
1947         if (dev->prev_success == dev->success && dev->started)
1948                 reset = 1;
1949         dev->prev_success = dev->success;
1950         spin_unlock_irqrestore(&dev->lock, flags);
1951
1952         if (reset) {
1953                 dprintk("%s: r: %08x, active: %d, started: %d, "
1954                                 "success: %lu: reset: %d.\n",
1955                         dev->name, r, dev->active, dev->started,
1956                         dev->success, reset);
1957
1958                 if (++dev->reset >= 5) {
1959                         dprintk("%s: really hard reset.\n", dev->name);
1960                         hifn_reset_dma(dev, 1);
1961                         hifn_stop_device(dev);
1962                         hifn_start_device(dev);
1963                         dev->reset = 0;
1964                 }
1965
1966                 spin_lock_irqsave(&dev->lock, flags);
1967                 hifn_check_for_completion(dev, -EBUSY);
1968                 hifn_clear_rings(dev);
1969                 dev->started = 0;
1970                 spin_unlock_irqrestore(&dev->lock, flags);
1971         }
1972
1973         schedule_delayed_work(&dev->work, HZ);
1974 }
1975
1976 static irqreturn_t hifn_interrupt(int irq, void *data)
1977 {
1978         struct hifn_device *dev = (struct hifn_device *)data;
1979         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1980         u32 dmacsr, restart;
1981
1982         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1983
1984         dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1985                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1986                 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1987                 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1988                 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1989
1990         if ((dmacsr & dev->dmareg) == 0)
1991                 return IRQ_NONE;
1992
1993         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1994
1995         if (dmacsr & HIFN_DMACSR_ENGINE)
1996                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1997         if (dmacsr & HIFN_DMACSR_PUBDONE)
1998                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1999                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
2000
2001         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
2002         if (restart) {
2003                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
2004
2005                 if (printk_ratelimit())
2006                         printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
2007                                 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
2008                                 !!(dmacsr & HIFN_DMACSR_D_OVER),
2009                                 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
2010                 if (!!(puisr & HIFN_PUISR_DSTOVER))
2011                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2012                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2013                                         HIFN_DMACSR_D_OVER));
2014         }
2015
2016         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2017                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2018         if (restart) {
2019                 if (printk_ratelimit())
2020                         printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2021                                 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2022                                 !!(dmacsr & HIFN_DMACSR_S_ABORT),
2023                                 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2024                                 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2025                 hifn_reset_dma(dev, 1);
2026                 hifn_init_dma(dev);
2027                 hifn_init_registers(dev);
2028         }
2029
2030         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2031                 dprintk("%s: wait on command.\n", dev->name);
2032                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2033                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2034         }
2035
2036         tasklet_schedule(&dev->tasklet);
2037         hifn_clear_rings(dev);
2038
2039         return IRQ_HANDLED;
2040 }
2041
2042 static void hifn_flush(struct hifn_device *dev)
2043 {
2044         unsigned long flags;
2045         struct crypto_async_request *async_req;
2046         struct hifn_context *ctx;
2047         struct ablkcipher_request *req;
2048         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2049         int i;
2050
2051         spin_lock_irqsave(&dev->lock, flags);
2052         for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2053                 struct hifn_desc *d = &dma->resr[i];
2054
2055                 if (dev->sa[i]) {
2056                         hifn_process_ready(dev->sa[i],
2057                                 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2058                 }
2059         }
2060
2061         while ((async_req = crypto_dequeue_request(&dev->queue))) {
2062                 ctx = crypto_tfm_ctx(async_req->tfm);
2063                 req = container_of(async_req, struct ablkcipher_request, base);
2064
2065                 hifn_process_ready(req, -ENODEV);
2066         }
2067         spin_unlock_irqrestore(&dev->lock, flags);
2068 }
2069
2070 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2071                 unsigned int len)
2072 {
2073         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2074         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2075         struct hifn_device *dev = ctx->dev;
2076
2077         if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2078                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2079                 return -1;
2080         }
2081
2082         if (len == HIFN_DES_KEY_LENGTH) {
2083                 u32 tmp[DES_EXPKEY_WORDS];
2084                 int ret = des_ekey(tmp, key);
2085                 
2086                 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2087                         tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2088                         return -EINVAL;
2089                 }
2090         }
2091
2092         dev->flags &= ~HIFN_FLAG_OLD_KEY;
2093
2094         memcpy(ctx->key, key, len);
2095         ctx->keysize = len;
2096
2097         return 0;
2098 }
2099
2100 static int hifn_handle_req(struct ablkcipher_request *req)
2101 {
2102         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2103         struct hifn_device *dev = ctx->dev;
2104         int err = -EAGAIN;
2105
2106         if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2107                 err = hifn_setup_session(req);
2108
2109         if (err == -EAGAIN) {
2110                 unsigned long flags;
2111
2112                 spin_lock_irqsave(&dev->lock, flags);
2113                 err = ablkcipher_enqueue_request(&dev->queue, req);
2114                 spin_unlock_irqrestore(&dev->lock, flags);
2115         }
2116
2117         return err;
2118 }
2119
2120 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2121                 u8 type, u8 mode)
2122 {
2123         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2124         unsigned ivsize;
2125
2126         ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2127
2128         if (req->info && mode != ACRYPTO_MODE_ECB) {
2129                 if (type == ACRYPTO_TYPE_AES_128)
2130                         ivsize = HIFN_AES_IV_LENGTH;
2131                 else if (type == ACRYPTO_TYPE_DES)
2132                         ivsize = HIFN_DES_KEY_LENGTH;
2133                 else if (type == ACRYPTO_TYPE_3DES)
2134                         ivsize = HIFN_3DES_KEY_LENGTH;
2135         }
2136
2137         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2138                 if (ctx->keysize == 24)
2139                         type = ACRYPTO_TYPE_AES_192;
2140                 else if (ctx->keysize == 32)
2141                         type = ACRYPTO_TYPE_AES_256;
2142         }
2143
2144         ctx->op = op;
2145         ctx->mode = mode;
2146         ctx->type = type;
2147         ctx->iv = req->info;
2148         ctx->ivsize = ivsize;
2149
2150         /*
2151          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2152          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2153          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2154          */
2155
2156         return hifn_handle_req(req);
2157 }
2158
2159 static int hifn_process_queue(struct hifn_device *dev)
2160 {
2161         struct crypto_async_request *async_req;
2162         struct hifn_context *ctx;
2163         struct ablkcipher_request *req;
2164         unsigned long flags;
2165         int err = 0;
2166
2167         while (dev->started < HIFN_QUEUE_LENGTH) {
2168                 spin_lock_irqsave(&dev->lock, flags);
2169                 async_req = crypto_dequeue_request(&dev->queue);
2170                 spin_unlock_irqrestore(&dev->lock, flags);
2171
2172                 if (!async_req)
2173                         break;
2174
2175                 ctx = crypto_tfm_ctx(async_req->tfm);
2176                 req = container_of(async_req, struct ablkcipher_request, base);
2177
2178                 err = hifn_handle_req(req);
2179                 if (err)
2180                         break;
2181         }
2182
2183         return err;
2184 }
2185
2186 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2187                 u8 type, u8 mode)
2188 {
2189         int err;
2190         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2191         struct hifn_device *dev = ctx->dev;
2192
2193         err = hifn_setup_crypto_req(req, op, type, mode);
2194         if (err)
2195                 return err;
2196
2197         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2198                 hifn_process_queue(dev);
2199
2200         return -EINPROGRESS;
2201 }
2202
2203 /*
2204  * AES ecryption functions.
2205  */
2206 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2207 {
2208         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2209                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2210 }
2211 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2212 {
2213         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2214                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2215 }
2216 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2217 {
2218         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2219                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2220 }
2221 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2222 {
2223         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2224                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2225 }
2226
2227 /*
2228  * AES decryption functions.
2229  */
2230 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2231 {
2232         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2233                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2234 }
2235 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2236 {
2237         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2238                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2239 }
2240 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2241 {
2242         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2243                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2244 }
2245 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2246 {
2247         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2248                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2249 }
2250
2251 /*
2252  * DES ecryption functions.
2253  */
2254 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2255 {
2256         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2257                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2258 }
2259 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2260 {
2261         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2262                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2263 }
2264 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2265 {
2266         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2267                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2268 }
2269 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2270 {
2271         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2272                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2273 }
2274
2275 /*
2276  * DES decryption functions.
2277  */
2278 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2279 {
2280         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2281                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2282 }
2283 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2284 {
2285         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2286                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2287 }
2288 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2289 {
2290         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2291                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2292 }
2293 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2294 {
2295         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2296                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2297 }
2298
2299 /*
2300  * 3DES ecryption functions.
2301  */
2302 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2303 {
2304         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2305                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2306 }
2307 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2308 {
2309         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2310                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2311 }
2312 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2313 {
2314         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2315                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2316 }
2317 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2318 {
2319         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2320                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2321 }
2322
2323 /*
2324  * 3DES decryption functions.
2325  */
2326 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2327 {
2328         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2329                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2330 }
2331 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2332 {
2333         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2334                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2335 }
2336 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2337 {
2338         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2339                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2340 }
2341 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2342 {
2343         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2344                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2345 }
2346
2347 struct hifn_alg_template
2348 {
2349         char name[CRYPTO_MAX_ALG_NAME];
2350         char drv_name[CRYPTO_MAX_ALG_NAME];
2351         unsigned int bsize;
2352         struct ablkcipher_alg ablkcipher;
2353 };
2354
2355 static struct hifn_alg_template hifn_alg_templates[] = {
2356         /*
2357          * 3DES ECB, CBC, CFB and OFB modes.
2358          */
2359         {
2360                 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2361                 .ablkcipher = {
2362                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2363                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2364                         .setkey         =       hifn_setkey,
2365                         .encrypt        =       hifn_encrypt_3des_cfb,
2366                         .decrypt        =       hifn_decrypt_3des_cfb,
2367                 },
2368         },
2369         {
2370                 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2371                 .ablkcipher = {
2372                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2373                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2374                         .setkey         =       hifn_setkey,
2375                         .encrypt        =       hifn_encrypt_3des_ofb,
2376                         .decrypt        =       hifn_decrypt_3des_ofb,
2377                 },
2378         },
2379         {
2380                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2381                 .ablkcipher = {
2382                         .ivsize         =       HIFN_IV_LENGTH,
2383                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2384                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2385                         .setkey         =       hifn_setkey,
2386                         .encrypt        =       hifn_encrypt_3des_cbc,
2387                         .decrypt        =       hifn_decrypt_3des_cbc,
2388                 },
2389         },
2390         {
2391                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2392                 .ablkcipher = {
2393                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2394                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2395                         .setkey         =       hifn_setkey,
2396                         .encrypt        =       hifn_encrypt_3des_ecb,
2397                         .decrypt        =       hifn_decrypt_3des_ecb,
2398                 },
2399         },
2400
2401         /*
2402          * DES ECB, CBC, CFB and OFB modes.
2403          */
2404         {
2405                 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2406                 .ablkcipher = {
2407                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2408                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2409                         .setkey         =       hifn_setkey,
2410                         .encrypt        =       hifn_encrypt_des_cfb,
2411                         .decrypt        =       hifn_decrypt_des_cfb,
2412                 },
2413         },
2414         {
2415                 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2416                 .ablkcipher = {
2417                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2418                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2419                         .setkey         =       hifn_setkey,
2420                         .encrypt        =       hifn_encrypt_des_ofb,
2421                         .decrypt        =       hifn_decrypt_des_ofb,
2422                 },
2423         },
2424         {
2425                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2426                 .ablkcipher = {
2427                         .ivsize         =       HIFN_IV_LENGTH,
2428                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2429                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2430                         .setkey         =       hifn_setkey,
2431                         .encrypt        =       hifn_encrypt_des_cbc,
2432                         .decrypt        =       hifn_decrypt_des_cbc,
2433                 },
2434         },
2435         {
2436                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2437                 .ablkcipher = {
2438                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2439                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2440                         .setkey         =       hifn_setkey,
2441                         .encrypt        =       hifn_encrypt_des_ecb,
2442                         .decrypt        =       hifn_decrypt_des_ecb,
2443                 },
2444         },
2445
2446         /*
2447          * AES ECB, CBC, CFB and OFB modes.
2448          */
2449         {
2450                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2451                 .ablkcipher = {
2452                         .min_keysize    =       AES_MIN_KEY_SIZE,
2453                         .max_keysize    =       AES_MAX_KEY_SIZE,
2454                         .setkey         =       hifn_setkey,
2455                         .encrypt        =       hifn_encrypt_aes_ecb,
2456                         .decrypt        =       hifn_decrypt_aes_ecb,
2457                 },
2458         },
2459         {
2460                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2461                 .ablkcipher = {
2462                         .ivsize         =       HIFN_AES_IV_LENGTH,
2463                         .min_keysize    =       AES_MIN_KEY_SIZE,
2464                         .max_keysize    =       AES_MAX_KEY_SIZE,
2465                         .setkey         =       hifn_setkey,
2466                         .encrypt        =       hifn_encrypt_aes_cbc,
2467                         .decrypt        =       hifn_decrypt_aes_cbc,
2468                 },
2469         },
2470         {
2471                 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2472                 .ablkcipher = {
2473                         .min_keysize    =       AES_MIN_KEY_SIZE,
2474                         .max_keysize    =       AES_MAX_KEY_SIZE,
2475                         .setkey         =       hifn_setkey,
2476                         .encrypt        =       hifn_encrypt_aes_cfb,
2477                         .decrypt        =       hifn_decrypt_aes_cfb,
2478                 },
2479         },
2480         {
2481                 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2482                 .ablkcipher = {
2483                         .min_keysize    =       AES_MIN_KEY_SIZE,
2484                         .max_keysize    =       AES_MAX_KEY_SIZE,
2485                         .setkey         =       hifn_setkey,
2486                         .encrypt        =       hifn_encrypt_aes_ofb,
2487                         .decrypt        =       hifn_decrypt_aes_ofb,
2488                 },
2489         },
2490 };
2491
2492 static int hifn_cra_init(struct crypto_tfm *tfm)
2493 {
2494         struct crypto_alg *alg = tfm->__crt_alg;
2495         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2496         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2497
2498         ctx->dev = ha->dev;
2499
2500         return 0;
2501 }
2502
2503 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2504 {
2505         struct hifn_crypto_alg *alg;
2506         int err;
2507
2508         alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2509         if (!alg)
2510                 return -ENOMEM;
2511
2512         snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2513         snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2514                  t->drv_name, dev->name);
2515
2516         alg->alg.cra_priority = 300;
2517         alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2518         alg->alg.cra_blocksize = t->bsize;
2519         alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2520         alg->alg.cra_alignmask = 0;
2521         alg->alg.cra_type = &crypto_ablkcipher_type;
2522         alg->alg.cra_module = THIS_MODULE;
2523         alg->alg.cra_u.ablkcipher = t->ablkcipher;
2524         alg->alg.cra_init = hifn_cra_init;
2525
2526         alg->dev = dev;
2527
2528         list_add_tail(&alg->entry, &dev->alg_list);
2529
2530         err = crypto_register_alg(&alg->alg);
2531         if (err) {
2532                 list_del(&alg->entry);
2533                 kfree(alg);
2534         }
2535
2536         return err;
2537 }
2538
2539 static void hifn_unregister_alg(struct hifn_device *dev)
2540 {
2541         struct hifn_crypto_alg *a, *n;
2542
2543         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2544                 list_del(&a->entry);
2545                 crypto_unregister_alg(&a->alg);
2546                 kfree(a);
2547         }
2548 }
2549
2550 static int hifn_register_alg(struct hifn_device *dev)
2551 {
2552         int i, err;
2553
2554         for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2555                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2556                 if (err)
2557                         goto err_out_exit;
2558         }
2559
2560         return 0;
2561
2562 err_out_exit:
2563         hifn_unregister_alg(dev);
2564         return err;
2565 }
2566
2567 static void hifn_tasklet_callback(unsigned long data)
2568 {
2569         struct hifn_device *dev = (struct hifn_device *)data;
2570
2571         /*
2572          * This is ok to call this without lock being held,
2573          * althogh it modifies some parameters used in parallel,
2574          * (like dev->success), but they are used in process
2575          * context or update is atomic (like setting dev->sa[i] to NULL).
2576          */
2577         hifn_check_for_completion(dev, 0);
2578 }
2579
2580 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2581 {
2582         int err, i;
2583         struct hifn_device *dev;
2584         char name[8];
2585
2586         err = pci_enable_device(pdev);
2587         if (err)
2588                 return err;
2589         pci_set_master(pdev);
2590
2591         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2592         if (err)
2593                 goto err_out_disable_pci_device;
2594
2595         snprintf(name, sizeof(name), "hifn%d",
2596                         atomic_inc_return(&hifn_dev_number)-1);
2597
2598         err = pci_request_regions(pdev, name);
2599         if (err)
2600                 goto err_out_disable_pci_device;
2601
2602         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2603             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2604             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2605                 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2606                                 pci_name(pdev));
2607                 err = -ENODEV;
2608                 goto err_out_free_regions;
2609         }
2610
2611         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2612                         GFP_KERNEL);
2613         if (!dev) {
2614                 err = -ENOMEM;
2615                 goto err_out_free_regions;
2616         }
2617
2618         INIT_LIST_HEAD(&dev->alg_list);
2619
2620         snprintf(dev->name, sizeof(dev->name), "%s", name);
2621         spin_lock_init(&dev->lock);
2622
2623         for (i=0; i<3; ++i) {
2624                 unsigned long addr, size;
2625
2626                 addr = pci_resource_start(pdev, i);
2627                 size = pci_resource_len(pdev, i);
2628
2629                 dev->bar[i] = ioremap_nocache(addr, size);
2630                 if (!dev->bar[i])
2631                         goto err_out_unmap_bars;
2632         }
2633
2634         dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2635         if (!dev->result_mem) {
2636                 dprintk("Failed to allocate %d pages for result_mem.\n",
2637                                 HIFN_MAX_RESULT_ORDER);
2638                 goto err_out_unmap_bars;
2639         }
2640         memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2641
2642         dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2643                         PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2644
2645         dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2646                         &dev->desc_dma);
2647         if (!dev->desc_virt) {
2648                 dprintk("Failed to allocate descriptor rings.\n");
2649                 goto err_out_free_result_pages;
2650         }
2651         memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2652
2653         dev->pdev = pdev;
2654         dev->irq = pdev->irq;
2655
2656         for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2657                 dev->sa[i] = NULL;
2658
2659         pci_set_drvdata(pdev, dev);
2660
2661         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2662
2663         crypto_init_queue(&dev->queue, 1);
2664
2665         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2666         if (err) {
2667                 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2668                 dev->irq = 0;
2669                 goto err_out_free_desc;
2670         }
2671
2672         err = hifn_start_device(dev);
2673         if (err)
2674                 goto err_out_free_irq;
2675
2676         err = hifn_test(dev, 1, 0);
2677         if (err)
2678                 goto err_out_stop_device;
2679
2680         err = hifn_register_rng(dev);
2681         if (err)
2682                 goto err_out_stop_device;
2683
2684         err = hifn_register_alg(dev);
2685         if (err)
2686                 goto err_out_unregister_rng;
2687
2688         INIT_DELAYED_WORK(&dev->work, hifn_work);
2689         schedule_delayed_work(&dev->work, HZ);
2690
2691         dprintk("HIFN crypto accelerator card at %s has been "
2692                         "successfully registered as %s.\n",
2693                         pci_name(pdev), dev->name);
2694
2695         return 0;
2696
2697 err_out_unregister_rng:
2698         hifn_unregister_rng(dev);
2699 err_out_stop_device:
2700         hifn_reset_dma(dev, 1);
2701         hifn_stop_device(dev);
2702 err_out_free_irq:
2703         free_irq(dev->irq, dev->name);
2704         tasklet_kill(&dev->tasklet);
2705 err_out_free_desc:
2706         pci_free_consistent(pdev, sizeof(struct hifn_dma),
2707                         dev->desc_virt, dev->desc_dma);
2708
2709 err_out_free_result_pages:
2710         pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2711                         PCI_DMA_FROMDEVICE);
2712         free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2713
2714 err_out_unmap_bars:
2715         for (i=0; i<3; ++i)
2716                 if (dev->bar[i])
2717                         iounmap(dev->bar[i]);
2718
2719 err_out_free_regions:
2720         pci_release_regions(pdev);
2721
2722 err_out_disable_pci_device:
2723         pci_disable_device(pdev);
2724
2725         return err;
2726 }
2727
2728 static void hifn_remove(struct pci_dev *pdev)
2729 {
2730         int i;
2731         struct hifn_device *dev;
2732
2733         dev = pci_get_drvdata(pdev);
2734
2735         if (dev) {
2736                 cancel_delayed_work(&dev->work);
2737                 flush_scheduled_work();
2738
2739                 hifn_unregister_rng(dev);
2740                 hifn_unregister_alg(dev);
2741                 hifn_reset_dma(dev, 1);
2742                 hifn_stop_device(dev);
2743
2744                 free_irq(dev->irq, dev->name);
2745                 tasklet_kill(&dev->tasklet);
2746
2747                 hifn_flush(dev);
2748
2749                 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2750                                 dev->desc_virt, dev->desc_dma);
2751                 pci_unmap_single(pdev, dev->dst,
2752                                 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2753                                 PCI_DMA_FROMDEVICE);
2754                 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2755                 for (i=0; i<3; ++i)
2756                         if (dev->bar[i])
2757                                 iounmap(dev->bar[i]);
2758
2759                 kfree(dev);
2760         }
2761
2762         pci_release_regions(pdev);
2763         pci_disable_device(pdev);
2764 }
2765
2766 static struct pci_device_id hifn_pci_tbl[] = {
2767         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2768         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2769         { 0 }
2770 };
2771 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2772
2773 static struct pci_driver hifn_pci_driver = {
2774         .name     = "hifn795x",
2775         .id_table = hifn_pci_tbl,
2776         .probe    = hifn_probe,
2777         .remove   = __devexit_p(hifn_remove),
2778 };
2779
2780 static int __devinit hifn_init(void)
2781 {
2782         unsigned int freq;
2783         int err;
2784
2785         if (strncmp(hifn_pll_ref, "ext", 3) &&
2786             strncmp(hifn_pll_ref, "pci", 3)) {
2787                 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2788                                 "must be pci or ext");
2789                 return -EINVAL;
2790         }
2791
2792         /*
2793          * For the 7955/7956 the reference clock frequency must be in the
2794          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2795          * but this chip is currently not supported.
2796          */
2797         if (hifn_pll_ref[3] != '\0') {
2798                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2799                 if (freq < 20 || freq > 100) {
2800                         printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2801                                         "frequency, must be in the range "
2802                                         "of 20-100");
2803                         return -EINVAL;
2804                 }
2805         }
2806
2807         err = pci_register_driver(&hifn_pci_driver);
2808         if (err < 0) {
2809                 dprintk("Failed to register PCI driver for %s device.\n",
2810                                 hifn_pci_driver.name);
2811                 return -ENODEV;
2812         }
2813
2814         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2815                         "has been successfully registered.\n");
2816
2817         return 0;
2818 }
2819
2820 static void __devexit hifn_fini(void)
2821 {
2822         pci_unregister_driver(&hifn_pci_driver);
2823
2824         printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2825                         "has been successfully unregistered.\n");
2826 }
2827
2828 module_init(hifn_init);
2829 module_exit(hifn_fini);
2830
2831 MODULE_LICENSE("GPL");
2832 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2833 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");